Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
Clinics (Sao Paulo) ; 79: 100479, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39208653

RESUMO

OBJECTIVES: To identify somatic mutations in tumors from young women with triple-negative or luminal breast cancer, through targeted sequencing and to explore the cancer driver potential of these gene variants. METHODS: A customized gene panel was assembled based on data from previous sequencing studies of breast cancer from young women. Triple-negative and luminal tumors and paired blood samples from young breast cancer patients were sequenced, and identified gene variants were searched for their driver potential, in databases and literature. Additionally, the authors performed an exploratory analysis using large, curated databases to evaluate the frequency of somatic mutations in this gene panel in tumors stratified by age groups (every 10 years). RESULTS: A total of 28 young women had their tumoral tissue and blood samples sequenced. Using a customized panel of 64 genes, the authors could detect cancer drivers in 11/12 (91.7 %) TNBC samples and 11/16 (68.7 %) luminal samples. Among TNBC patients, the most frequent cancer driver was TP53, followed by NF1, NOTCH1 and PTPN13. In luminal samples, PIK3CA and GATA3 were the main cancer drivers, and other drivers were GRHL2 and SMURF2. CACNA1E was involved in both TN and luminal BC. The exploratory analysis also indicated a role for SMURF2 in luminal BC development in young patients. CONCLUSIONS: The data further indicates that some cancer drivers are more common in a specific breast cancer subtype from young patients, such as TP53 in TNBC and PIK3CA and GATA3 in luminal samples. These results also provide additional evidence that some genes not considered classical cancer-causing genes, such as CACNA1E, GRHL2 and SMURF2 might be cancer drivers in this age group.


Assuntos
Mutação , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/genética , Adulto , Neoplasias da Mama/genética , Brasil , Adulto Jovem , Pessoa de Meia-Idade , Fatores Etários , Biomarcadores Tumorais/genética
2.
J Biomed Inform ; 157: 104710, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39159864

RESUMO

OBJECTIVE: Identifying cancer driver genes, especially rare or patient-specific cancer driver genes, is a primary goal in cancer therapy. Although researchers have proposed some methods to tackle this problem, these methods mostly identify cancer driver genes at single gene level, overlooking the cooperative relationship among cancer driver genes. Identifying cooperating cancer driver genes in individual patients is pivotal for understanding cancer etiology and advancing the development of personalized therapies. METHODS: Here, we propose a novel Personalized Cooperating cancer Driver Genes (PCoDG) method by using hypergraph random walk to identify the cancer driver genes that cooperatively drive individual patient cancer progression. By leveraging the powerful ability of hypergraph in representing multi-way relationships, PCoDG first employs the personalized hypergraph to depict the complex interactions among mutated genes and differentially expressed genes of an individual patient. Then, a hypergraph random walk algorithm based on hyperedge similarity is utilized to calculate the importance scores of mutated genes, integrating these scores with signaling pathway data to identify the cooperating cancer driver genes in individual patients. RESULTS: The experimental results on three TCGA cancer datasets (i.e., BRCA, LUAD, and COADREAD) demonstrate the effectiveness of PCoDG in identifying personalized cooperating cancer driver genes. These genes identified by PCoDG not only offer valuable insights into patient stratification correlating with clinical outcomes, but also provide an useful reference resource for tailoring personalized treatments. CONCLUSION: We propose a novel method that can effectively identify cooperating cancer driver genes for individual patients, thereby deepening our understanding of the cooperative relationship among personalized cancer driver genes and advancing the development of precision oncology.

3.
Transl Cancer Res ; 13(7): 3418-3436, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39145048

RESUMO

Background: Clear cell renal cell carcinoma (ccRCC) predominates among kidney cancer cases and is influenced by mutations in cancer driver genes (CDGs). However, significant obstacles persist in the early diagnosis and treatment of ccRCC. While various genetic models offer new hopes for improving ccRCC management, the relationship between CDG-related long non-coding RNAs (CDG-RlncRNAs) and ccRCC remains poorly understood. Therefore, this study aims to construct prognostic molecular features based on CDG-RlncRNAs to predict the prognosis of ccRCC patients, and aims to provide a new strategy to enhance clinical management of ccRCC patients. Methods: This study employed Cox and Least Absolute Shrinkage and Selection Operator (LASSO) regression analyses to comprehensively investigate the association between lncRNAs and CDGs in ccRCC. Leveraging The Cancer Genome Atlas (TCGA) dataset, we identified 97 prognostically significant CDG-RlncRNAs and developed a robust prognostic model based on these CDG-RlncRNAs. The performance of the model was rigorously validated using the TCGA dataset for training and the International Cancer Genome Consortium (ICGC) dataset for validation. Functional enrichment analysis elucidated the biological relevance of CDG-RlncRNA features in the model, particularly in tumor immunity. Experimental validation further confirmed the functional role of representative CDG-RlncRNA SNHG3 in ccRCC progression. Results: Our analysis revealed that 97 CDG-RlncRNAs are significantly associated with ccRCC prognosis, enabling patient stratification into different risk groups. Development of a prognostic model incorporating key lncRNAs such as HOXA11-AS, AP002807.1, APCDD1L-DT, AC124067.2, and SNHG3 demonstrated robust predictive accuracy in both training and validation datasets. Importantly, risk stratification based on the model revealed distinct immune-related gene expression patterns. Notably, SNHG3 emerged as a key regulator of the ccRCC cell cycle, highlighting its potential as a therapeutic target. Conclusions: Our study established a concise CDG-RlncRNA signature and underscored the pivotal role of SNHG3 in ccRCC progression. It emphasizes the clinical relevance of CDG-RlncRNAs in prognostic prediction and targeted therapy, offering potential avenues for personalized intervention in ccRCC.

4.
Thorac Cancer ; 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39098998

RESUMO

BACKGROUND: Patients with non-small cell lung cancer (NSCLC) with liver metastasis have a poor prognosis, and there are no reliable biomarkers for predicting disease progression. Currently, no recognized and reliable prediction model exists to anticipate liver metastasis in NSCLC, nor have the risk factors influencing its onset time been thoroughly explored. METHODS: This study conducted a retrospective analysis of 434 NSCLC patients from two hospitals to assess the association between the risk and timing of liver metastasis, as well as several variables. RESULTS: The patients were divided into two groups: those without liver metastasis and those with liver metastasis. We constructed a nomogram model for predicting liver metastasis in NSCLC, incorporating elements such as T stage, N stage, M stage, lack of past radical lung cancer surgery, and programmed death ligand 1 (PD-L1) levels. Furthermore, NSCLC patients with wild-type EGFR, no prior therapy with tyrosine kinase inhibitors (TKIs), and no prior radical lung cancer surgery showed an elevated risk of early liver metastasis. CONCLUSION: In conclusion, the nomogram model developed in this study has the potential to become a simple, intuitive, and customizable clinical tool for assessing the risk of liver metastasis in NSCLC patients following validation. Furthermore, it provides a framework for investigating the timing of metachronous liver metastasis.

5.
Front Bioinform ; 4: 1365200, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040139

RESUMO

Cancer is a heterogeneous disease that results from genetic alteration of cell cycle and proliferation controls. Identifying mutations that drive cancer, understanding cancer type specificities, and delineating how driver mutations interact with each other to establish disease is vital for identifying therapeutic vulnerabilities. Such cancer specific patterns and gene co-occurrences can be identified by studying tumor genome sequences, and networks have proven effective in uncovering relationships between sequences. We present two network-based approaches to identify driver gene patterns among tumor samples. The first approach relies on analysis using the Directed Weighted All Nearest Neighbors (DiWANN) model, which is a variant of sequence similarity network, and the second approach uses bipartite network analysis. A data reduction framework was implemented to extract the minimal relevant information for the sequence similarity network analysis, where a transformed reference sequence is generated for constructing the driver gene network. This data reduction process combined with the efficiency of the DiWANN network model, greatly lowered the computational cost (in terms of execution time and memory usage) of generating the networks enabling us to work at a much larger scale than previously possible. The DiWANN network helped us identify cancer types in which samples were more closely connected to each other suggesting they are less heterogeneous and potentially susceptible to a common drug. The bipartite network analysis provided insight into gene associations and co-occurrences. We identified genes that were broadly mutated in multiple cancer types and mutations exclusive to only a few. Additionally, weighted one-mode gene projections of the bipartite networks revealed a pattern of occurrence of driver genes in different cancers. Our study demonstrates that network-based approaches can be an effective tool in cancer genomics. The analysis identifies co-occurring and exclusive driver genes and mutations for specific cancer types, providing a better understanding of the driver genes that lead to tumor initiation and evolution.

6.
Mol Cell Oncol ; 11(1): 2369388, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919375

RESUMO

Aneuploidy, the presence of an aberrant number of chromosomes, has been associated with tumorigenesis for over a century. More recently, advances in karyotyping techniques have revealed its high prevalence in cancer: About 90% of solid tumors and 50-70% of hematopoietic cancers exhibit chromosome gains or losses. When analyzed at the level of specific chromosomes, there are strong patterns that are observed in cancer karyotypes both pan-cancer and for specific cancer types. These specific aneuploidy patterns correlate strongly with outcomes for tumor initiation, progression, metastasis formation, immune evasion and resistance to therapeutic treatment. Despite their prominence, understanding the basis underlying aneuploidy patterns in cancer has been challenging. Advances in genetic engineering and bioinformatic analyses now offer insights into the genetic determinants of aneuploidy pattern selection. Overall, there is substantial evidence that expression changes of particular genes can act as the positive selective forces for adaptation through aneuploidy. Recent findings suggest that multiple genes contribute to the selection of specific aneuploid chromosomes in cancer; however, further research is necessary to identify the most impactful driver genes. Determining the genetic basis and accompanying vulnerabilities of specific aneuploidy patterns is an essential step in selectively targeting these hallmarks of tumors.

7.
Comput Biol Chem ; 112: 108119, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38852361

RESUMO

Hepatocellular carcinoma (HCC) is a widespread primary liver cancer with a high fatality rate. Despite several genes with oncogenic effects in HCC have been identified, many remain undiscovered. In this study, we conducted a comprehensive computational analysis to explore the involvement of genes within the same families as known driver genes in HCC. Specifically, we expanded the concept beyond single-gene mutations to encompass gene families sharing homologous structures, integrating various omics data to comprehensively understand gene abnormalities in cancer. Our analysis identified 74 domains with an enriched mutation burden, 404 domain mutation hotspots, and 233 dysregulated driver genes. We observed that specific low-frequency somatic mutations may contribute to HCC occurrence, potentially overlooked by single-gene algorithms. Furthermore, we systematically analyzed how abnormalities in the ubiquitinated proteasome system (UPS) impact HCC, finding that abnormal genes in E3, E2, DUB families, and Degron genes often result in HCC by affecting the stability of oncogenic or tumor suppressor proteins. In conclusion, expanding the exploration of driver genes to include gene families with homologous structures emerges as a promising strategy for uncovering additional oncogenic alterations in HCC.

8.
Cancers (Basel) ; 16(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38893242

RESUMO

Cancer driver genes are either oncogenes or tumour suppressor genes that are classically activated or inactivated, respectively, by driver mutations. Alternative splicing-which produces various mature mRNAs and, eventually, protein variants from a single gene-may also result in driving neoplastic transformation because of the different and often opposed functions of the variants of driver genes. The present review analyses the different alternative splicing events that result in driving neoplastic transformation, with an emphasis on their molecular mechanisms. To do this, we collected a list of 568 gene drivers of cancer and revised the literature to select those involved in the alternative splicing of other genes as well as those in which its pre-mRNA is subject to alternative splicing, with the result, in both cases, of producing an oncogenic isoform. Thirty-one genes fall into the first category, which includes splicing factors and components of the spliceosome and splicing regulators. In the second category, namely that comprising driver genes in which alternative splicing produces the oncogenic isoform, 168 genes were found. Then, we grouped them according to the molecular mechanisms responsible for alternative splicing yielding oncogenic isoforms, namely, mutations in cis splicing-determining elements, other causes involving non-mutated cis elements, changes in splicing factors, and epigenetic and chromatin-related changes. The data given in the present review substantiate the idea that aberrant splicing may regulate the activation of proto-oncogenes or inactivation of tumour suppressor genes and details on the mechanisms involved are given for more than 40 driver genes.

9.
J Pathol ; 263(3): 275-287, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734880

RESUMO

The hyperplasia-carcinoma sequence is a stepwise tumourigenic programme towards endometrial cancer in which normal endometrial epithelium becomes neoplastic through non-atypical endometrial hyperplasia (NAEH) and atypical endometrial hyperplasia (AEH), under the influence of unopposed oestrogen. NAEH and AEH are known to exhibit polyclonal and monoclonal cell growth, respectively; yet, aside from focal PTEN protein loss, the genetic and epigenetic alterations that occur during the cellular transition remain largely unknown. We sought to explore the potential molecular mechanisms that promote the NAEH-AEH transition and identify molecular markers that could help to differentiate between these two states. We conducted target-panel sequencing on the coding exons of 596 genes, including 96 endometrial cancer driver genes, and DNA methylome microarrays for 48 NAEH and 44 AEH lesions that were separately collected via macro- or micro-dissection from the endometrial tissues of 30 cases. Sequencing analyses revealed acquisition of the PTEN mutation and the clonal expansion of tumour cells in AEH samples. Further, across the transition, alterations to the DNA methylome were characterised by hypermethylation of promoter/enhancer regions and CpG islands, as well as hypo- and hyper-methylation of DNA-binding regions for transcription factors relevant to endometrial cell differentiation and/or tumourigenesis, including FOXA2, SOX17, and HAND2. The identified DNA methylation signature distinguishing NAEH and AEH lesions was reproducible in a validation cohort with modest discriminative capability. These findings not only support the concept that the transition from NAEH to AEH is an essential step within neoplastic cell transformation of endometrial epithelium but also provide deep insight into the molecular mechanism of the tumourigenic programme. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Carcinoma Endometrioide , Metilação de DNA , Hiperplasia Endometrial , Neoplasias do Endométrio , Epigênese Genética , PTEN Fosfo-Hidrolase , Feminino , Humanos , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Carcinoma Endometrioide/genética , Carcinoma Endometrioide/patologia , PTEN Fosfo-Hidrolase/genética , Hiperplasia Endometrial/genética , Hiperplasia Endometrial/patologia , Hiperplasia Endometrial/metabolismo , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Mutação , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Ilhas de CpG/genética , Idoso
10.
Heliyon ; 10(9): e29914, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38737285

RESUMO

This study was based on the use of whole-genome DNA methylation sequencing technology to identify DNA methylation biomarkers in tumor tissue that can predict the prognosis of patients with pancreatic cancer (PCa). TCGA database was used to download PCa-related DNA methylation and transcriptome atlas data. Methylation driver genes (MDGs) were obtained using the MethylMix package. Candidate genes in the MDGs were screened for prognostic relevance to PCa patients by univariate Cox analysis, and a prognostic risk score model was constructed based on the key MDGs. ROC curve analysis was performed to assess the accuracy of the prognostic risk score model. The effects of PIK3C2B knockdown on malignant phenotypes of PCa cells were investigated in vitro. A total of 2737 differentially expressed genes were identified, with 649 upregulated and 2088 downregulated, using 178 PCa samples and 171 normal samples. MethylMix was employed to identify 71 methylation-driven genes (47 hypermethylated and 24 hypomethylated) from 185 TCGA PCa samples. Cox regression analyses identified eight key MDGs (LEF1, ZIC3, VAV3, TBC1D4, FABP4, MAP3K5, PIK3C2B, IGF1R) associated with prognosis in PCa. Seven of them were hypermethylated, while PIK3C2B was hypomethylated. A prognostic risk prediction model was constructed based on the eight key MDGs, which was found to accurately predict the prognosis of PCa patients. In addition, the malignant phenotypes of PANC-1 cells were decreased after the knockdown of PIK3C2B. Therefore, the prognostic risk prediction model based on the eight key MDGs could accurately predict the prognosis of PCa patients.

11.
Comput Biol Med ; 173: 108396, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574529

RESUMO

Acute myeloid leukemia (AML) is an aggressive malignancy characterized by challenges in treatment, including drug resistance and frequent relapse. Recent research highlights the crucial roles of tumor microenvironment (TME) in assisting tumor cell immune escape and promoting tumor aggressiveness. This study delves into the interplay between AML and TME. Through the exploration of potential driver genes, we constructed an AML prognostic index (AMLPI). Cross-platform data and multi-dimensional internal and external validations confirmed that the AMLPI outperforms existing models in terms of areas under the receiver operating characteristic curves, concordance index values, and net benefits. High AMLPIs in AML patients were indicative of unfavorable prognostic outcomes. Immune analyses revealed that the high-AMLPI samples exhibit higher expression of HLA-family genes and immune checkpoint genes (including PD1 and CTLA4), along with lower T cell infiltration and higher macrophage infiltration. Genetic variation analyses revealed that the high-AMLPI samples associate with adverse variation events, including TP53 mutations, secondary NPM1 co-mutations, and copy number deletions. Biological interpretation indicated that ALDH2 and SPATS2L contribute significantly to AML patient survival, and their abnormal expression correlates with DNA methylation at cg12142865 and cg11912272. Drug response analyses revealed that different AMLPI samples tend to have different clinical selections, with low-AMLPI samples being more likely to benefit from immunotherapy. Finally, to facilitate broader access to our findings, a user-friendly and publicly accessible webserver was established and available at http://bioinfor.imu.edu.cn/amlpi. This server provides tools including TME-related AML driver genes mining, AMLPI construction, multi-dimensional validations, AML patients risk assessment, and figures drawing.


Assuntos
Leucemia Mieloide Aguda , Nucleofosmina , Humanos , Prognóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Metilação de DNA , Microambiente Tumoral , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo
12.
Comput Biol Med ; 174: 108484, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643595

RESUMO

Accurately identifying cancer driver genes (CDGs) is crucial for guiding cancer treatment and has recently received great attention from researchers. However, the high complexity and heterogeneity of cancer gene regulatory networks limit the precition accuracy of existing deep learning models. To address this, we introduce a model called SCIS-CDG that utilizes Schur complement graph augmentation and independent subspace feature extraction techniques to effectively predict potential CDGs. Firstly, a random Schur complement strategy is adopted to generate two augmented views of gene network within a graph contrastive learning framework. Rapid randomization of the random Schur complement strategy enhances the model's generalization and its ability to handle complex networks effectively. Upholding the Schur complement principle in expectations promotes the preservation of the original gene network's vital structure in the augmented views. Subsequently, we employ feature extraction technology using multiple independent subspaces, each trained with independent weights to reduce inter-subspace dependence and improve the model's expressiveness. Concurrently, we introduced a feature expansion component based on the structure of the gene network to address issues arising from the limited dimensionality of node features. Moreover, it can alleviate the challenges posed by the heterogeneity of cancer gene networks to some extent. Finally, we integrate a learnable attention weight mechanism into the graph neural network (GNN) encoder, utilizing feature expansion technology to optimize the significance of various feature levels in the prediction task. Following extensive experimental validation, the SCIS-CDG model has exhibited high efficiency in identifying known CDGs and uncovering potential unknown CDGs in external datasets. Particularly when compared to previous conventional GNN models, its performance has seen significant improved. The code and data are publicly available at: https://github.com/mxqmxqmxq/SCIS-CDG.


Assuntos
Redes Reguladoras de Genes , Neoplasias , Humanos , Neoplasias/genética , Biologia Computacional/métodos , Aprendizado Profundo , Algoritmos
13.
Cancer Med ; 13(7): e7123, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38618943

RESUMO

OBJECTIVE: To evaluate the incidence, clinical laboratory characteristics, and gene mutation spectrum of Ph-negative MPN patients with atypical variants of JAK2, MPL, or CALR. METHODS: We collected a total of 359 Ph-negative MPN patients with classical mutations in driver genes JAK2, MPL, or CALR, and divided them into two groups based on whether they had additional atypical variants of driver genes JAK2, MPL, or CALR: 304 patients without atypical variants of driver genes and 55 patients with atypical variants of driver genes. We analyzed the relevant characteristics of these patients. RESULTS: This study included 359 patients with Ph-negative MPNs with JAK2, MPL, or CALR classical mutations and found that 55 (15%) patients had atypical variants of JAK2, MPL, or CALR. Among them, 28 cases (51%) were male, and 27 (49%) were female, with a median age of 64 years (range, 21-83). The age of ET patients with atypical variants was higher than that of ET patients without atypical variants [70 (28-80) vs. 61 (19-82), p = 0.03]. The incidence of classical MPL mutations in ET patients with atypical variants was higher than in ET patients without atypical variants [13.3% (2/15) vs. 0% (0/95), p = 0.02]. The number of gene mutations in patients with atypical variants of driver genes PV, ET, and Overt-PMF is more than in patients without atypical variants of PV, ET, and Overt-PMF [PV: 3 (2-6) vs. 2 (1-7), p < 0.001; ET: 4 (2-8) vs. 2 (1-7), p < 0.05; Overt-PMF: 5 (2-9) vs. 3 (1-8), p < 0.001]. The incidence of SH2B3 and ASXL1 mutations were higher in MPN patients with atypical variants than in those without atypical variants (SH2B3: 16% vs. 6%, p < 0.01; ASXL1: 24% vs. 13%, p < 0.05). CONCLUSION: These data indicate that classical mutations of JAK2, MPL, and CALR may not be completely mutually exclusive with atypical variants of JAK2, MPL, and CALR. In this study, 30 different atypical variants of JAK2, MPL, and CALR were identified, JAK2 G127D being the most common (42%, 23/55). Interestingly, JAK2 G127D only co-occurred with JAK2V617F mutation. The incidence of atypical variants of JAK2 in Ph-negative MPNs was much higher than that of the atypical variants of MPL and CALR. The significance of these atypical variants will be further studied in the future.


Assuntos
Laboratórios Clínicos , Fatores de Transcrição , Humanos , Feminino , Masculino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Mutação , Receptores de Trombopoetina/genética , Janus Quinase 2/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-38424698

RESUMO

Even though many different approaches have been employed to address the complex mutational heterogeneity of cancer, finding driver genes is still problematic since other genomic factors cannot be fully integrated for combined analyses. This research paper presents a novel gene identification and segregation model with five key processes (a) pre-processing, (b) treatment of class imbalances, (c) feature extraction, (d) feature selection, and (e) gene classification. To increase the data quality, the gathered initial information is first pre-processed utilizing data cleaning and data normalization. This turns the raw data into something that is both useful and effective. In actuality, the sample is skewed against drivers because passenger mutation markers appear in proportionally less instances than drivers do. To address the Class Imbalance Problem, improved K-Means + SMOTE are applied to the preprocessed data. The most crucial characteristics, including those at the gene and mutation levels, are then extracted from the balanced dataset. To lessen the computational load in terms of time, the best features from the retrieved features are selected using Forensic interpretation tailored hunger food search optimization (FIHFSO). The ideal features are used to train the deep learning classifier that conducts the separation procedure. In this research, an Improved Recurrent Neural Network (I-RNN) is used to make a final decision about genes. At 90% of learning percentage, the accuracy of the proposed method achieves 0.98% of 0.83, 0.81, 0.65, 0.80, 0.92 and 0.63% which is compared to the other methods like HGS, FBIO, AOA, AO, GOA and PRO respectively.

15.
Int J Clin Oncol ; 29(5): 512-534, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493447

RESUMO

In recent years, rapid advancement in gene/protein analysis technology has resulted in target molecule identification that may be useful in cancer treatment. Therefore, "Clinical Practice Guidelines for Molecular Tumor Marker, Second Edition" was published in Japan in September 2021. These guidelines were established to align the clinical usefulness of external diagnostic products with the evaluation criteria of the Pharmaceuticals and Medical Devices Agency. The guidelines were scoped for each tumor, and a clinical questionnaire was developed based on a serious clinical problem. This guideline was based on a careful review of the evidence obtained through a literature search, and recommendations were identified following the recommended grades of the Medical Information Network Distribution Services (Minds). Therefore, this guideline can be a tool for cancer treatment in clinical practice. We have already reported the review portion of "Clinical Practice Guidelines for Molecular Tumor Marker, Second Edition" as Part 1. Here, we present the English version of each part of the Clinical Practice Guidelines for Molecular Tumor Marker, Second Edition.


Assuntos
Biomarcadores Tumorais , Neoplasias , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise , Japão , Neoplasias/terapia , Neoplasias/genética , Neoplasias/diagnóstico
16.
Health Inf Sci Syst ; 12(1): 21, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38464463

RESUMO

Cancer is a complex gene mutation disease that derives from the accumulation of mutations during somatic cell evolution. With the advent of high-throughput technology, a large amount of omics data has been generated, and how to find cancer-related driver genes from a large number of omics data is a challenge. In the early stage, the researchers developed many frequency-based driver genes identification methods, but they could not identify driver genes with low mutation rates well. Afterwards, researchers developed network-based methods by fusing multi-omics data, but they rarely considered the connection among features. In this paper, after analyzing a large number of methods for integrating multi-omics data, a hierarchical weak consensus model for fusing multiple features is proposed according to the connection among features. By analyzing the connection between PPI network and co-mutation hypergraph network, this paper firstly proposes a new topological feature, called co-mutation clustering coefficient (CMCC). Then, a hierarchical weak consensus model is used to integrate CMCC, mRNA and miRNA differential expression scores, and a new driver genes identification method HWC is proposed. In this paper, the HWC method and current 7 state-of-the-art methods are compared on three types of cancers. The comparison results show that HWC has the best identification performance in statistical evaluation index, functional consistency and the partial area under ROC curve. Supplementary Information: The online version contains supplementary material available at 10.1007/s13755-024-00279-6.

17.
Comput Biol Med ; 171: 108234, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38430742

RESUMO

Breast cancer has become a severe public health concern and one of the leading causes of cancer-related death in women worldwide. Several genes and mutations in these genes linked to breast cancer have been identified using sophisticated techniques, despite the fact that the exact cause of breast cancer is still unknown. A commonly used feature for identifying driver mutations is the recurrence of a mutation in patients. Nevertheless, some mutations are more likely to occur than others for various reasons. Sequencing analysis has shown that cancer-driving genes operate across complex networks, often with mutations appearing in a modular pattern. In this work, as a retrospective study, we used TCGA data, which is gathered from breast cancer patients. We introduced a new machine-learning approach to examine gene functionality in networks derived from mutation associations, gene-gene interactions, and graph clustering for breast cancer analysis. These networks have uncovered crucial biological components in critical pathways, particularly those that exhibit low-frequency mutations. The statistical strength of the clinical study is significantly boosted by evaluating the network as a whole instead of just single gene effects. Our method successfully identified essential driver genes with diverse mutation frequencies. We then explored the functions of these potential driver genes and their related pathways. By uncovering low-frequency genes, we shed light on understudied pathways associated with breast cancer. Additionally, we present a novel Monte Carlo-based algorithm to identify driver modules in breast cancer. Our findings highlight the significance and role of these modules in critical signaling pathways in breast cancer, providing a comprehensive understanding of breast cancer development. Materials and implementations are available at: [https://github.com/MahnazHabibi/BreastCancer].


Assuntos
Neoplasias da Mama , Neoplasias , Humanos , Feminino , Neoplasias da Mama/genética , Estudos Retrospectivos , Oncogenes , Mutação/genética , Neoplasias/genética , Aprendizado de Máquina , Redes Reguladoras de Genes
18.
Biology (Basel) ; 13(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38534453

RESUMO

Cancer is a complex and evolutionary disease mainly driven by the accumulation of genetic variations in genes. Identifying cancer driver genes is important. However, most related studies have focused on the population level. Cancer is a disease with high heterogeneity. Thus, the discovery of driver genes at the individual level is becoming more valuable but is a great challenge. Although there have been some computational methods proposed to tackle this challenge, few can cover all patient samples well, and there is still room for performance improvement. In this study, to identify individual-level driver genes more efficiently, we propose the PDGCN method. PDGCN integrates multiple types of data features, including mutation, expression, methylation, copy number data, and system-level gene features, along with network structural features extracted using Node2vec in order to construct a sample-gene interaction network. Prediction is performed using a graphical convolutional neural network model with a conditional random field layer, which is able to better combine the network structural features with biological attribute features. Experiments on the ACC (Adrenocortical Cancer) and KICH (Kidney Chromophobe) datasets from TCGA (The Cancer Genome Atlas) demonstrated that the method performs better compared to other similar methods. It can identify not only frequently mutated driver genes, but also rare candidate driver genes and novel biomarker genes. The results of the survival and enrichment analyses of these detected genes demonstrate that the method can identify important driver genes at the individual level.

19.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38261338

RESUMO

The vast amount of available sequencing data allows the scientific community to explore different genetic alterations that may drive cancer or favor cancer progression. Software developers have proposed a myriad of predictive tools, allowing researchers and clinicians to compare and prioritize driver genes and mutations and their relative pathogenicity. However, there is little consensus on the computational approach or a golden standard for comparison. Hence, benchmarking the different tools depends highly on the input data, indicating that overfitting is still a massive problem. One of the solutions is to limit the scope and usage of specific tools. However, such limitations force researchers to walk on a tightrope between creating and using high-quality tools for a specific purpose and describing the complex alterations driving cancer. While the knowledge of cancer development increases daily, many bioinformatic pipelines rely on single nucleotide variants or alterations in a vacuum without accounting for cellular compartments, mutational burden or disease progression. Even within bioinformatics and computational cancer biology, the research fields work in silos, risking overlooking potential synergies or breakthroughs. Here, we provide an overview of databases and datasets for building or testing predictive cancer driver tools. Furthermore, we introduce predictive tools for driver genes, driver mutations, and the impact of these based on structural analysis. Additionally, we suggest and recommend directions in the field to avoid silo-research, moving towards integrative frameworks.


Assuntos
Neoplasias , Oncogenes , Benchmarking , Biologia Computacional , Consenso , Mutação , Neoplasias/genética
20.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-1039043

RESUMO

ObjectiveInferring cancer driver genes, especially rare or sample-specific cancer driver genes, is crucial for precision oncology. Considering the high inter-tumor heterogeneity, a few recent methods attempt to reveal cancer driver genes at the individual level. However, most of these methods generally integrate multi-omics data into a single biomolecular network (e.g., gene regulatory network or protein-protein interaction network) to identify cancer driver genes, which results in missing important interactions highlighted in different networks. Thus, the development of a multiplex network method is imperative in order to integrate the interactions of different biomolecular networks and facilitate the identification of cancer driver genes. MethodsA multiplex network control method called Personalized cancer Driver Genes with Multiplex biomolecular Networks (PDGMN) was proposed. Firstly, the sample-specific multiplex network, which contains protein-protein interaction layer and gene-gene association layer, was constructed based on gene expression data. Subsequently, somatic mutation data was integrated to weight the nodes in the sample-specific multiplex network. Finally, a weighted minimum vertex cover set identification algorithm was designed to find the optimal set of driver nodes, facilitating the identification of personalized cancer driver genes. ResultsThe results derived from three TCGA cancer datasets indicate that PDGMN outperforms other existing methods in identifying personalized cancer driver genes, and it can effectively identify the rare driver genes in individual patients. Particularly, the experimental results indicate that PDGMN can capture the unique characteristics of different biomolecular networks to improve cancer driver gene identification. ConclusionPDGMN can effectively identify personalized cancer driver genes and broaden our understanding of cancer driver gene identification from a multiplex network perspective. The source code and datasets used in this work are available at https://github.com/NWPU-903PR/PDGMN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA