RESUMO
BACKGROUND: We assessed the effectiveness, safety and patient-reported outcomes (PROs) of dimethyl fumarate (DMF) in real-world clinical practice in patients with multiple sclerosis (PwMS) from Argentina. METHODS: We conducted a multicenter ambispective cohort study in Argentina between September 2020 and March 2023. Changes in annualized relapse rate (ARR), Expanded Disability Status Scale (EDSS) score, magnetic resonance imaging (MRI), no evidence of disease activity (NEDA), PROs (depression, anxiety, fatigue, burden of treatment and quality of life), and safety data were collected at clinical visits performed every 6 months for at least 24 months. RESULTS: We included 161 PwMS (64% female). DMF treatment was associated with a significant reduction in ARR from baseline after 24 months of treatment (from 0.87 to 0.23, p < 0.001). Disability progression was observed in 27.9% vs. 9.3% pre- and post-DMF, and disability improvement was found in 13% of patients from baseline to month 24. MRI activity was significantly reduced compared with baseline. Fatigue, depression, and quality of life scores were significantly improved from baseline to 24 months. Flushing was the most frequent adverse event reported in 19.2%. No significant reduction was observed in the hospitalization rate pre- and post-DMF (19.8% vs. 5.6%, p = 0.32). During follow-up, 135 (83%) patients were relapse-free, 110 (68.3%) were MRI free activity (Gad + lesion) and 108 (67%) reached NEDA. CONCLUSIONS: DMF significantly reduced disease activity in PwMS from Argentina with a good safety profile in real-world settings. A significant impact on the quality of life during follow-up was found.
RESUMO
Dimethyl fumarate (DMF, Tecfidera) is an oral drug utilized to treat relapsing-remitting multiple sclerosis (MS). DMF treatment reduces disease activity in MS. Gastrointestinal discomfort is a common adverse effect of the treatment with DMF. This study aimed to investigate the effect of DMF administration in the gut draining lymph nodes cells of C57BL6/J female mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. We have demonstrated that the treatment with DMF (7.5 mg/kg) significantly reduces the severity of EAE. This reduction of the severity is accompanied by the increase of both proinflammatory and anti-inflammatory mechanisms at the beginning of the treatment. As the treatment progressed, we observed an increasing number of regulatory Foxp3 negative CD4 T cells (Tr1), and anti-inflammatory cytokines such as IL-27, as well as the reduction of PGE2 level in the mesenteric lymph nodes of mice with EAE. We provide evidence that DMF induces a gradual anti-inflammatory response in the gut draining lymph nodes, which might contribute to the reduction of both intestinal discomfort and the inflammatory response of EAE. These findings indicate that the gut is the first microenvironment of action of DMF, which may contribute to its effects of reducing disease severity in MS patients.
Assuntos
Fumarato de Dimetilo , Encefalomielite Autoimune Experimental , Linfonodos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores , Animais , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Linfonodos/imunologia , Linfonodos/efeitos dos fármacos , Camundongos , Feminino , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Mesentério , Citocinas/metabolismo , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Modelos Animais de DoençasRESUMO
Hydroxytyrosol (HT) or dimethyl fumarate (DMF), activators of nuclear factor erythroid 2-related factor 2 (Nrf2), may reduce obesity in high-fat diet (HFD)-fed animals; nevertheless, the role of these activators on skin tissue repair of HFD-fed animals was not reported. This study investigated whether HT or DMF could improve skin wound healing of HFD-fed obese animals. Mice were fed with an HFD, treated with HT or DMF, and full-thickness skin wounds were created. Macrophages isolated from control and obese animals were treated in vitro with HT. DMF, but not HT, reduced the body weight of HFD-fed mice. Collagen deposition and wound closure were improved by HT or DMF in HFD-fed animals. HT or DMF increased anti-inflammatory macrophage phenotype and protein Nrf2 levels in wounds of HFD-fed mice. Lipid peroxidation and protein tumor necrosis factor-α levels were reduced by HT or DMF in wounds of HFD-fed animals. In in vitro, HT stimulated Nrf2 activation in mouse macrophages isolated from obese animals. In conclusion, HT or DMF improves skin wound healing of HFD-fed mice by reducing oxidative damage and inflammatory response. HT or DMF may be used as a therapeutic strategy to improve the skin healing process in individuals with obesity.
Assuntos
Dieta Hiperlipídica , Fumarato de Dimetilo , Álcool Feniletílico/análogos & derivados , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Fumarato de Dimetilo/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BLRESUMO
Dysregulated microglia and astrocytes have been associated with progressive neurodegeneration in multiple sclerosis (MS), highlighting the need for strategies that additionally target intrinsic inflammation in the central nervous system (CNS). The objective of the present study was to investigate the glial response in experimental autoimmune encephalomyelitis (EAE)-induced mice treated with a combination of dimethyl fumarate (DMF) and pregabalin (PGB). For that, 28 C57BL/6J mice were randomly assigned to the five experimental groups: naïve, EAE, EAE-DMF, EAE-PGB, and EAE-DMF + PGB. Pharmacological treatments were initiated with the beginning of clinical signs, and all animals were euthanized at 28 dpi for the lumbar spinal cord evaluation. The results demonstrated a stronger attenuation of the clinical presentation by the combined approach. DMF alone promoted the downregulation of Iba-1 (microglia/macrophages marker) in the ventral horn compared with the non-treated EAE animals (P < 0.05). PGB treatment was associated with reduced Iba-1 immunofluorescence in both the dorsal (P < 0.05) and ventral horn (P < 0.05) compared to EAE vehicle-treated counterparts. However, the combined approach reduced the Iba-1 marker in the dorsal (P < 0.05) and ventral (P < 0.01) horns compared to non-treated EAE animals and further reduced Iba-1 in the ventral horn compared to each drug-alone approach (P < 0.05). In addition, the combination of DMF and PGB reduced activated astrocytes (GFAP) in both the dorsal and ventral horns of the spinal cord to a naïve-like level and upregulated Nrf-2 expression. Taken together, the data herein suggest robust attenuation of the glial response in EAE mice treated with DMF and PGB.
RESUMO
We postulated that dimethyl fumarate (DMF) exerts neuroprotective effects against depression-like behaviors through astrocytes and microglia modulation. To ascertain our hypothesis and define the mechanistic pathways involved in effect of DMF on neuroinflammation, we used the depression model induced by chronic unpredictable mild stress (CUMS), in which, the mice were exposed to stressful events for 28 days and from the 14th day they received DMF in the doses of 50 and 100 mg/kg or fluoxetine 10 mg/kg or saline. On the 29th day, the animals were subjected to behavioral tests. Microglia (Iba1) and astrocyte (GFAP) marker expressions were evaluated by immunofluorescence analyzes and the cytokines TNF-α and IL-Iß by immunoenzymatic assay. In addition, computational target prediction, 3D protein structure prediction, and docking calculations were performed with monomethyl fumarate (DMF active metabolite) and the Keap1 and HCAR2 proteins, which suggested that these could be the probable targets related protective effects. CUMS induced anxiety- and depressive-like behaviors, cognitive deficit, decreased GFAP, and increased Iba1, TNF-α, and IL-Iß expression in the hippocampus. These alterations were reversed by DMF. Thus, it is suggested that one of the mechanisms involved in the antidepressant effect of DMF is neuroinflammatory suppression, through the signaling pathway HCAR2/Nrf2. However, more studies must be performed to better understand the molecular mechanisms of this drug.
Assuntos
Fumarato de Dimetilo , Fármacos Neuroprotetores , Animais , Astrócitos , Depressão , Proteína 1 Associada a ECH Semelhante a Kelch , Camundongos , Microglia , Fator 2 Relacionado a NF-E2 , Receptores Acoplados a Proteínas G , Transdução de Sinais , Fator de Necrose Tumoral alfaRESUMO
Obesity is a chronic condition involving inflammation and oxidative stress that commonly predisposes affected individuals to develop metabolic disorders. We hypothesize that Ilex paraguariensis (IP) can modulate oxidative stress and inflammation underpinning metabolic disorders caused by obesity. C57BL/6 mice were fed a high-fat diet (HFD group) for 12 weeks. Concomitantly, some mice were treated with roasted IP (15 mg/ml - HFD + IP) or dimethyl fumarate (DMF) as a positive control (2 mg/ml - HFD + DMF). The control group received standard chow and water ad libitum. Histological analyses of fat tissue and liver, and quantification of mediators related to oxidative stress (Kelch-like ECH-associated protein 1/NF-E2-related factor 2, NADP(H) quinone oxidoreductase-1 [NQO1], heme oxygenase 1 [HO1], and superoxide dismutase) as well as metabolic profile blood biomarkers (glucose, leptin, resistin, high-density lipoproteins [HDLs], and triglycerides) were performed. Metabolic disorders were prevented in mice treated with IP, as evidenced by the observation that glucose, HDL, and resistin levels were similar to those assessed in the control group. Morphological analyses showed that both IP and DMF treatments prevented hepatic steatosis and adipocyte hypertrophy in visceral adipose tissue. Finally, although the antioxidant response stimulated by IP was quite limited, significant effects were found on NQO1 and HO1 expression. In conclusion, IP has promising preventative effects on the development of metabolic disorders caused by obesity.
Assuntos
Ilex paraguariensis , Doenças Metabólicas , Animais , Dieta Hiperlipídica/efeitos adversos , Fígado , Doenças Metabólicas/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologiaRESUMO
Abstract Blood-brain barrier (BBB) disruption, inflammation, and cell death are major pathogenic mechanisms in ischemic stroke. Dimethyl fumarate (DMF) has anti-inflammatory and immune-modulatory effects. So, this study aimed to elucidate the effects of DMF on brain ischemia in the middle cerebral artery occlusion (MCAO) model. 69 Sprague-Dawley male rats were allocated into a sham group that was just subjected to surgery stress; vehicle and DMF groups, after MCAO, received vehicle or 30 mg/kg DMF for three days. Neurological scores were evaluated every day. BBB disruption was evaluated by the extravasation of Evans blue. In addition to the measurement of brain water content, the total and infarct volume, numerical density, and the total number of neurons, non-neurons, and dead neurons in the right cortex were estimated by stereological methods. RT-PCR was done to analyze the expression levels of NF-κB and Nrf2. Although brain ischemia treatment with DMF did not have a significant effect on the infarction size, it improved neurobehavioral function, BBB disruption, cerebral edema, increased number of neurons, and expression of Nrf2. It also decreased the number of dead neurons and the expression of NF-κB. DMF beneficial effects on stroke may be mediated through both increase of the Nrf2 and decrease of NF-κB expression
Assuntos
Animais , Masculino , Ratos , Isquemia Encefálica/patologia , Usos Terapêuticos , Fumarato de Dimetilo/efeitos adversos , Edema Encefálico/patologiaRESUMO
Air pollution is mainly caused by burning of fossil fuels, such as diesel, and is associated with increased morbidity and mortality due to adverse health effects induced by inflammation and oxidative stress. Dimethyl fumarate (DMF) is a fumaric acid ester and acts as an antioxidant and anti-inflammatory agent. We investigated the potential therapeutic effects of DMF on pulmonary damage caused by chronic exposure to diesel exhaust particles (DEPs). Mice were challenged with DEPs (30 µg per mice) by intranasal instillation for 60 consecutive days. After the first 30 days, the animals were treated daily with 30 mg/kg of DMF by gavage for the remainder of the experimental period. We demonstrated a reduction in total inflammatory cell number in the bronchoalveolar lavage (BAL) of mice subjected to DEP + DMF as compared to those exposed to DEPs alone. Importantly, DMF treatment was able to reduce lung injury caused by DEP exposure. Intracellular total reactive oxygen species (ROS), peroxynitrite (OONO), and nitric oxide (NO) levels were significantly lower in the DEP + DMF than in the DEP group. In addition, DMF treatment reduced the protein expression of kelch-like ECH-associated protein 1 (Keap-1) in lung lysates from DEP-exposed mice, whereas total nuclear factor κB (NF-κB) p65 expression was decreased below baseline in the DEP + DMF group compared to both the control and DEP groups. Lastly, DMF markedly reduced DEP-induced expression of nitrotyrosine, glutathione peroxidase-1/2 (Gpx-1/2), and catalase in mouse lungs. In summary, DMF treatment effectively reduced lung injury, inflammation, and oxidative and nitrosative stress induced by chronic DEP exposure. Consequently, it may lead to new therapies to diminish lung injury caused by air pollutants.
Assuntos
Fumarato de Dimetilo/farmacologia , Estresse Oxidativo , Pneumonia/etiologia , Pneumonia/metabolismo , Emissões de Veículos , Poluentes Atmosféricos/efeitos adversos , Animais , Biomarcadores , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , NF-kappa B/metabolismo , Oxirredução , Pneumonia/tratamento farmacológico , Pneumonia/patologia , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Emissões de Veículos/toxicidadeRESUMO
BACKGROUND: Ventral root avulsion (VRA) is an experimental approach in which there is an abrupt separation of the motor roots from the surface of the spinal cord. As a result, most of the axotomized motoneurons degenerate by the second week after injury, and the significant loss of synapses and increased glial reaction triggers a chronic inflammatory state. Pharmacological treatment associated with root reimplantation is thought to overcome the degenerative effects of VRA. Therefore, treatment with dimethyl fumarate (DMF), a drug with neuroprotective and immunomodulatory effects, in combination with a heterologous fibrin sealant/biopolymer (FS), a biological glue, may improve the regenerative response. METHODS: Adult female Lewis rats were subjected to VRA of L4-L6 roots followed by reimplantation and daily treatment with DMF for four weeks. Survival times were evaluated 1, 4 or 12 weeks after surgery. Neuronal survival assessed by Nissl staining, glial reactivity (anti-GFAP for astrocytes and anti-Iba-1 for microglia) and synapse preservation (anti-VGLUT1 for glutamatergic inputs and anti-GAD65 for GABAergic inputs) evaluated by immunofluorescence, gene expression (pro- and anti-inflammatory molecules) and motor function recovery were measured. RESULTS: Treatment with DMF at a dose of 15 mg/kg was found to be neuroprotective and immunomodulatory because it preserved motoneurons and synapses and decreased astrogliosis and microglial reactions, as well as downregulated the expression of pro-inflammatory gene transcripts. CONCLUSION: The pharmacological benefit was further enhanced when associated with root reimplantation with FS, in which animals recovered at least 50% of motor function, showing the efficacy of employing multiple regenerative approaches following spinal cord root injury.
RESUMO
INTRODUCTION: Compared with the non-Hispanic/non-Latino population, Hispanic/Latino patients with multiple sclerosis (MS) are reported to exhibit greater disease severity. Geographical location and genetics play a role in differences observed across Hispanic/Latino subpopulations. We evaluated real-world safety and effectiveness of dimethyl fumarate (DMF) on MS disease activity in Hispanic/Latino patients. METHODS: ESTEEM is an ongoing, 5-year, multinational, prospective study evaluating long-term safety and effectiveness of DMF in patients with MS. This interim analysis included patients newly prescribed DMF in routine practice at 394 sites globally. RESULTS: Overall, 4986 non-Hispanic/non-Latino and 98 Hispanic/Latino patients were analyzed; median (range) follow-up was 18 (2-37) months. Unadjusted annualized relapse rates (ARRs) for 12 months before DMF initiation versus 36 months post DMF initiation, respectively, were: non-Hispanic/non-Latino patients, 0.82 (95% CI 0.80-0.84) versus 0.10 (95% CI 0.09-0.10), 88% lower ARR (P < 0.0001); Hispanic/Latino patients, 0.80 (95% CI 0.65-1.00) versus 0.09 (95% CI 0.06-0.14), 89% lower ARR (P < 0.0001). In total, 28 (29%) Hispanic/Latino patients reported adverse events leading to treatment discontinuation; gastrointestinal (GI) disorders (n = 10, 10%) were the most common, consistent with the non-Hispanic/non-Latino population (8%). Median lymphocyte counts decreased by approximately 24% in the first year (vs 36% decrease in non-Hispanic/non-Latino patients) then remained stable and above the lower limit of normal in most patients. CONCLUSIONS: Relapse rates remained low in Hispanic/Latino patients, consistent with non-Hispanic/non-Latino patients. The safety profile of DMF in Hispanic/Latino patients was consistent with safety findings from the non-Hispanic/non-Latino ESTEEM population, demonstrating the real-world treatment benefit of DMF in the Hispanic/Latino patient cohort.
RESUMO
Background: Ventral root avulsion (VRA) is an experimental approach in which there is an abrupt separation of the motor roots from the surface of the spinal cord. As a result, most of the axotomized motoneurons degenerate by the second week after injury, and the significant loss of synapses and increased glial reaction triggers a chronic inflammatory state. Pharmacological treatment associated with root reimplantation is thought to overcome the degenerative effects of VRA. Therefore, treatment with dimethyl fumarate (DMF), a drug with neuroprotective and immunomodulatory effects, in combination with a heterologous fibrin sealant/biopolymer (FS), a biological glue, may improve the regenerative response. Methods: Adult female Lewis rats were subjected to VRA of L4-L6 roots followed by reimplantation and daily treatment with DMF for four weeks. Survival times were evaluated 1, 4 or 12 weeks after surgery. Neuronal survival assessed by Nissl staining, glial reactivity (anti-GFAP for astrocytes and anti-Iba-1 for microglia) and synapse preservation (anti-VGLUT1 for glutamatergic inputs and anti-GAD65 for GABAergic inputs) evaluated by immunofluorescence, gene expression (pro- and anti-inflammatory molecules) and motor function recovery were measured. Results: Treatment with DMF at a dose of 15 mg/kg was found to be neuroprotective and immunomodulatory because it preserved motoneurons and synapses and decreased astrogliosis and microglial reactions, as well as downregulated the expression of pro-inflammatory gene transcripts. Conclusion: The pharmacological benefit was further enhanced when associated with root reimplantation with FS, in which animals recovered at least 50% of motor function, showing the efficacy of employing multiple regenerative approaches following spinal cord root injury.(AU)
Assuntos
Animais , Ratos , Medula Espinal/cirurgia , Raízes Nervosas Espinhais/cirurgia , Fumarato de Dimetilo/administração & dosagem , Adesivo Tecidual de Fibrina , Ratos Endogâmicos Lew , Fármacos Neuroprotetores/administração & dosagem , Fatores Imunológicos , Radiculopatia/veterináriaRESUMO
The purpose of this study was to produce and characterize the dendritic polyglycerol microspheres (DPGlyM) carrier with potential for use in the treatment of multiple sclerosis (MS). This novel drug delivery system is comprised of DPGlyM as carrier for dimethyl fumarate (DMF) and curcumin (CUR). Molecular docking (MD) was used as in-silico tool to guide the drug entrapment and indicates a spontaneous interactions of DPGlyM with DMF (ΔG° = -11.3 kJ mol-1) and CUR (ΔG° = -23.8 kJ mol-1). The DPGlyM morphology and size distribution were determined using a scanning electron microscopy (SEM). The average size of the microspheres was 30-40 µm. The highest encapsulation efficiency and loading efficiency for CUR and DMF were 94.1% and 65.3%, respectively. The zeta potential indicates that CUR and DMF loaded DPGlyM form stable suspension in phosphate buffer solution (PBS) at pH 7.4. Cytotoxicity and hemocompatibility studies suggest that CUR and DMF loaded DPGlyM not influenced cell viability and are well tolerated in hemolysis assays without any damaging effects even at high concentrations up to 50 mg/mL. The in-vitro release of DMF and CUR in phosphate buffer of pH 7.4 followed a kinetics type super case II transport. The activation energy for CUR and DMF release from DPGlyM was found to be 56.95 kJ/mol and 13.87 kJ/mol for CUR and DMF, respectively. The in vitro release assays show that the DPGlyM has good sustained release of CUR and DMF for 5 days. CUR and DMF loaded DPGlyM have shown promising results for a sustained release during enhanced time duration.
Assuntos
Dendrímeros/química , Portadores de Fármacos/química , Glicerol/química , Microesferas , Esclerose Múltipla/tratamento farmacológico , Polímeros/química , Animais , Células CHO , Cricetulus , Curcumina/química , Curcumina/uso terapêutico , Fumarato de Dimetilo/química , Fumarato de Dimetilo/uso terapêutico , Liberação Controlada de Fármacos , Teste de Materiais , Conformação Molecular , Simulação de Acoplamento Molecular , Propriedades de SuperfícieRESUMO
Ventral root avulsion (VRA) is an experimental approach in which there is an abrupt separation of the motor roots from the surface of the spinal cord. As a result, most of the axotomized motoneurons degenerate by the second week after injury, and the significant loss of synapses and increased glial reaction triggers a chronic inflammatory state. Pharmacological treatment associated with root reimplantation is thought to overcome the degenerative effects of VRA. Therefore, treatment with dimethyl fumarate (DMF), a drug with neuroprotective and immunomodulatory effects, in combination with a heterologous fibrin sealant/biopolymer (FS), a biological glue, may improve the regenerative response. Methods: Adult female Lewis rats were subjected to VRA of L4-L6 roots followed by reimplantation and daily treatment with DMF for four weeks. Survival times were evaluated 1, 4 or 12 weeks after surgery. Neuronal survival assessed by Nissl staining, glial reactivity (anti-GFAP for astrocytes and anti-Iba-1 for microglia) and synapse preservation (anti-VGLUT1 for glutamatergic inputs and anti-GAD65 for GABAergic inputs) evaluated by immunofluorescence, gene expression (pro- and anti-inflammatory molecules) and motor function recovery were measured. Results: Treatment with DMF at a dose of 15 mg/kg was found to be neuroprotective and immunomodulatory because it preserved motoneurons and synapses and decreased astrogliosis and microglial reactions, as well as downregulated the expression of pro-inflammatory gene transcripts. Conclusion: The pharmacological benefit was further enhanced when associated with root reimplantation with FS, in which animals recovered at least 50% of motor function, showing the efficacy of employing multiple regenerative approaches following spinal cord root injury.(AU)
Assuntos
Animais , Produtos Biológicos , Biopolímeros , Fibrina , Imunomodulação , Fumarato de Dimetilo , Neuroproteção , Expressão GênicaRESUMO
Background: Although it has been suggested that healthier lifestyle may optimize effects of the immunomodulation drugs for treating multiple sclerosis (MS), the knowledge regarding this kind of interactions is limited. Objective: The aim of the present study was to investigate the effects of treadmill exercise in combination with pharmacological treatment in an animal model for MS. Methods: C57BL/6J female mice were subjected to daily treadmill exercise for 4 weeks before immunization and 6 weeks before clinical presentation of disease. Dimethyl fumarate (DMF) or glatiramer acetate (GA) were administered after the first clinical relapse. Histopathological analyses were carried out in the lumbar spinal cord at peak disease and at 1 or 14 days post-treatment (dpt). Results: Exercised-GA treated animals demonstrated decreased astrocytic response in the spinal dorsal horn with an improvement in the paw print pressure. Exercised-DMF treated animals showed an increased microglial/macrophage response on both ventral and dorsal horn that were associated with clinical improvement and synaptic motoneuron inputs density. Conclusion: The present data suggest that prior regular exercise can modify the effects of pharmacological treatment administered after the first relapse in a murine model for MS.
RESUMO
Nuclear Factor Erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates the expression of genes involved in the metabolism, immune response, cellular proliferation, and other processes; however, the attention has been focused on the study of its ability to induce the expression of proteins involved in the antioxidant defense. Nrf2 is mainly regulated by Kelch-like ECH-associated protein 1 (Keap1), an adapter substrate of Cullin 3 (Cul3) ubiquitin E3 ligase complex. Keap1 represses Nrf2 activity in the cytoplasm by its sequestering, ubiquitination and proteosomal degradation. Nrf2 activation, through the canonical mechanism, is carried out by electrophilic compounds and oxidative stress where some cysteine residues in Keap1 are oxidized, resulting in a decrease in Nrf2 ubiquitination and an increase in its nuclear translocation and activation. In the nucleus, Nrf2 induces a variety of genes involved in the antioxidant defense. Recently a new mechanism of Nrf2 activation has been described, called the non-canonical pathway, where proteins such as p62, p21, dipeptidyl peptidase III (DPP3), wilms tumor gene on X chromosome (WTX) and others are able to disrupt the Nrf2-Keap1 complex, by direct interaction with Keap1 decreasing Nrf2 ubiquitination and increasing its nuclear translocation and activation. In this review, the regulatory mechanisms involved in both canonical and non-canonical Nrf2 activation are discussed.
Assuntos
Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Transporte Ativo do Núcleo Celular , Animais , Regulação da Expressão Gênica , Humanos , Fator 2 Relacionado a NF-E2/genética , Oxirredução , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Transdução de Sinais , UbiquitinaçãoRESUMO
Sepsis is caused by a dysregulated host response to infection, often associated with acute central nervous system (CNS) dysfunction, which results in long-term cognitive impairment. Dimethyl fumarate (DMF) is an important agent against inflammatory response and reactive species in CNS disorders. Evaluate the effect of DMF on acute and long-term brain dysfunction after experimental sepsis in rats. Male Wistar rats were submitted to the cecal ligation and puncture (CLP) model. The groups were divided into sham (control) + vehicle, sham + NAC, sham + DMF, CLP + vehicle, CLP + NAC, and CLP + DMF. The animals were treated with DMF (15 mg/kg at 0 and 12 h after CLP, per gavage) and the administration of n-acetylcysteine (NAC) (20 mg/kg; 3, 6, and 12 h after CLP, subcutaneously) was used as positive control. Twenty-four hours after CLP, cytokines, myeloperoxidase (MPO), nitrite/nitrate (N/N), oxidative damage to lipids and proteins, and antioxidant enzymes were evaluated in the hippocampus, total cortex, and prefrontal cortex. At 10 days after sepsis induction, behavioral tests were performed to assess cognitive damage. We observed an increase in cytokine levels, MPO activity, N/N concentration, and oxidative damage, a reduction in SOD and GPx activity in the brain structures, and cognitive damage in CLP rats. DMF treatment was effective in reversing these parameters. DMF reduces sepsis-induced neuroinflammation, oxidative stress, and cognitive impairment in rats subjected to the CLP model.