Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Br J Anaesth ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38937217

RESUMO

BACKGROUND: Prior studies have reported inconsistent results regarding the association between driving pressure-guided ventilation and postoperative pulmonary complications (PPCs). We aimed to investigate whether driving pressure-guided ventilation is associated with a lower risk of PPCs. METHODS: We systematically searched electronic databases for RCTs comparing driving pressure-guided ventilation with conventional protective ventilation in adult surgical patients. The primary outcome was a composite of PPCs. Secondary outcomes were pneumonia, atelectasis, and acute respiratory distress syndrome (ARDS). Meta-analysis and subgroup analysis were conducted to calculate risk ratios (RRs) with 95% confidence intervals (CI). Trial sequential analysis (TSA) was used to assess the conclusiveness of evidence. RESULTS: Thirteen RCTs with 3401 subjects were included. Driving pressure-guided ventilation was associated with a lower risk of PPCs (RR 0.70, 95% CI 0.56-0.87, P=0.001), as indicated by TSA. Subgroup analysis (P for interaction=0.04) found that the association was observed in non-cardiothoracic surgery (nine RCTs, 1038 subjects, RR 0.61, 95% CI 0.48-0.77, P< 0.0001), with TSA suggesting sufficient evidence and conclusive result; however, it did not reach significance in cardiothoracic surgery (four RCTs, 2363 subjects, RR 0.86, 95% CI 0.67-1.10, P=0.23), with TSA indicating insufficient evidence and inconclusive result. Similarly, a lower risk of pneumonia was found in non-cardiothoracic surgery but not in cardiothoracic surgery (P for interaction=0.046). No significant differences were found in atelectasis and ARDS between the two ventilation strategies. CONCLUSIONS: Driving pressure-guided ventilation was associated with a lower risk of postoperative pulmonary complications in non-cardiothoracic surgery but not in cardiothoracic surgery. SYSTEMATIC REVIEW PROTOCOL: INPLASY 202410068.

2.
World J Crit Care Med ; 13(2): 92441, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38855266

RESUMO

Mechanical ventilation (MV) is an important strategy for improving the survival of patients with respiratory failure. However, MV is associated with aggravation of lung injury, with ventilator-induced lung injury (VILI) becoming a major concern. Thus, ventilation protection strategies have been developed to minimize complications from MV, with the goal of relieving excessive breathing workload, improving gas exchange, and minimizing VILI. By opting for lower tidal volumes, clinicians seek to strike a balance between providing adequate ventilation to support gas exchange and preventing overdistension of the alveoli, which can contribute to lung injury. Additionally, other factors play a role in optimizing lung protection during MV, including adequate positive end-expiratory pressure levels, to maintain alveolar recruitment and prevent atelectasis as well as careful consideration of plateau pressures to avoid excessive stress on the lung parenchyma.

3.
J Crit Care ; 83: 154841, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38875915

RESUMO

PURPOSE: To evaluate the effect of structured staff training on the respiratory support provided. MATERIALS AND METHODS: Staff training with emphasis on the applied DP in mechanical ventilation was provided during one year. After completion of staff training, the effect was prospectively evaluated in patients who were continuously mechanically ventilated in a controlled mode for at least 6 h starting from admission. Pressure difference (Pdiff = Ppeak - PEEPtot) in the baseline period, as a derivative of the driving pressure, was compared with two evaluation periods from 0 to 6 months and 6-12 months (i.e. follow-up) after completion of the training. RESULTS: At analysis 248 patients met the inclusion criteria. In the baseline period Pdiff was not lung protective (> 15 cm H2O) in 39% of cases. In the first follow-up period this decreased to 25% of cases and further dropped to 17% in the second follow-up period. This was a relative decrease of 56% compared to the training period. At the end of evaluation the proportion of patients with a safe Pdiff had gradually increased from 58% during training to 82% (χ2 = p 0.005). CONCLUSIONS: These results suggest that ICU staff training could lead to more adequate respiratory support provided during controlled mechanical ventilation.

4.
J Int Med Res ; 52(6): 3000605241259442, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867540

RESUMO

OBJECTIVE: To investigate the association between driving pressure (ΔP) and 90-day mortality in patients following lung transplantation (LTx) in patients who developed primary graft dysfunction (PGD). METHODS: This prospective, observational study involved consecutive patients who, following LTx, were admitted to our intensive care unit (ICU) from January 2022 to January 2023. Patients were separated into two groups according to ΔP at time of admission (i.e., low, ≤15 cmH2O or high, >15 cmH2O). Postoperative outcomes were compared between groups. RESULTS: In total, 104 patients were involved in the study, and of these, 69 were included in the low ΔP group and 35 in the high ΔP group. Kaplan-Meier analysis of 90-day mortality showed a statistically significant difference between groups with survival better in the low ΔP group compared with the high ΔP group. According to Cox proportional regression model, the variables independently associated with 90-day mortality were ΔP and pneumonia. Significantly more patients in the high ΔP group than the low ΔP group had PGD grade 3 (PGD3), pneumonia, required tracheostomy, and had prolonged postoperative extracorporeal membrane oxygenation (ECMO) time, postoperative ventilator time, and ICU stay. CONCLUSIONS: Driving pressure appears to have the ability to predict PGD3 and 90-day mortality of patients following LTx. Further studies are required to confirm our results.


Assuntos
Transplante de Pulmão , Humanos , Transplante de Pulmão/mortalidade , Transplante de Pulmão/efeitos adversos , Masculino , Feminino , Estudos Prospectivos , Pessoa de Meia-Idade , Adulto , Disfunção Primária do Enxerto/mortalidade , Disfunção Primária do Enxerto/etiologia , Unidades de Terapia Intensiva , Estimativa de Kaplan-Meier , Complicações Pós-Operatórias/mortalidade , Pressão , Oxigenação por Membrana Extracorpórea/mortalidade , Fatores de Risco
5.
J Clin Anesth ; 96: 111485, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38718685

RESUMO

STUDY OBJECTIVE: To estimate the incidence of postoperative oxygenation impairment after lung resection in the era of lung-protective management, and to identify perioperative factors associated with that impairment. DESIGN: Registry-based retrospective cohort study. SETTING: Two large academic hospitals in the United States. PATIENTS: 3081 ASA I-IV patients undergoing lung resection. MEASUREMENTS: 79 pre- and intraoperative variables, selected for inclusion based on a causal inference framework. The primary outcome of impaired oxygenation, an early marker of lung injury, was defined as at least one of the following within seven postoperative days: (1) SpO2 < 92%; (2) imputed PaO2/FiO2 < 300 mmHg [(1) or (2) occurring at least twice within 24 h]; (3) intensive oxygen therapy (mechanical ventilation or > 50% oxygen or high-flow oxygen). MAIN RESULTS: Oxygenation was impaired within seven postoperative days in 70.8% of patients (26.6% with PaO2/FiO2 < 200 mmHg or intensive oxygen therapy). In multivariable analysis, each additional cmH2O of intraoperative median driving pressure was associated with a 7% higher risk of impaired oxygenation (OR 1.07; 95%CI 1.04 to 1.10). Higher median intraoperative FiO2 (OR 1.23; 95%CI 1.14 to 1.31 per 0.1) and PEEP (OR 1.12; 95%CI 1.04 to 1.21 per 1 cm H2O) were also associated with increased risk. History of COPD (OR 2.55; 95%CI 1.95 to 3.35) and intraoperative albuterol administration (OR 2.07; 95%CI 1.17 to 3.67) also showed reliable effects. CONCLUSIONS: Impaired postoperative oxygenation is common after lung resection and is associated with potentially modifiable pre- and intraoperative respiratory factors.


Assuntos
Oxigenoterapia , Pneumonectomia , Complicações Pós-Operatórias , Humanos , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Incidência , Fatores de Risco , Pneumonectomia/efeitos adversos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Oxigenoterapia/estatística & dados numéricos , Oxigenoterapia/métodos , Sistema de Registros/estatística & dados numéricos , Oxigênio/sangue , Respiração com Pressão Positiva/efeitos adversos , Respiração com Pressão Positiva/métodos , Estados Unidos/epidemiologia
6.
Ther Adv Respir Dis ; 18: 17534666241249152, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726850

RESUMO

BACKGROUND: Ventilator-induced lung injury (VILI) presents a grave risk to acute respiratory failure patients undergoing mechanical ventilation. Low tidal volume (LTV) ventilation has been advocated as a protective strategy against VILI. However, the effectiveness of limited driving pressure (plateau pressure minus positive end-expiratory pressure) remains unclear. OBJECTIVES: This study evaluated the efficacy of LTV against limited driving pressure in preventing VILI in adults with respiratory failure. DESIGN: A single-centre, prospective, open-labelled, randomized controlled trial. METHODS: This study was executed in medical intensive care units at Siriraj Hospital, Mahidol University, Bangkok, Thailand. We enrolled acute respiratory failure patients undergoing intubation and mechanical ventilation. They were randomized in a 1:1 allocation to limited driving pressure (LDP; ⩽15 cmH2O) or LTV (⩽8 mL/kg of predicted body weight). The primary outcome was the acute lung injury (ALI) score 7 days post-enrolment. RESULTS: From July 2019 to December 2020, 126 patients participated, with 63 each in the LDP and LTV groups. The cohorts had the mean (standard deviation) ages of 60.5 (17.6) and 60.9 (17.9) years, respectively, and they exhibited comparable baseline characteristics. The primary reasons for intubation were acute hypoxic respiratory failure (LDP 49.2%, LTV 63.5%) and shock-related respiratory failure (LDP 39.7%, LTV 30.2%). No significant difference emerged in the primary outcome: the median (interquartile range) ALI scores for LDP and LTV were 1.75 (1.00-2.67) and 1.75 (1.25-2.25), respectively (p = 0.713). Twenty-eight-day mortality rates were comparable: LDP 34.9% (22/63), LTV 31.7% (20/63), relative risk (RR) 1.08, 95% confidence interval (CI) 0.74-1.57, p = 0.705. Incidences of newly developed acute respiratory distress syndrome also aligned: LDP 14.3% (9/63), LTV 20.6% (13/63), RR 0.81, 95% CI 0.55-1.22, p = 0.348. CONCLUSIONS: In adults with acute respiratory failure, the efficacy of LDP and LTV in averting lung injury 7 days post-mechanical ventilation was indistinguishable. CLINICAL TRIAL REGISTRATION: The study was registered with the ClinicalTrials.gov database (identification number NCT04035915).


Limited breathing pressure or low amount of air given to the lung; which one is better for adults who need breathing help by ventilator machineWe conducted this research at Siriraj Hospital in Bangkok, Thailand, aiming to compare two ways of helping patients with breathing problems. We studied 126 patients who were randomly put into two groups. One group received a method where the pressure during breathing was limited (limited driving pressure: LDP), and the other group got a method where the amount of air given to the lungs was kept low (low tidal volume: LTV). We checked how bad the lung injury was at seven days later. The results showed that there was no difference between the two methods. Both ways of helping patients breathe had similar outcomes, and neither was significantly better than the other in preventing lung problems. The study suggests that both approaches work about the same for patients who need help with breathing using a machine.


Assuntos
Insuficiência Respiratória , Volume de Ventilação Pulmonar , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Masculino , Feminino , Estudos Prospectivos , Pessoa de Meia-Idade , Idoso , Insuficiência Respiratória/terapia , Insuficiência Respiratória/fisiopatologia , Tailândia , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia , Resultado do Tratamento , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/fisiopatologia , Síndrome do Desconforto Respiratório/mortalidade , Respiração Artificial/efeitos adversos , Fatores de Tempo , Respiração com Pressão Positiva/efeitos adversos , Respiração com Pressão Positiva/métodos , Pulmão/fisiopatologia , Fatores de Risco , Adulto
7.
Cureus ; 16(3): e56996, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38681442

RESUMO

Drug infusion devices have become indispensable tools in ICU patient care, drug delivery, and operation rooms (OR) and for controlled fluid delivery. Syringe pump safety is paramount in healthcare and laboratory settings to ensure accurate medication delivery and prevent adverse events. Healthcare professionals must receive thorough training on syringe pump operation, including loading syringes, programming infusion rates, and responding to alarms. Using the correct syringe size and type is essential to prevent inaccuracies in drug/fluid delivery. Regular calibration and maintenance checks are necessary to ensure the accuracy and reliability of the syringe pumps. Two cases of refractory hypotension are reported here, which were resolved by careful inspection of the infusion pumps.

8.
J Intensive Med ; 4(2): 194-201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38681786

RESUMO

Background: Extracorporeal membrane oxygenation (ECMO) for acute respiratory distress syndrome (ARDS) is systematically associated with decreased respiratory system compliance (CRS). It remains unclear whether transportation to the referral ECMO center, changes in ventilatory mode or settings to achieve ultra-protective ventilation, or the natural evolution of ARDS drives this change in respiratory mechanics. Herein, we assessed the precise moment when CRS decreases after ECMO cannulation and identified factors associated with decreased CRS. Methods: To rule out the effect of transportation and the different modes of ventilation on CRS, we conducted a retrospective, single-center, observational cohort study from January 2013 to May 2020, on 22 patients with severe ARDS requiring on-site ECMO and ventilated in pressure-controlled mode to achieve ultra-protective ventilation. CRS was assessed at different time points ranging from 12 h before ECMO cannulation to 72 h after ECMO cannulation. The primary outcome was the relative change in CRS between 3 h before and 3 h after ECMO cannulation. The secondary outcomes included variables associated with the relative changes in CRS within the first 3 h after ECMO cannulation and the relative changes in CRS at each time point. Results: CRS decreased within the first 3 h after ECMO cannulation (-28.3%, 95% confidence interval [CI]: -38.8 to -17.9, P<0.001), while the decrease was mild before and after these first 3 h after ECMO cannulation. To achieve ultra-protective ventilation, respiratory rate decreased in the mean by -13 breaths/min (95% CI: -15 to -11) and driving pressure by -8.3 cmH2O (95% CI: -11.2 to -5.3), resulting in decreased tidal volume by -3.3 mL/kg of predicted body weight (95% CI: -3.9 to -2.6) as compared to before ECMO cannulation (P <0.001 for all). Plateau pressure reduction, driving pressure reduction, and tidal volume reduction were significantly associated with decreased CRS after ECMO cannulation, whereas neither respiratory rate, positive end-expiratory pressure, inspired fraction of oxygen, fluid balance, nor mean airway pressure was associated with decreased CRS. Conclusions: Decreased driving pressure resulting in lower tidal volume to achieve ultra-protective ventilation after ECMO cannulation was associated with a marked decrease in CRS in ARDS patients with on-site ECMO cannulation.

9.
World J Crit Care Med ; 13(1): 88385, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38633474

RESUMO

Driving pressure (∆P) is a core therapeutic component of mechanical ventilation (MV). Varying levels of ∆P have been employed during MV depending on the type of underlying pathology and severity of injury. However, ∆P levels have also been shown to closely impact hard endpoints such as mortality. Considering this, conducting an in-depth review of ∆P as a unique, outcome-impacting therapeutic modality is extremely important. There is a need to understand the subtleties involved in making sure ∆P levels are optimized to enhance outcomes and minimize harm. We performed this narrative review to further explore the various uses of ∆P, the different parameters that can affect its use, and how outcomes vary in different patient populations at different pressure levels. To better utilize ∆P in MV-requiring patients, additional large-scale clinical studies are needed.

10.
Trials ; 25(1): 282, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671523

RESUMO

BACKGROUND: In patients requiring general anesthesia, lung-protective ventilation can prevent postoperative pulmonary complications, which are associated with higher morbidity, mortality, and prolonged hospital stay. Application of positive end-expiratory pressure (PEEP) is one component of lung-protective ventilation. The correct strategy for setting adequate PEEP, however, remains controversial. PEEP settings that lead to a lower pressure difference between end-inspiratory plateau pressure and end-expiratory pressure ("driving pressure," ΔP) may reduce the risk of postoperative pulmonary complications. Preliminary data suggests that the PEEP required to prevent both end-inspiratory overdistension and end-expiratory alveolar collapse, thereby reducing ΔP, correlates positively with the body mass index (BMI) of patients, with PEEP values corresponding to approximately 1/3 of patient's respective BMI. Thus, we hypothesize that adjusting PEEP according to patient BMI reduces ΔP and may result in less postoperative pulmonary complications. METHODS: Patients undergoing general anesthesia and endotracheal intubation with volume-controlled ventilation with a tidal volume of 7 ml per kg predicted body weight will be randomized and assigned to either an intervention group with PEEP adjusted according to BMI or a control group with a standardized PEEP of 5 mbar. Pre- and postoperatively, lung ultrasound will be performed to determine the lung aeration score, and hemodynamic and respiratory vital signs will be recorded for subsequent evaluation. The primary outcome is the difference in ΔP as a surrogate parameter for lung-protective ventilation. Secondary outcomes include change in lung aeration score, intraoperative occurrence of hemodynamic and respiratory events, oxygen requirements and postoperative pulmonary complications. DISCUSSION: The study results will show whether an intraoperative ventilation strategy with PEEP adjustment based on BMI has the potential of reducing the risk for postoperative pulmonary complications as an easy-to-implement intervention that does not require lengthy ventilator maneuvers nor additional equipment. TRIAL REGISTRATION: German Clinical Trials Register (DRKS), DRKS00031336. Registered 21st February 2023. TRIAL STATUS: The study protocol was approved by the ethics committee of the Christian-Albrechts-Universität Kiel, Germany, on 1st February 2023. Recruitment began in March 2023 and is expected to end in September 2023.


Assuntos
Anestesia Geral , Índice de Massa Corporal , Respiração com Pressão Positiva , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Respiração com Pressão Positiva/métodos , Respiração com Pressão Positiva/efeitos adversos , Anestesia Geral/efeitos adversos , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/etiologia , Volume de Ventilação Pulmonar , Pulmão/fisiopatologia , Resultado do Tratamento
11.
J Perioper Pract ; : 17504589241234191, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38595040

RESUMO

AIM OF THE STUDY: To evaluate the effect of intraoperative positive end-expiratory pressure and driving pressure on the development of postoperative pulmonary complications. METHOD: The prospective study included 83 patients undergoing abdominal surgery and receiving general anaesthesia. Patients were divided into two groups: with low intraoperative positive end-expiratory pressure (0-2cm H2O) and with high intraoperative positive end-expiratory pressure (8-10cm H2O). The primary endpoint is the development of postoperative pulmonary complications during follow-up. RESULTS: The incidence of postoperative pulmonary complications in the group of low intraoperative positive end-expiratory pressure was 9.8%, while in the group of high positive end-expiratory pressure was 7.1% (p = 0.6), demonstrating that high positive end-expiratory pressure used during general anaesthesia does not affect the frequency of complications (odds ratio = 0.71, p = 0.6). In the multivariate analysis that controls for all confounders, driving pressure resulted in a significant and independent risk factor for complications. CONCLUSION: High intraoperative positive end-expiratory pressure does not affect the frequency of postoperative pulmonary complications. The increase in driving pressure is a risk factor for complications. Positive end-expiratory pressure is easily implemented, and its use does not result in significant economic costs.

12.
Indian J Crit Care Med ; 28(2): 134-140, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38323262

RESUMO

Background: Prone position ventilation (PPV) causes improvement in oxygenation, nevertheless, mortality in severe acute respiratory distress syndrome (ARDS) remains high. The changes in the driving pressure (DP) and its role in predicting mortality in moderate to severe ARDS patients receiving PPV is unexplored. Methods: A prospective observational study, conducted between September 2020 and February 2023 on moderate-severe ARDS patients requiring PPV. The values of DP and oxygenation (ratio of partial pressure of arterial oxygen to fraction of inspired oxygen [PaO2/FiO2]) before, during, and after PPV were recorded. The aim was to compare the DP and oxygenation before, during and after PPV sessions among moderate- severe ARDS patients, and determine the best predictor of mortality. Results: Total of 52 patients were included; 28-day mortality was 57%. Among the survivors, DP prior to PPV as compared to post-PPV session reduced significantly, from 16.36 ± 2.57 cmH2O to 13.91 ± 1.74 cmH2O (p-value < 0.001), whereas DP did not reduce in the non-survivors (19.43 ± 3.16 to 19.70 ± 3.15 cmH2O (p-value = 0.318)]. Significant improvement in PaO2/FiO2 before PPV to post-PPV among both the survivors [92.75 [67.5-117.75]) to [205.50 (116.25-244.50)], (p-value < 0.001) and also among the non-survivors [87.90 (67.75-100.75)] to [112 (88.00-146.50)], (p-value < 0.001) was noted. Logistic regression analysis showed DP after PPV session as best predictor of mortality (p-value = 0.044) and its AUROC to predict mortality was 0.939, cut-off ≥16 cmH2O, 90% sensitivity, 82% specificity. The Kaplan-Meier curve of DP after PPV ≥16 cmH2O and <16 cmH2O was significant (Log-rank Mantel-Cox p-value < 0.001). Conclusion: Prone position ventilation-induced decrease in DP is prognostic marker of survival than the increase in PaO2/FiO2. There is a primacy of DP, rather than oxygenation, in predicting mortality in moderate-severe ARDS. Post-PPV session DP ≥16 cmH2O was an independent predictor of mortality. How to cite this article: Todur P, Nileshwar A, Chaudhuri S, Shanbhag V, Cherisma C. Changes in Driving Pressure vs Oxygenation as Predictor of Mortality in Moderate to Severe Acute Respiratory Distress Syndrome Patients Receiving Prone Position Ventilation. Indian J Crit Care Med 2024;28(2):134-140.

13.
Heliyon ; 10(3): e25533, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38333813

RESUMO

Background: Application of individualized positive end-expiratory pressure (PEEP) based on minimum driving pressure facilitates to prevent from postoperative pulmonary complications (PPCs). Whether lung protective ventilation strategy can reduce the risk of PPCs in COVID-19 patients remains unclear. In this study, we compared the effects of driving pressure-guided ventilation with conventional mechanical ventilation on PPCs in patients with COVID-19. Methods: Patients infected COVID-19 within 30-day before surgery were retrospectively enrolled consecutively. Patients were divided into two group: driving pressure-guided lung protective ventilation strategy group (LPVS group) and conventional mechanical ventilation group (Control group). Propensity score matching for variables selected was used by logistic regression with the nearest-neighbor method. The outcomes were the incidence of PPCs and hypoxemia in post-anesthesia care unit. Results: There was no significant difference in the baseline data between both groups (P > 0.05). The incidence of PPCs (12.73 % vs 36.36 %, χ2 = 7.068, P = 0.008) and hypoxemia [18.18 % vs 38.18 %, χ2 = 4.492, P = 0.034], and lung ultrasound scores [4.68 ± 1.60 vs 8.39 ± 1.87, t = 8.383, P < 0.001] in LPVS group were lower than control group. The PEEP, airway pressure and plateau pressure in LPVS group were higher than control group, but driving pressure and tidal volume was lower than control group, the difference was statistically significant (P < 0.05). Conclusion: Individualized PEEP ventilation strategy guided by minimum driving pressure could improve oxygenation and reduce the incidence of PPCs in surgical patients with COVID-19.

15.
J Crit Care ; 81: 154531, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38341938

RESUMO

PURPOSE: We investigated driving pressure (ΔP) and mechanical power (MP) and associations with clinical outcomes in critically ill patients ventilated for reasons other than ARDS. MATERIALS AND METHODS: Individual patient data analysis of a pooled database that included patients from four observational studies of ventilation. ΔP and MP were compared among invasively ventilated non-ARDS patients with sepsis, with pneumonia, and not having sepsis or pneumonia. The primary endpoint was ΔP; secondary endpoints included MP, ICU mortality and length of stay, and duration of ventilation. RESULTS: This analysis included 372 (11%) sepsis patients, 944 (28%) pneumonia patients, and 2040 (61%) patients ventilated for any other reason. On day 1, median ΔP was higher in sepsis (14 [11-18] cmH2O) and pneumonia patients (14 [11-18]cmH2O), as compared to patients not having sepsis or pneumonia (13 [10-16] cmH2O) (P < 0.001). Median MP was also higher in sepsis and pneumonia patients. ΔP, as opposed to MP, was associated with ICU mortality in sepsis and pneumonia patients. CONCLUSIONS: The intensity of ventilation differed between patients with sepsis or pneumonia and patients receiving ventilation for any other reason; ΔP was associated with higher mortality in sepsis and pneumonia patients. REGISTRATION: This post hoc analysis was not registered; the individual studies that were merged into the used database were registered at clinicaltrials.gov: NCT01268410 (ERICC), NCT02010073 (LUNG SAFE), NCT01868321 (PRoVENT), and NCT03188770 (PRoVENT-iMiC).


Assuntos
Pneumonia , Síndrome do Desconforto Respiratório , Sepse , Humanos , Respiração Artificial/efeitos adversos , Unidades de Terapia Intensiva , Pulmão , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/etiologia , Sepse/terapia , Sepse/etiologia
16.
Chin J Traumatol ; 27(2): 107-113, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38326140

RESUMO

PURPOSE: To assess the value of the driving pressure variation rate (ΔP%) in predicting the outcome of weaning from invasive mechanical ventilation in patients with acute respiratory distress syndrome. METHODS: In this case-control study, a total of 35 patients with moderate-severe acute respiratory distress syndrome were admitted to the intensive care unit between January 2022 and December 2022 and received invasive mechanical ventilation for at least 48 h were enrolled. Patients were divided into successful weaning group and failed weaning group depending on whether they could be removed from ventilator support within 14 days. Outcome measures including driving pressure, PaO2:FiO2, and positive end-expiratory pressure, etc. were assessed every 24 h from day 0 to day 14 until successful weaning was achieved. The measurement data of non-normal distribution were presented as median (Q1, Q3), and the differences between groups were compared by Wilcoxon rank sum test. And categorical data use the Chi-square test or Fisher's exact test to compare. The predictive value of ΔP% in predicting the outcome of weaning from the ventilator was analyzed using receiver operating characteristic curves. RESULTS: Of the total 35 patients included in the study, 17 were successful vs. 18 failed in weaning from a ventilator after 14 days of mechanical ventilation. The cut-off values of the median ΔP% measured by Operator 1 vs. Operator 2 in the first 4 days were ≥ 4.17% and 4.55%, respectively (p < 0.001), with the area under curve of 0.804 (sensitivity of 88.2%, specificity of 64.7%) and 0.770 (sensitivity of 88.2%, specificity of 64.7%), respectively. There was a significant difference in mechanical ventilation duration between the successful weaning group and the failure weaning group (8 (6, 13) vs. 12 (7.5, 17.3), p = 0.043). The incidence of ventilator-associated pneumonia in the successful weaning group was significantly lower than in the failed weaning group (0.2‰ vs. 2.3‰, p = 0.001). There was a significant difference noted between these 2 groups in the 28-day mortality (11.8% vs. 66.7%, p = 0.003). CONCLUSION: The median ΔP% in the first 4 days of mechanical ventilation showed good predictive performance in predicting the outcome of weaning from mechanical ventilation within 14 days. Further study is needed to confirm this finding.


Assuntos
Respiração Artificial , Síndrome do Desconforto Respiratório , Humanos , Desmame do Respirador , Estudos de Casos e Controles , Respiração com Pressão Positiva , Síndrome do Desconforto Respiratório/terapia
17.
Crit Care Explor ; 6(1): e1031, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38234589

RESUMO

OBJECTIVES: To assess the feasibility of setting the tidal volume (TV) as 25% of the actual aerated lung volume (rather than on ideal body weight) in patients with Acute Respiratory Distress Syndrome (ARDS). DESIGN: Physiologic prospective single-center pilot study. SETTING: Medical ICU specialized in the care of patients with ARDS. PATIENTS: Patients with moderate-severe ARDS deeply sedated or paralyzed, undergoing controlled mechanical ventilation with a ventilator able to measure the end-expiratory lung volume (EELV) with a washin, washout technique. INTERVENTIONS: Three-phase study (baseline, strain-selected TV setting, ventilation with strain-selected TV for 24 hr). The TV was calculated as 25% of the measured EELV minus the static strain due to the applied positive end-expiratory pressure. MEASUREMENTS AND MAIN RESULTS: Gas exchanges and respiratory mechanics were measured and compared in each phase. In addition, during the TV setting phase, driving pressure (DP) and lung strain (TV/EELV) were measured at different TVs to assess the correlation between the two measurements. The maintenance of the set strain-selected TV for 24 hours was safe and feasible in 76% of the patients enrolled. Three patients dropped out from the study because of the need to set a respiratory rate higher than 35 breaths per minute to avoid respiratory acidosis. The DP of the respiratory system was a satisfactory surrogate for strain in this population. CONCLUSIONS: In our population of 17 patients with moderate to severe ARDS, setting TV based on the actual lung size was feasible. DP was a reliable surrogate of strain in these patients, and DP less than or equal to 8 cm H2O corresponded to a strain less than 0.25.

18.
Respir Res ; 25(1): 37, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238778

RESUMO

Acute respiratory distress syndrome (ARDS) alters the dynamics of lung inflation during mechanical ventilation. Repetitive alveolar collapse and expansion (RACE) predisposes the lung to ventilator-induced lung injury (VILI). Two broad approaches are currently used to minimize VILI: (1) low tidal volume (LVT) with low-moderate positive end-expiratory pressure (PEEP); and (2) open lung approach (OLA). The LVT approach attempts to protect already open lung tissue from overdistension, while simultaneously resting collapsed tissue by excluding it from the cycle of mechanical ventilation. By contrast, the OLA attempts to reinflate potentially recruitable lung, usually over a period of seconds to minutes using higher PEEP used to prevent progressive loss of end-expiratory lung volume (EELV) and RACE. However, even with these protective strategies, clinical studies have shown that ARDS-related mortality remains unacceptably high with a scarcity of effective interventions over the last two decades. One of the main limitations these varied interventions demonstrate to benefit is the observed clinical and pathologic heterogeneity in ARDS. We have developed an alternative ventilation strategy known as the Time Controlled Adaptive Ventilation (TCAV) method of applying the Airway Pressure Release Ventilation (APRV) mode, which takes advantage of the heterogeneous time- and pressure-dependent collapse and reopening of lung units. The TCAV method is a closed-loop system where the expiratory duration personalizes VT and EELV. Personalization of TCAV is informed and tuned with changes in respiratory system compliance (CRS) measured by the slope of the expiratory flow curve during passive exhalation. Two potentially beneficial features of TCAV are: (i) the expiratory duration is personalized to a given patient's lung physiology, which promotes alveolar stabilization by halting the progressive collapse of alveoli, thereby minimizing the time for the reopened lung to collapse again in the next expiration, and (ii) an extended inspiratory phase at a fixed inflation pressure after alveolar stabilization gradually reopens a small amount of tissue with each breath. Subsequently, densely collapsed regions are slowly ratcheted open over a period of hours, or even days. Thus, TCAV has the potential to minimize VILI, reducing ARDS-related morbidity and mortality.


Assuntos
Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Respiração Artificial/métodos , Pulmão/patologia , Alvéolos Pulmonares/patologia , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/patologia , Pressão Positiva Contínua nas Vias Aéreas/métodos , Volume de Ventilação Pulmonar , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
19.
Eur J Med Res ; 29(1): 16, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38173040

RESUMO

BACKGROUND: Pathogenesis of acute respiratory distress syndrome (ARDS) involves immune cell death and removal from the injured lungs. ARDS severity is related to lung compliance. However, the correlation between the respiratory mechanics and alveolar immune cell death in patients with ARDS remains unclear. METHODS: Twenty-four patients with respiratory failure and ARDS were enrolled in the intensive care unit between November 2019 and November 2021. Neutrophil extracellular traps (NETs) and cell death of lymphocytes and monocytes in bronchoalveolar lavage fluid were detected on days 1 and 8. RESULTS: Lung compliance was positively correlated with the cell death percentage of alveolar CD4/CD8 lymphocytes and monocytes on day 8 (Pearson's correlation coefficient (r) = 0.554, p = 0.005; r = 0.422, p = 0.040; r = 0.569, p = 0.004, respectively). There was no association between lung compliance and the percentage of alveolar NETs on days 1 and 8. The cell death percentages of alveolar CD4/CD8 lymphocytes and monocytes were negatively correlated with driving pressure (DP) on days 1 (r = - 0.440, p = 0.032; r = - 0.613, p = 0.001; r = -0.557, p = 0.005, respectively) and 8 (r = - 0.459, p = 0.024; r = - 0.407, p = 0.048; r = - 0.607, p = 0.002, respectively). The cell death percentages of alveolar CD4/CD8 lymphocytes and monocytes were also negatively correlated with mechanical power (MP) on days 1 (r = - 0.558, p = 0.005; r = - 0.593, p = 0.002; r = - 0.571, p = 0.004, respectively) and 8 (r = - 0.539, p = 0.007; r = - 0.338, p = 0.107; r = - 0.649, p < 0.001, respectively). The percentage of alveolar NETs on days 1 and 8 was not associated with DP or MP. CONCLUSION: Patients with higher cell death rates of alveolar CD4/CD8 lymphocytes and monocytes exhibited lower DP and MP. Patients with less cell death of alveolar CD4/CD8 lymphocytes and monocytes required more DP or MP to maintain adequate ventilation.


Assuntos
Monócitos , Síndrome do Desconforto Respiratório , Humanos , Síndrome do Desconforto Respiratório/etiologia , Pulmão/patologia , Morte Celular , Linfócitos
20.
J Intensive Care Med ; 39(6): 595-608, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38179691

RESUMO

Background: The oxygenation index (OI) and oxygen saturation index (OSI) are proven mortality predictors in pediatric and adult patients, traditionally using mean airway pressure (Pmean). We introduce novel indices, replacing Pmean with DP (ΔPinsp), MPdyn, and MPtot, assessing their potential for predicting COVID-19 acute respiratory distress syndrome (ARDS) mortality, comparing them to traditional indices. Methods: We studied 361 adult COVID-19 ARDS patients for 7 days, collecting ΔPinsp, MPdyn, and MPtot, OI-ΔPinsp, OI-MPdyn, OI-MPtot, OSI-ΔPinsp, OSI-MPdyn, and OSI-MPtot. We compared these in surviving and non-surviving patients over the first 7 intensive care unit (ICU) days using Mann-Whitney U test. Logistic regression receiver operating characteristic (ROC) analysis assessed AUC and CI values for ICU mortality on day three. We determined cut-off values using Youden's method and conducted multivariate Cox regression on parameter limits. Results: All indices showed significant differences between surviving and non-surviving patients on the third day of ICU care. The AUC values of OI-ΔPinsp were significantly higher than those of P/F and OI-Pmean (P values .0002 and <.0001, respectively). Similarly, AUC and CI values of OSI-ΔPinsp and OSI-MPdyn were significantly higher than those of SpO2/FiO2 and OSI-Pmean values (OSI-ΔPinsp: P < .0001, OSI-MPdyn: P values .047 and .028, respectively). OI-ΔPinsp, OSI-ΔPinsp, OI-MPdyn, OSI-MPdyn, OI-MPtot, and OSI-MPtot had AUC values of 0.72, 0.71, 0.69, 0.68, 0.66, and 0.64, respectively, with cut-off values associated with hazard ratios and P values of 7.06 (HR = 1.84, P = .002), 8.04 (HR = 2.00, P ≤ .0001), 7.12 (HR = 1.68, P = .001), 5.76 (HR = 1.70, P ≤ .0001), 10.43 (HR = 1.52, P = .006), and 10.68 (HR = 1.66, P = .001), respectively. Conclusions: Critical values of all indices were associated to higher ICU mortality rates and extended mechanical ventilation durations. The OI-ΔPinsp, OSI-ΔPinsp, and OSI-MPdyn indices displayed the strongest predictive capabilities for ICU mortality. These novel indices offer valuable insights for intensivists in the clinical management and decision-making process for ARDS patients.


Assuntos
COVID-19 , Unidades de Terapia Intensiva , Saturação de Oxigênio , Síndrome do Desconforto Respiratório , Humanos , COVID-19/mortalidade , Masculino , Feminino , Pessoa de Meia-Idade , Síndrome do Desconforto Respiratório/mortalidade , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/fisiopatologia , Síndrome do Desconforto Respiratório/terapia , Saturação de Oxigênio/fisiologia , Unidades de Terapia Intensiva/estatística & dados numéricos , Idoso , Mortalidade Hospitalar , Curva ROC , SARS-CoV-2 , Respiração Artificial , Oxigênio/sangue , Oxigênio/metabolismo , Adulto , Estudos Retrospectivos , Valor Preditivo dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...