Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 280: 116509, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38833979

RESUMO

Cadmium, as a typical heavy metal, has the potential to induce soil pollution and threaten human health through the soil-plant-human pathway. The conventional evaluation method based on the total content in soil cannot accurately represent the content migrated from the food chain to plants and the human body. Previous studies focused on the process of plant enrichment of heavy metals in soil, and very few studies directly predicted human exposure or risk through the labile state of Cd in soil. Hence, a relatively accurate and convenient prediction model of Cd release and translocation in the soil-rice-human system was developed. This model utilizes available Cd and soil parameters to predict the bioavailability of Cd in soil, as well as the in vitro bioaccessibility of Cd in cooked rice. The bioavailability of Cd was determined by the Diffusive Gradients in Thin-films technology and BCR sequential extraction procedure, offering in-situ quantification, which presents a significant advantage over traditional monitoring methods and aligns closely with the actual uptake of heavy metals by plants. The experimental results show that the prediction model based on the concentration of heavy metal forms measured by BCR sequential extraction procedure and diffusive gradients in thin-films technique can accurately predict the Cd uptake in rice grains, gastric and gastrointestinal phase (R2=0.712, 0.600 and 0.629). This model accurately predicts Cd bioavailability and bioaccessibility across the soil-rice-human pathway, informing actual human Cd intake, offering scientific support for developing more effective risk assessment methods.


Assuntos
Disponibilidade Biológica , Cádmio , Oryza , Poluentes do Solo , Oryza/metabolismo , Oryza/química , Cádmio/metabolismo , Cádmio/análise , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Humanos , Solo/química , Monitoramento Ambiental/métodos , Medição de Risco , Metais Pesados/análise , Metais Pesados/metabolismo
2.
Environ Sci Pollut Res Int ; 31(24): 34817-34838, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739340

RESUMO

The purpose of this review was to survey the recent applications of the diffusive gradients in thin films (DGT) technique in the assessment of mobility and bioavailability of nutrients and potentially toxic elements (PTEs) in agricultural soil. Many studies compared the capabilities of the DGT technique with those of classical soil chemical extractants used in single or sequential procedures to predict nutrients and PTE bioavailability to crops. In most of the published works, the DGT technique was reported to be superior to the conventional chemical extraction and fractionation methods in obtaining significant correlations with the metals and metalloids accumulated in crops. In the domain of nutrient bioavailability assessment, DGT-based studies focused mainly on phosphorous and selenium labile fraction measurement, but potassium, manganese, and nitrogen were also studied using the DGT tool. Different DGT configurations are reported, using binding and diffusive layers specific for certain analytes (Hg, P, and Se) or gels with wider applicability, such as Chelex-based binding gels for metal cations and ferrihydrite-based hydrogels for oxyanions. Overall, the literature demonstrates that the DGT technique is relevant for the evaluation of metal and nutrient bioavailability to crops, due to its capacity to mimic the plant root uptake process, which justifies future improvement efforts.


Assuntos
Agricultura , Produtos Agrícolas , Nutrientes , Poluentes do Solo , Solo , Solo/química , Nutrientes/análise , Monitoramento Ambiental/métodos
3.
Sci Total Environ ; 926: 172067, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38565352

RESUMO

Diffusive gradients in thin films (DGTs) have been well-documented for the measurement of a broad range of organic pollutants in surface water. However, the performance has been challenged by the inherent periodic concentration fluctuations for most organic pollutants. Therefore, there is an urgent need to assess the true time-weighted average (TWA) concentration based on fluctuating concentration profiles. The study aimed to evaluate the responsiveness of DGT and accuracy of TWA concentrations, considering various concentration fluctuating scenarios of 20 pharmaceuticals in surface water. The reliability and accuracy of the TWA concentrations measured by the DGT were assessed by comparison with the sum of cumulative mass of DGT exposed at different stages over the deployment period. The results showed that peak concentration duration (1-5 days), peak concentration fluctuation intensity (6-20 times), and occurrence time of peak concentration fluctuation (early, middle, and late stages) have minimal effect on DGT's response to most target pharmaceutical concentration fluctuations (0.8 < CDGT/CTWA < 1.2). While the downward-bent accumulations of a few pharmaceuticals on DGT occur as the sampling time increases, which could be accounted for by capacity effects during a long-time sampling period. Additionally, the DGT device had good sampling performance in recording short fluctuating concentrations from a pulse event returning to background concentrations with variable intensity and duration. This study revealed a satisfactory capacity for the evaluation of the TWA concentration of pharmaceuticals integrated over the period of different pulse deployment for DGT, suggesting that this passive sampler is ideally suited as a monitoring tool for field application. This study represents the first trial for evaluating DGT sampling performance for pharmaceuticals with multiple concentration fluctuating scenarios over time, which would be valuable for assessing the pollution status in future monitoring campaign.


Assuntos
Poluentes Químicos da Água , Água , Reprodutibilidade dos Testes , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Difusão , Preparações Farmacêuticas
4.
J Hazard Mater ; 470: 134199, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593660

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are priority pollutants and need to be measured reliably in waters and other media, to understand their sources, fate, behaviour and to meet regulatory monitoring requirements. Conventional water sampling requires large water volumes, time-consuming pre-concentration and clean-up and is prone to analyte loss or contamination. Here, for the first time, we developed and validated a novel diffusive gradients in thin-films (DGT) passive sampler for PAHs. Based on the well-known DGT principles, the sampler pre-concentrates PAHs with typical deployment times of days/weeks, with minimal sample handling. For the first time, DGT holding devices made of metal and suitable for sampling hydrophobic organic compounds were designed and tested. They minimize sorption and sampling lag times. Following tests on different binding layer resins, a MIP-DGT was preferred - the first time applying MIP for PAHs. It samples PAHs independent of pH (3.9 -8.1), ionic strength (0.01 -0.5 M) and dissolved organic matter < 20 mg L-1, making it suitable for applications across a wide range of environments. Field trials in river water and wastewater demonstrated that DGT is a convenient and reliable tool for monitoring labile PAHs, readily achieving quantitative detection of environmental levels (sub-ng and ng/L range) when coupled with conventional GC-MS or HPLC. ENVIRONMENTAL IMPLICATIONS: PAHs are carcinogenic and genotoxic compounds. They are environmentally ubiquitous and must be monitored in waters and other media. This study successfully developed a new DGT passive sampler for reliable in situ time-integrated measurements of PAHs in waters at the ng/L level. This is the first time to use passive samplers for accurate measurements of hydrophobic organic contaminants in aquatic systems without calibration, a big step forward in monitoring PAHs. The application of this new sampler will enhance our understanding of the sources, fate, behavior and ecotoxicology of PAHs, enabling improved environmental risk assessment and management of these compounds.


Assuntos
Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento Ambiental/métodos , Monitoramento Ambiental/instrumentação , Difusão
5.
J Hazard Mater ; 471: 134384, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38663292

RESUMO

Addressing the challenge of accurately monitoring polycyclic aromatic hydrocarbons (PAHs) in aquatic systems, this study employed diffusive gradients in thin-films (DGT) technique to achieve methods detection limits as low as 0.02 ng L-1 to 0.05 ng L-1 through in situ preconcentration and determination of time-integrated concentrations. The efficacy of the developed DGT samplers was validated under diverse environmental conditions, demonstrating independence from factors such as pH (5.03-9.01), dissolved organic matter (0-20 mg L-1), and ionic strength (0.0001-0.6 M). Notably, the introduction of a novel theoretical approach to calculate diffusion coefficients based on solvent-accessible volume tailored for PAHs significantly enhanced the method's applicability, particularly for organic pollutants with low solubility. Field deployments in coastal zones validated the DGT method against traditional grab sampling, with findings advocating a 4 to 7-day optimal deployment duration for balancing sensitivity and mitigating lag time effects. These results provide a sophisticated, efficient solution to the persistent challenge of monitoring hydrophobic organic pollutants in aquatic environments, broadening the scope and applicability of DGT in environmental science and providing a robust tool for researchers.

6.
Sci Total Environ ; 924: 171514, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38458440

RESUMO

Microplastics (MPs) and antibiotics, as two major types of emerging pollutants, inevitably coexist in the soil environment due to agricultural film residue, sewage irrigation and sludge application. However, the impact of MPs on antibiotic availability in soils with varying characteristics has not been extensively studied. Therefore, in this study, an interference experiment was conducted using three types of MPs (polyethylene (PE), polyvinyl chloride (PVC) and polypropylene (PP)) in red soil, paddy soil and cinnamon soil. The available antibiotics in soils were evaluated using diffusive gradients in thin-films (DGT). Results showed that MPs had a significant impact on the amount of antibiotics adsorbed on soil solid (Cs) by providing additional binding sites or altering soil characteristics (e.g., pH and dissolved organic carbon). The most significant effects on Cs were observed in cinnamon soil, and the Cs values were dependent on concentration of MPs. The available antibiotics, as measured by DGT significantly decreased after the addition of MPs. This decrease was influenced by the soil characteristics. However, the concentration of antibiotics in soil solutions (Cd) was only slightly impacted by MPs. Therefore, the influence of MPs on the migration of antibiotics was reflected by their impact on the soil/water partition coefficient (Kd), while the resupply ability (R) from the soil solid phase was less influential. Moreover, the dosage of MPs had a significant effect on the availability of antibiotics in CS by promoting the adsorption of antibiotics on the solid phase, while in RS and PS, the soil properties played a dominate role in the changes in antibiotic availability after MP addition. These results indicate that the impact of MPs on available antibiotics mainly depends on soil properties. In addition, DGT measurement is more sensitive than soil solution to investigate the effects of coexisting pollutants on the behavior of antibiotics in soil.


Assuntos
Poluentes Ambientais , Poluentes do Solo , Solo/química , Microplásticos , Plásticos , Antibacterianos , Poluentes do Solo/análise , Esgotos
7.
Environ Geochem Health ; 46(3): 91, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367072

RESUMO

The pollution of heavy metals (HMs) in agricultural soils profoundly threatens national food safety, and the mobility and environmental behaviors of HMs are closely implicated in crop safety. Here, we assessed the pollution level and mobility of ten HMs and explored their environmental behaviors in the soils of three different land uses from a main crop production zone in eastern China. The concentrations of HMs in the soils were higher in the farmland than the woodland and wasteland, and Cd showed a relatively higher pollution and ecological risk levels compared to other metals. Cadmium was dominated by the reducible (41%) and exchangeable (23%) fractions, and the rest of HMs were mainly in the residual fraction (> 60%). The significant correlation between the exchangeable and DGT-labile Cd indicates relatively higher mobility of Cd in the soils. Soil pH, organic matters and mineral elements had significant correlation with the exchangeable and reducible fractions of most of the HMs (e.g., Cd, Co, Mn, Ni, Pb and V; p < 0.05), indicating their good predictors of the HMs mobility. However, this was not the case for the DGT-labile fraction, which suggests a marked difference in the controlling mechanisms of the mobility versus potential bioavailability of HMs in the soils. The results of this study indicate that both the chemically extracted fractions and the bioavailable fractions of HMs need be considered when effectively assessing the safety of agricultural soils.


Assuntos
Metais Pesados , Poluentes do Solo , Solo , Cádmio , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , China , Metais Pesados/análise , Medição de Risco
8.
Water Res ; 253: 121307, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377930

RESUMO

Although diffusion gradient in thin-film technique (DGT) has realized the in-situ sampling Sulfamethazine (SMT), the traditional DGT devices cannot be served as sensing devices but in-situ sampling devices. Here we report a recyclable surface enhanced Raman scattering (SERS) responsive DGT sensing device (recyclable SERS-DGT Sensing Device) capable of in-situ sensing of SMT in water. This is achieved by innovatively utilizing a recyclable SERS responsive liquid suspension of Au nanoparticles supported on g-C3N4 (Au@g-C3N4NS) as DGT binding phase. Au@g-C3N4NS is synthesized via in-situ growth method and embed in DGT binding phase, which exhibits good SERS activity, aqueous stability recyclable and adsorption performance. The SERS-DGT Sensing Device is valid for measuring SMT under a wide range of conditions (i.e., deployment time 24∼180 h, concentrations range of 1.031∼761.9 ng mL-1, pH 5∼9, ionic strength 0.0001∼0.05 mol L-1 NaCl, DOM concentrations 0∼100 mg L-1, four recycles). Furthermore, substrate combined with DGT binding phase, can integrate the sampling, pretreatment and SERS detection of SMT, which can be recycled, improving the reliability and efficiency of environmental monitoring. In this article, recyclable SERS-DGT Sensing Device, a platform for recyclable in-situ sensing of antibiotics, holds great potential for environmental monitoring.


Assuntos
Nanopartículas Metálicas , Poluentes Químicos da Água , Água , Sulfametazina , Ouro , Reprodutibilidade dos Testes , Monitoramento Ambiental/métodos , Difusão , Poluentes Químicos da Água/análise
9.
J Environ Manage ; 354: 120352, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367503

RESUMO

Tidal river networks are affected by the tide and influenced by complex factors related to sediment oxygen demand (SOD). In this study, we used chemical inhibition to measure the oxygen consumption of different types of SOD to explore the specific oxygen consumption mechanism of sediments. Then, we evaluated the diffusion fluxes of the sediment-water interface and factors affecting SOD using diffusive gradients in thin films. Total SOD in the tidal river network area of the Pearl River basin was ∼0.5928 g/m2/day, which was 8.47% higher than that in the non-tidal river network area but lower than that in black and odorous water reported previously. In the tidal river network area, biological SOD was 15.6% higher in summer than in winter, and the difference in total SOD was greatly influenced by human activity. We observed a significant effect of sediment on SOD in winter, whereas there were no significant correlations between sediment and SOD in summer. Different particle-size distributions lead to different organic matter contents, resulting in different biological SOD ratios between seasons. Our study found that seasonal tidal changes can affect ion exchange at the sediment water interface, leading to changes in SOD.These findings will be of great significance for the study of phenomena associated with low dissolved oxygen in tidal river networks and provide directions for future sediment pollution control.


Assuntos
Monitoramento Ambiental , Rios , Humanos , Monitoramento Ambiental/métodos , Rios/química , Sedimentos Geológicos/química , Água , Oxigênio
10.
J Environ Manage ; 354: 120245, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368799

RESUMO

Cyanobacterial bloom is a pressing issue affecting water supply security and ecosystem health. Phosphorus (P) released from cyanobacterial bloom during recession is one of the most important components involved in the lake P cycle. However, little is known about the consequences and mechanisms of the P cycle in overlying water and sediment due to the anthropogenic treatments of cyanobacterial blooms. In this study, treatment methods using hydrogen peroxide (H2O2), polyaluminum chloride (PAC), and the feces of silver carp were investigated for their influence on the P cycle using microcosm experiments. Results showed that H2O2 treatment significantly increased the internal cycle of sediment-related P, while PAC treatment showed minor effects. H2O2 and PAC treatment suppressed the release of P from sediment before day 10 but promoted the release of P on day 20, while silver carp treatment suppressed the release of P during the whole experiment. The reductive dissolution of iron oxide-hydroxide was the major factor affects the desorption of P. Path analyses further suggested that overlying water properties such as dissolved oxygen (DO) and oxidation-reduction potential (ORP) play critical roles in the treatment-induced sediment P release. Our results quantify the endogenous P diffusion fluxes across the sediment-water interface attributed to cyanobacterial treatments and provide useful guidance for the selection of controlling methods, with silver carp being the most recommended of the three methods studied.


Assuntos
Cianobactérias , Lagos , Lagos/microbiologia , Fósforo/análise , Ecossistema , Peróxido de Hidrogênio , Eutrofização , Sedimentos Geológicos , Água , China
11.
Environ Sci Pollut Res Int ; 31(16): 23579-23590, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38421544

RESUMO

In recent years, the eutrophication of lakes has accelerated in cold arid regions; the release of nutrients from sediments is an important contributor. The sequential extraction method, high-resolution peeper (HR-Peeper), and diffusive gradients in thin films (DGT) techniques were used to study the occurrence characteristics, release risk, and release mechanism of phosphorus (P) at the sediment-water interface (SWI) of Ulanor Wetland in the Hulun Lake Basin, Inner Mongolia, China. The mean total P concentration in overlying water was lower in August than that in May. Dissolved organic P (DOP) or particulate P (PP) was the main form of P in the overlying water. PP dominates in May and DOP in August. Refractory P was the main form of P in sediments. The concentrations of soluble reactive P and DGT-active P in the pore water of the sediment column were higher than those in the overlying water, and the concentrations were higher in August than those in May. Release of P in the wetland sediments occurred during the non-frozen seasons, with a higher risk in August than in May. The good linear correlation between dissolved P, Fe, and Mn in the DGT profiles verified their co-release due to the anaerobic reduction of Fe/Mn oxides. Moreover, alkaline sediments are also conducive to the release of sediment P. This study can provide data and theoretical support for eutrophication control in Ulanor Wetland and other similar water bodies in cold and arid regions.


Assuntos
Poluentes Químicos da Água , Água , Poluentes Químicos da Água/análise , Lagos , Fósforo/análise , Estações do Ano , Sedimentos Geológicos , Monitoramento Ambiental/métodos , China
12.
Environ Sci Pollut Res Int ; 31(10): 14775-14790, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38280165

RESUMO

Spartina alterniflora, an invasive plant widely distributed in China's coastal regions, has had a significant impact on the stability of wetland ecosystems and elemental biogeochemical cycles. The invasion of S. alterniflora has been found to lead to the accumulation of sulfides in the soil. The cycling of sulfur and iron in the soil is closely interconnected. Coastal estuarine wetlands are influenced by both freshwater in rivers and seawater tides, as well as the frequent variations in redox conditions caused by tidal fluctuations, which makes the cycling of sulfur and iron in the soil invaded by S. alterniflora more intricate. In this study, field surveys and laboratory experiments were conducted to explore the effects of S. alterniflora invasion and hydrological changes on the cycling of sulfur and iron as well as related functional microorganisms in the soil. The invasion of S. alterniflora showed an increase in soil reduced inorganic sulfur (RIS) components in both high and low marshes of Jiuduansha wetland, with higher content observed in summer and autumn. The tidal simulation experiments revealed abundant sulfate in seawater tidal conditions could promote the formation of acid volatile sulfides (AVS) in the soil of low marshes invaded by S. alterniflora and ensuring the continuous increase in AVS content. Diffusive gradients in-thin-films (DGT) technology indicated the existence of high-concentration soluble S2- enrichment zones in the soil of low marshes invaded by S. alterniflora, which may be related to S. alterniflora root exudates. Tidal action increased the relative abundance of sulfur-reducing bacteria (SRB) in the soil of low marshes, and under the influence of seawater tidal action, SRB exhibited higher relative abundance. However, S. alterniflora might inhibit the activity of iron-reducing bacteria (FeRB) in the soil of low marshes. In conclusion, S. alterniflora may enhance the sulfate reduction rate and promote the formation of free sulfides in tidal salt marsh ecosystems by releasing root exudates that stimulate the activity of SRB, while concurrently inhibiting the activity of FeRB and reducing their competition with SRB. This effect is particularly pronounced in low marshes under seawater tidal conditions. Thus, S. alterniflora is capable of rapidly invading tidal salt marshes by utilizing sulfides effectively.


Assuntos
Microbiota , Bactérias Redutoras de Enxofre , Áreas Alagadas , Solo/química , Espécies Introduzidas , Poaceae/fisiologia , Enxofre , Sulfatos , Sulfetos , China
13.
Sci Total Environ ; 914: 169784, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38181945

RESUMO

Dissolved sulfide in sediment porewater significantly influences aquatic ecosystems. Conventionally, sulfide determination in sediment porewater relies on ex-situ analytical methods, susceptible to measurement errors due to sulfide oxidation and volatilization during sample analysis. In this study, we introduced an innovative in-situ method for assessing dissolved sulfide in surface sediment porewater, leveraging the integration of diffusive gradients in thin films (DGT) with digital imaging. The DGT device effectively concentrates sulfide in sediment porewater, inducing observable color changes in the binding gel. Recordings of these changes, captured by imaging equipment, facilitated the establishment of calibration curves correlating grayscale value alterations in the binding gel to sulfide concentrations. Under optimal conditions, the developed method demonstrated a linear detection range of 3.0-200 µmol L-1 at 20 °C, particularly when the exposure time exceeded 180 min. The developed method is insensitive to salinity and suitable for measuring sulfide concentrations in various natural water environments. Compared to traditional ex-situ methods, our approach circumvents challenges linked to intricate pre-treatment, prolonged analysis duration, and significant systemic errors. This proposed method presents a real-time solution for sulfide concentration assessment in surface sediment porewater, empowering researchers with an efficient means to monitor and study dynamic sulfide levels.

14.
Sci Total Environ ; 914: 170082, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38220003

RESUMO

Atmospheric deposition is an important source of heavy metal in agricultural soils, but there is limited research on the mobility of these metals in soil and their impact on soil amendment. Here, we performed a dust incubation experiment in soils in the laboratory and a factorial transplant experiment at three field sites with a gradient of atmospheric deposition to examine the impacts of atmospherically deposited heavy metals (Cu, Cd, and Pb) on the mobility and bioavailability in soils with and without lime applications. Results showed that the atmospherically deposited heavy metals showed high mobility and were primarily presented in the soluble ionic fractions in the wet part and acid-exchangeable and reducible fractions in the dry part of atmospheric deposition. Atmospheric dust addition caused the 2p3/2 and 2p1/2 electrons of Cu atoms in uncontaminated soils to transition the 3d vacant states, resulting in similar copper absorption peaks as atmospheric particles by the observation of X-ray absorption near-edge spectroscopy (XANES). In the field, atmospheric deposition can only increase the mobile fractions in the surface soils, but not in the deeper layers. However, the deposition can increase the soluble and diffusive gradients in thin films (DGT)-measured bioavailable fractions in profile along with the soil depth. Lime applications cannot significantly reduce the mobile fractions of heavy metals in the surface soils exposed to atmospheric deposition, but significantly reduce the heavy metal concentrations in soil solutions and the DGT-measured bioavailable concentrations, particularly in the deeper layer (6-10 cm). The major implication is that atmospherically deposited heavy metals can significantly increase their bioavailable concentrations in the plough horizon of soil and constrain the effects of soil amendments on heavy metal immobilization, thereby increasing the risks of crop uptake.

15.
Sci Total Environ ; 912: 169658, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38159764

RESUMO

Extensive use of per- and polyfluoroalkyl substances (PFASs) has resulted in their widespread presence in natural waters. Concern for public health requires reliable measurement methods for determining their distribution and risks. Here, a sampling method based on diffusive gradients in thin films (DGT) was developed for measuring PFASs in drinking water sources. Fluorinated graphite (FG) particles were used to prepare the DGT binding gel for selective enrichment of trace PFASs in an aqueous environment. The FG-DGT method did not show sensitivity to relevant environmental parameters including pH (5.0-9.0), ionic strength (0.001-0.5 M), or DOM concentration (0-30 mg/L). The FG-DGT had enough capacity for deployment of up to four months. Six traditional and emerging PFASs including PFOS, PFOA, PFHpA, PFHxS, PFNA, and 6:2 FTSA at the ng/L level were detected in two major reservoirs serving as public drinking water sources by FG-DGT method coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS). PFOA appeared at the highest observed concentrations in the drinking water sources. The research demonstrates that FG-DGT is an effective and efficient tool for monitoring PFASs in drinking water.


Assuntos
Água Potável , Fluorocarbonos , Grafite , Poluentes Químicos da Água , Água Potável/química , Grafite/análise , Monitoramento Ambiental/métodos , Cromatografia Líquida , Poluentes Químicos da Água/análise , Espectrometria de Massas em Tandem , Fluorocarbonos/análise
16.
Chemosphere ; 350: 141061, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159729

RESUMO

The diffusive gradients in thin films (DGT) technique serves as a passive sampling method, inducing analyte transport and concentration. Its application is widespread in assessing labile components of metals, organic matter, and nutrients across various environmental media such as water, sediments, and saturated soils. The DGT devices effectively reduce the porewater concentration through irreversible binding of solutes, consequently promoting the release of labile species from the soil/sediment solid phase. However, the precise quantification of simultaneous adsorption and desorption of labile species using DGT devices alone remains a challenge. To address this challenge, the DGT-Induced Fluxes in Soils and Sediments (DIFS) model was developed. This model simulates analyte kinetics in solid phases, solutions, and binding resins by incorporating factors such as soil properties, resupply parameters, and kinetic principles. While the DIFS model has been iteratively improved to increase its accuracy in portraying kinetic behavior in soil/sediment, researchers' incomplete comprehension of it still results in unrealistic fitting outcomes and an oversight of the profound implications posed by kinetic parameters during implementation. This review provides a comprehensive overview of the optimization and utilization of DIFS models, encompassing fundamental concepts behind DGT devices and DIFS models, the kinetic interpretation of DIFS parameters, and instances where the model has been applied to study soils and sediments. It also highlights preexisting limitations of the DIFS model and offers suggestions for more precise modeling in real-world environments.


Assuntos
Metais , Solo , Solo/química , Difusão , Cinética , Adsorção , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química
17.
Chemosphere ; 349: 140988, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38122945

RESUMO

Cadmium (Cd) activation, especially at a high spatial resolution, in paddy soils with a high geogenic Cd background is yet to be understood. To investigate the temporal and spatial patterns of Cd activation in rice rhizosphere, pot and rhizotron experiments were conducted using four paddy soils with high geogenic Cd (0.11-3.70 mg kg-1) from Guangxi, southwestern China. The pot experiment results showed that porewater Cd concentrations initially decreased and then increased over the complete rice growth period, reaching its lowest value during the late-tillering and early-filling stages. Besides, correlation analysis identified organic matter and root manganese (Mn) content as the main factors affecting rice Cd uptake, with Mn having a negative effect and organic matter having a positive effect. Sub-millimeter two-dimensional chemical imaging revealed that the distribution of labile Cd in the rhizosphere (by diffusive gradients in thin-films, or DGT) was influenced by the root system and soil properties, such as pH (by planar optode) and acid phosphatase activity (by soil zymography). Soil acid phosphatase activity increased under Cd stress. The overall pH at rice rhizosphere decreased. Moreover, a close relationship was found between the spatial distributions of soil labile Mn and Cd at the rhizosphere, with higher Mn being associated with lower Cd lability. This study highlights Mn as a key element in regulating rice Cd uptake and enlightens future Mn-based strategies for addressing Cd pollution in rice paddy soils, especially in karst areas with high geochemical background.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Solo/química , Oryza/química , Rizosfera , Poluentes do Solo/análise , China , Manganês/análise , Fosfatase Ácida
18.
J Hazard Mater ; 463: 132863, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-37918077

RESUMO

It is well-known that several Chinese patent medicines use realgar as a specific component. People are more aware of the health dangers associated with realgar since it includes arsenic. Previous research overstated the arsenic toxicity of realgar-containing Chinese prescription medications because little thought was given to the influence of arsenic bioaccessibility by gut microbiota. In light of this, this study examined the total content, bioaccessibility and speciation of targeted medications while also examining intestinal epithelial transit utilizing the diffusive gradients in thin-films (DGT). All samples contained arsenic, and the bioaccessibilities of the colon, intestine and gastric regions ranged from 0.19% to 1.73%, 0.25-1.88% and 0.21-1.70% respectively. The range of DGT-bioaccessibility is 0.01-0.0018%. Three steps of analysis were conducted on inorganic As(III) and As(V). In health risk assessment, the ADDs and HQs of DGT-bioaccessibility were below the threshold levels when compared to computing average daily intake dose (ADD) and hazard quotient (HQ) by bioaccessibility of gastric, intestinal and colon. Additionally, Proteobacteria and Firmicutes were discovered to be the two predominant kinds of gut microbes in this study. Under arsenic exposure, the abundance of Christensenellaceae, Desulfovibrionaceae and Akkermansiaceae increased, but the quantity of Rikenellaceae decreased. These findings revealed that alterations in gut microbiota had an impact on host metabolism.


Assuntos
Arsênio , Arsenicais , Microbioma Gastrointestinal , Humanos , Arsênio/metabolismo , Arsenicais/metabolismo
19.
Bull Environ Contam Toxicol ; 112(1): 9, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081971

RESUMO

In this study, the effects of manure on the availability of sulfonamide antibiotics (SAs) in soils were explored in situ by the Diffusive gradients in thin films (DGT) technique. Five antibiotics, including sulfadiazine (SDZ), sulfamethoxazole (SMX), sulfamethazine (SMZ), sulfachloropyridazine (SCP), and sulfadimethoxine (SDM), were selected as target compounds. Results showed that the manure application to soil could reduce the antibiotic availability indicated by DGT. DGT measurement (CDGT) showed good correlations with the soil solution concentrations (Cd). Manure application can suppress the fluxes of SAs from the soil to the soil solution. Using the DGT-induced soil/sediment flux model (DIFS), the labile pool size (Kdl), the rate constants (k1, k-1) of adsorption and desorption and response time (Tc) of SAs in soils were obtained. The addition of manure increased extractable fraction, labile pool size (Kdl) and k1 but decreased k-1. Together with the nonlinear relationship between DGT fluxes and the reciprocal of diffusive layer thickness (Δg), these findings suggested that the release of SAs from soil particles into the soil solution is thermodynamically and kinetically limited, and the manure application could enhance this limitation. This study offers insight into antibiotic availability in soils caused by manure application.


Assuntos
Antibacterianos , Poluentes do Solo , Solo , Esterco , Sulfanilamida , Sulfonamidas , Poluentes do Solo/análise
20.
Environ Sci Pollut Res Int ; 30(60): 125718-125730, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38001297

RESUMO

Blackwater occurs every winter in reservoirs with Eucalyptus plantations. The complexation reaction between ferric iron (Fe3+) and Eucalyptus leachate tannic acid from logging residues (especially leaves) is the vital cause of water blackness. However, the effect of Eucalyptus leaf leaching on the dynamic of iron in sediments and its contribution to reservoir blackwater remain unclear. In this study, two experiments were conducted to simulate the early decomposition processes of exotic Eucalyptus and native Pinus massoniana leaves in water (LW) and water-sediment (LWS) systems. In LW, high concentrations of tannic acid (>45.25 mg/L) rapidly leached from the Eucalyptus leaves to the water column, exceeding those of Pinus massoniana leaves (<1.80 mg/L). The chrominance increased from 5~10 to 80~140, and the water body finally appeared brown instead of black after the leaching of Eucalyptus leaves. The chrominance positively correlated with tannic acid concentrations (R=0.970, p<0.01), indicating that tannic acid was vital for the water column's brown color. Different in LWS, blackwater initially emerged near the sediment-water interface (SWI) and extended upward to the entire water column as Eucalyptus leaves leached. Dissolved oxygen (DO) and transmission values in the overlying water declined simultaneously (R>0.77, p<0.05) and were finally below 2.29 mg/L and 10%, respectively. During the leaching of Eucalyptus leaves, the DGT-labile Fe2+ in sediments migrated from deep to surface layers, and the diffusive fluxes of Fe2+ at the SWI increased from 12.42~19.93 to 18.98~26.28 mg/(m2·day), suggesting that sediment released abundant Fe3+ into the aerobic overlying water. Fe3+ was exposed to high concentrations of tannic acid at the SWI and immediately generated the black Fe-tannic acid complex. The results indicated that the supplement of dissolved Fe3+ from sediments is a critical factor for the periodic blackwater in the reservoirs with Eucalyptus plantations. Reducing the cultivation of Eucalyptus in the reservoir catchment is one of the effective ways to alleviate the reservoir blackwater.


Assuntos
Eucalyptus , Poluentes Químicos da Água , Ferro/química , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Água , Fósforo/análise , Monitoramento Ambiental/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA