Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.474
Filtrar
1.
bioRxiv ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39149336

RESUMO

Therapeutically targeting the brain requires interactions with endothelial cells, pericytes, and astrocytes at the blood brain barrier (BBB). We evaluated regional and cell-type specific drug metabolism and transport mechanisms using rhesus macaques and in vitro treatment of primary human cells. Here, we report heterogenous distribution of representative drugs, tenofovir (TFV), emtricitabine (FTC), and their active metabolites, which cerebrospinal fluid measures could not reflect. We found that all BBB cell types possessed functional drug metabolizing enzymes and transporters that promoted TFV and FTC uptake and pharmacologic activation. Pericytes and astrocytes emerged as pharmacologically dynamic cells that rivaled hepatocytes and were uniquely susceptible to modulation by disease and treatment. Together, our findings demonstrate the importance of considering the BBB as a unique pharmacologic entity, rather than viewing it as an extension of the liver, as each cell type possesses distinct drug metabolism and transport capacities that contribute to differential brain drug disposition.

2.
Front Pharmacol ; 15: 1434573, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39092223

RESUMO

The recent re-emergence and the increasing popularity of nitazenes, a group of new synthetic opioids (NSO) that belong to the benzimidazole chemical class, has raised public health concerns. As a class of potential opioid analgesic agents whose development was discontinued in the 1960s due to their high potential for abuse, very little is known about their metabolism and physiologic disposition. In the current study, three nitazenes-butonitazene, isotonitazene and protonitaze were incubated in human liver microsomes (HLM), human S9 (HS9) fractions and recombinant cytochrome P450 enzymes. All three nitazenes were rapidly metabolized in both HLM and HS9 with over 95% depletion within 60 min. In HLM, butonitazene, isotonitazene and protonitazene had in vitro intrinsic clearance (CLint) (µL/min/mg protein) values of 309, 221 and 216 respectively compared to 150 of verapamil, the positive control. In HS9, CLint values were 217, 139, and 150 for butonitazene, isotonitazene and protonitazene respectively compared to only 35 for testosterone, the control probe substrate. Putative metabolite identified from this study include products of hydroxylation, desethylation, dealkylation, desethylation followed by dealkylation, and desethylation followed by hydroxylation. The metabolic phenotyping showed CYP2D6, CYP2B6 and CYP2C8 and the major hepatic enzymes responsible for the metabolism of nitazenes. Within 30 min of incubation, CYP2D6 depleted butonitazene (99%), isotonitazene (72%) and butonitazene (100%) significantly. The rapid metabolism of nitazenes may be an important factor in accurate and timely detections and quantitation of the unchanged drugs in human matrices following intoxication or in forensic analysis. The involvement of multiple polymorphic CYPs in their metabolism may play important roles in the susceptibility to intoxication and/or addiction, depending on the activity of the metabolites.

3.
Curr Drug Metab ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39108116

RESUMO

Sedative hypnotics effectively improve sleep quality under high-altitude hypoxia by reducing central nervous system excitability. High-altitude hypoxia causes sleep disorders and modifies the metabolism and mechanisms of drug action, impacting medication therapy's effectiveness. This review aims to provide a theoretical basis for the treatment of central nervous system diseases in high-altitude areas by summarizing the progress and mechanism of sedative-hypnotics in hypoxic environments, as well as the impact of highaltitude hypoxia on sleep.

4.
Drug Metab Dispos ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39111823

RESUMO

Ritlecitinib is an oral once-daily irreversible inhibitor of Janus kinase 3 and tyrosine-protein kinase family being developed for the treatment of moderate-to-severe alopecia areata. This study examined the disposition of ritlecitinib in male participants following oral and intravenous administration using accelerator mass spectroscopy methodology to estimate pharmacokinetic parameters and characterize metabolite profiles. The results indicated ritlecitinib had a systemic clearance of 43.7 L/h, a steady state volume of distribution of 73.8 L, extent of absorption of 89%, time to maximum plasma concentration of ~0.5 hour, and absolute oral bioavailability of 64%. An observed long terminal half-life of total radioactivity was primarily attributed to ritlecitinib binding to plasma albumin. Ritlecitinib was the main circulating drug species in plasma (~30%) with one major pharmacologically inactive cysteine conjugated metabolite (M2) at >10%. Oxidative metabolism (fractional clearance 0.47) and glutathione related conjugation (fractional clearance 0.24) were the primary routes of elimination for ritlecitinib with the greatest disposition of radioactivity shown in the urine (~71%). In vitro phenotyping indicated ritlecitinib cytochrome P450 fraction of metabolism assignments of 0.29 for CYP3A, 0.09 for CYP2C8, 0.07 for CYP1A2, and 0.02 for CYP2C9. In vitro phenotyping in recombinant human glutathione S-transferases indicated ritlecitinib was turned over by a number of cytosolic and microsomal enzyme isoforms. Significance Statement This study provides a detailed understanding of the disposition and metabolism of ritlecitinib, a JAK3 and TEC family kinase inhibitor for alopecia areata, in humans, as well as characterization of clearance pathways and PK of ritlecitinib and its metabolites. As an AMS-based ADME study design, we have expanded on reporting the standard ADME endpoints, providing key pharmacokinetic parameters like clearance, volume of distribution and bioavailability allowing for a more comprehensive understanding of drug disposition.

5.
Antimicrob Agents Chemother ; : e0084224, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39194209

RESUMO

UCT594 is a 2-aminopyrazine carboxylic acid Plasmodium phosphatidylinositol 4-kinase inhibitor with potent asexual blood-stage activity, the potential for interrupting transmission, as well as liver-stage activities. Herein, we investigated pharmacokinetic/pharmacodynamic (PK/PD) relationships relative to blood-stage activity toward predicting the human dose. Dose-fractionation studies were conducted in the Plasmodium falciparum NSG mouse model to determine the PK/PD indices of UCT594, using the in vivo minimum parasiticidal concentration as a threshold. UCT594 demonstrated concentration-dependent killing in the P. falciparum-infected NSG mouse model. Using this data and the preclinical pharmacokinetic data led to a low predicted human dose of <50 mg. This makes UCT594 an attractive potential antimalarial drug.

6.
Comput Struct Biotechnol J ; 23: 3090-3103, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39188968

RESUMO

Cytochrome P450 (CYP450) enzymes comprise a highly diverse superfamily of heme-thiolate proteins that responsible for catalyzing over 90 % of enzymatic reactions associated with xenobiotic metabolism in humans. Accurately predicting whether chemicals are substrates or inhibitors of different CYP450 isoforms can aid in pre-selecting hit compounds for the drug discovery process, chemical toxicology studies, and patients treatment planning. In this work, we investigated in silico studies on CYP450s specificity over past twenty years, categorizing these studies into structure-based and ligand-based approaches. Subsequently, we utilized 100 of the most frequently prescribed drugs to test eleven machine learning-based prediction models which were published between 2015 and 2024. We analyzed various aspects of the evaluated models, such as their datasets, algorithms, and performance. This will give readers with a comprehensive overview of these prediction models and help them choose the most suitable one to do prediction. We also provide our insights for future research trend in both structure-based and ligand-based approaches in this field.

7.
Gut Microbes ; 16(1): 2387400, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39150897

RESUMO

This comprehensive review elucidates the pivotal role of microbes in drug metabolism, synthesizing insights from an exhaustive analysis of over two hundred papers. Employing a structural classification system grounded in drug atom involvement, the review categorizes the microbiome-mediated drug-metabolizing capabilities of over 80 drugs. Additionally, it compiles pharmacodynamic and enzymatic details related to these reactions, striving to include information on encoding genes and specific involved microorganisms. Bridging biochemistry, pharmacology, genetics, and microbiology, this review not only serves to consolidate diverse research fields but also highlights the potential impact of microbial drug metabolism on future drug design and in silico studies. With a visionary outlook, it also lays the groundwork for personalized medicine interventions, emphasizing the importance of interdisciplinary collaboration for advancing drug development and enhancing therapeutic strategies.


Assuntos
Bactérias , Microbioma Gastrointestinal , Humanos , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Preparações Farmacêuticas/metabolismo , Animais , Biotransformação
8.
Mol Inform ; : e202400008, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110066

RESUMO

Sulphotransferases (SULTs) are a major phase II metabolic enzyme class contributing ~20 % to the Phase II metabolism of FDA-approved drugs. Ignoring the potential for SULT-mediated metabolism leaves a strong potential for drug-drug interactions, often causing late-stage drug discovery failures or black-boxed warnings on FDA labels. The existing models use only accessibility descriptors and machine learning (ML) methods for class and site of sulfonation (SOS) predictions for SULT. In this study, a variety of accessibility, reactivity, and hybrid models and algorithms have been developed to make accurate substrate and SOS predictions. Unlike the literature models, reactivity parameters for the aliphatic or aromatic hydroxyl groups (R/Ar-O-H), the Bond Dissociation Energy (BDE) gave accurate models with a True Positive Rate (TPR)=0.84 for SOS predictions. We offer mechanistic insights to explain these novel findings that are not recognized in the literature. The accessibility parameters like the ratio of Chemgauss4 Score (CGS) and Molecular Weight (MW) CGS/MW and distance from cofactor (Dis) were essential for class predictions and showed TPR=0.72. Substrates consistently had lower BDE, Dis, and CGS/MW than non-substrates. Hybrid models also performed acceptablely for SOS predictions. Using the best models, Algorithms gave an acceptable performance in class prediction: TPR=0.62, False Positive Rate (FPR)=0.24, Balanced accuracy (BA)=0.69, and SOS prediction: TPR=0.98, FPR=0.60, and BA=0.69. A rule-based method was added to improve the predictive performance, which improved the algorithm TPR, FPR, and BA. Validation using an external dataset of drug-like compounds gave class prediction: TPR=0.67, FPR=0.00, and SOS prediction: TPR=0.80 and FPR=0.44 for the best Algorithm. Comparisons with standard ML models also show that our algorithm shows higher predictive performance for classification on external datasets. Overall, these models and algorithms (SOS predictor) give accurate substrate class and site (SOS) predictions for SULT-mediated Phase II metabolism and will be valuable to the drug discovery community in academia and industry. The SOS predictor is freely available for academic/non-profit research via the GitHub link.

9.
Drug Metab Dispos ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39168524

RESUMO

In this study, the nonclinical pharmacokinetics of OLX702A-075-16, an RNA interference (RNAi) therapeutic currently in development, were investigated. OLX702A-075-16 is a novel N-acetylgalactosamine conjugated asymmetric small-interfering RNA (GalNAc-asiRNA) used for the treatment of an undisclosed liver disease. Its unique 16/21-mer asymmetric structure reduces nonspecific off-target effects without compromising efficacy. We investigated the plasma concentration, tissue distribution, metabolism, and renal excretion of OLX702A-075-16 following a subcutaneous administration in mice and rats. For bioanalysis, high-performance liquid chromatography with fluorescence detection (HPLC-FD) was used. The results showed rapid clearance from plasma (0.5 to 1.5 h of half-life) and predominant distribution to the liver, and/or kidney. Less than 1% of the liver concentration of OLX702A-075-16 was detected in the other tissues. Metabolite profiling using liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) revealed that the intact duplex OLX702A-075-16 was the major compound in plasma. The GalNAc moiety was predominantly metabolized from the sense strand in the liver, with the unconjugated sense strand of OLX702A-075-16 accounting for more than 95% of the total exposure in the rat liver. Meanwhile, the antisense strand was metabolized by the sequential loss of nucleotides from the 3'-terminus by exonuclease, with the rat liver samples yielding the most diverse truncated forms of metabolites. Urinary excretion over 96 h was less than 1% of the administered dose in rats. High plasma protein binding of OLX702A-075-16 likely inhibited its clearance through renal filtration. Significance Statement This study presents the first comprehensive characterization of the in vivo pharmacokinetics of GalNAc-asiRNA. The pharmacokinetic insights gained from this research will aid in understanding toxicology and efficacy, optimizing delivery platforms, and improving the predictive power of preclinical species data for human applications.

10.
Drug Metab Dispos ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39168525

RESUMO

Hepatocyte nuclear factor 4 alpha antisense 1 (HNF4A-AS1) is a long non-coding RNA (lncRNA) gene physically located next to the transcription factor HNF4A gene in the human genome. Its transcription products have been reported to inhibit the progression of hepatocellular carcinoma (HCC) and negatively regulate the expression of cytochrome P450s (CYPs), including CYP1A2, 2B6, 2C9, 2C19, 2E1, and 3A4. By altering CYP expression, lncRNA HNF4A-AS1 also contributes to the susceptibility of drug-induced liver injury. Thus, HNF4A-AS1 lncRNA is a promising target for controlling HCC and modulating drug metabolism. However, HNF4A-AS1 has 4 annotated alternative transcripts in the human genome browsers, and it is unclear which transcripts the siRNAs or shRNAs used in the previous studies are silenced and which transcripts should be used as the target. In this study, 4 annotated and 2 newly identified transcripts were confirmed. These 6 transcripts showed different expression levels in different liver disease conditions, including metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, and obesity. The expression patterns of all HNF4A-AS1 transcripts were further investigated in liver cell growth from human embryonic stem cells to matured hepatocyte-like cells, HepaRG differentiation, and exposure to rifampicin treatment. Several HNF4A-AS1 transcripts highly displayed correlations with these situations. In addition, some of the HNF4A-AS1 transcripts also showed a strong correlation with CYP3A4 during HepaRG maturation and rifampicin exposure. Our findings provide valuable insights into the specific roles of HNF4A-AS1 transcripts, paving the way for more targeted therapeutic strategies for liver diseases and drug metabolism. Significance Statement This study explores the alternative transcripts of HNF4A-AS1, showing how their expression changes in different biological conditions, from various liver diseases to the growth and differentiation of hepatocytes, and drug metabolism. The generated knowledge is essential for understanding the independent roles of different transcripts from the same lncRNA in different liver diseases and drug metabolism situations.

11.
J Pharm Pharmacol ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046816

RESUMO

BACKGROUND: This study aimed to assess the herb-drug interactions between crude/silver nanoparticle (SNP)-loaded carob extract (Car, NCar, respectively) and donepezil-HCl (DPZ) and their impact on neurotherapeutic outcomes in a dementia model. METHODS: Carob pods were subjected to ethanol extraction, and their phytoconstituents were chromatographically analysed. SNP-loaded extract was synthesized and characterized, and dementia-like symptoms were induced in Wistar rats by repeated dosing with 175 mg/kg AlCl3 for 60 days, after which the animals were treated with Car, NCar, DPZ, and combinations of Car/NCar-DPZ for 30 days. The effect of carob formulations on DPZ bioavailability was in-silico profiled and the herb-drug interactions were mathematically assessed as combination indices. RESULTS: Different formulations significantly improved cognitive/spatial memory functions, restored dysregulated brain redox and cholinergic functions, and markedly inhibited cholinesterase, as reflected by the reduction/absence of amyloid plaques and neurofibrillary tangles. In silico profiling of the major phytoconstituents revealed their non-P-glycoprotein substrate nature and CYP3A4, 2C19, and 2C9 inhibition, which might have improved the oral bioavailability of DPZ. The combination index calculations revealed strong synergy between DPZ and both carob formulations, with the strongest effect exhibited by the DPZ/NCar combination. CONCLUSION: The co-administration of carob extract/SNPs represents a promising approach for enhancing the neurotherapeutic efficacy of DPZ.

12.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39082648

RESUMO

Metabolic processes can transform a drug into metabolites with different properties that may affect its efficacy and safety. Therefore, investigation of the metabolic fate of a drug candidate is of great significance for drug discovery. Computational methods have been developed to predict drug metabolites, but most of them suffer from two main obstacles: the lack of model generalization due to restrictions on metabolic transformation rules or specific enzyme families, and high rate of false-positive predictions. Here, we presented MetaPredictor, a rule-free, end-to-end and prompt-based method to predict possible human metabolites of small molecules including drugs as a sequence translation problem. We innovatively introduced prompt engineering into deep language models to enrich domain knowledge and guide decision-making. The results showed that using prompts that specify the sites of metabolism (SoMs) can steer the model to propose more accurate metabolite predictions, achieving a 30.4% increase in recall and a 16.8% reduction in false positives over the baseline model. The transfer learning strategy was also utilized to tackle the limited availability of metabolic data. For the adaptation to automatic or non-expert prediction, MetaPredictor was designed as a two-stage schema consisting of automatic identification of SoMs followed by metabolite prediction. Compared to four available drug metabolite prediction tools, our method showed comparable performance on the major enzyme families and better generalization that could additionally identify metabolites catalyzed by less common enzymes. The results indicated that MetaPredictor could provide a more comprehensive and accurate prediction of drug metabolism through the effective combination of transfer learning and prompt-based learning strategies.


Assuntos
Simulação por Computador , Aprendizado Profundo , Humanos , Preparações Farmacêuticas/metabolismo , Preparações Farmacêuticas/química , Biologia Computacional/métodos , Descoberta de Drogas/métodos , Software , Algoritmos
13.
Sci Total Environ ; 948: 174798, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39019288

RESUMO

Cocaine (COC) and benzoylecgonine (BE), the main COC metabolite, have been detected in aquatic ecosystems. Studies focusing on wild fish are, however, very limited, and no reports concerning elasmobranchs are available. This study investigated COC and BE levels in Brazilian Sharpnose sharks (Rhizoprionodon lalandii) (n = 13) using LC-MS/MS. All samples (13/13) tested positive for COC, with 92 % (12/13) testing positive for BE. COC concentrations (23.0 µg kg-1) were over 3-fold higher than BE (7.0 µg kg-1). COC levels were about three-fold significantly higher in muscle (33.8 ± 33.4 g kg-1) compared to liver (12.2 ± 14.2 µg kg-1). Females presented higher COC concentrations in muscle (40.2 ± 35.8 µg kg-1) compared to males (12.4 ± 5.9 µg kg-1). Several positive statistical correlations were noted between COC and BE (rho = 0.84) in females, indicating systemic COC transport and metabolization, as well as between BE and weight (rho = 0.62), and between COC and the Condition Factor (rho = 0.73). A strong correlation was noted between BE and COC in the muscle of non-pregnant females (rho = 1.00). This study represents the first COC and BE report in free-ranging sharks, and the findings point to the potential impacts of the presence of illicit drugs in environments.


Assuntos
Cocaína , Monitoramento Ambiental , Tubarões , Poluentes Químicos da Água , Animais , Cocaína/análogos & derivados , Cocaína/análise , Poluentes Químicos da Água/análise , Brasil , Feminino , Masculino , Monitoramento Ambiental/métodos , Espectrometria de Massas em Tandem
14.
Artigo em Inglês | MEDLINE | ID: mdl-39069248

RESUMO

Cytochrome P450 (CYP) 2Ds are drug metabolizing enzymes found in brain and liver which metabolize numerous centrally acting drugs. Inhibition and induction of CYP2D-mediated metabolism in rodent brain alters brain drug and metabolite concentrations and resulting drug response. In female rats, brain CYP2D metabolism varies across the estrous cycle and with exogenous estrogen, changing brain drug concentrations and response. In this study harmine-induced hypothermia was lower in humanized CYP2D6 transgenic female mice during estrus compared to diestrus. Pretreatment into the cerebral ventricles with propranolol, a selective irreversible inhibitor of human CYP2D6 in brain, increased hypothermia in estrus but not in diestrus. In vivo enzyme activity was higher in brains of transgenic mice in estrus compared to diestrus and was lower after pretreatment with inhibitor in estrus, but not in diestrus. Hepatic activity and plasma harmine concentrations were unaffected by either estrous phase or inhibition of brain CYP2D6. In wild-type female mice, harmine-induced hypothermia was unaffected by either estrous phase or inhibitor pretreatment. Male mice were used as positive controls, where pretreatment with inhibitor increased harmine-induced hypothermia in transgenic but not wild-type, mice. This study provides evidence for female hormone cycle-based regulation of drug metabolism by human CYP2D6 in brain and resulting drug response. This suggests that brain CYP2D6 metabolism may vary, for example, during the menstrual cycle, pregnancy, or menopause, or while taking oral contraceptives or hormone therapy. This variation could contribute to individual differences in response to centrally acting CYP2D6-substrate drugs by altering local brain drug and/or metabolite concentrations.

15.
J Pharm Sci ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39053728

RESUMO

In early stages of drug development, the absence of authentic metabolite standards often results in semi-quantitative measurements of metabolite formation in reaction phenotyping studies using mass spectrometry (MS), leading to inaccuracies in the determination of enzyme kinetic parameters, such as the Michaelis constant (Km). Moreover, it is impossible to ascertain the maximum rate of enzyme-catalyzed reactions (kcat or Vmax). The use of radiolabeled parent compounds can circumvent this problem. However, radiometric detection exhibits significantly lower sensitivity compared to MS. To address these challenges, we have developed a stepwise approach that leverages biosynthesized radiolabeled and non-radiolabeled metabolites as standards, enabling accurate determination of Km, kcat or Vmax without the need for authentic metabolite standards. This approach, using the carbon-14 [14C] labeled metabolite to calibrate the unlabeled metabolite (14C calibration method), combines radiometric with LC-MS/MS detection to generate both [14C]-labeled and unlabeled metabolite standard curves to ensure that the sample concentrations measured are accurately quantitated. Two case studies were presented to demonstrate the utility of this method. We first compared the accuracy of the 14C calibration method to the use of authentic standards for quantitating imipramine metabolites. Next, we biosynthesized and quantitated the metabolites of BI 894416 using 14C calibration method and evaluated the enzyme kinetics of metabolite formation. The Km values of the metabolite formation demonstrated substantially improved accuracy compared to MS semi-quantitation. Moreover, the 14C calibration method offers a streamlined approach to prepare multiple metabolite standards from a single biosynthesis, reducing the time required for structure elucidation and metabolite synthesis.

16.
Eur J Pharm Sci ; 200: 106845, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38971433

RESUMO

The gut microbiota is a complex ecosystem, home to hundreds of bacterial species and a vast repository of enzymes capable of metabolising a wide range of pharmaceuticals. Several drugs have been shown to affect negatively the composition and function of the gut microbial ecosystem. Janus Kinase (JAK) inhibitors and Sphingosine-1-phosphate (S1P) receptor modulators are drugs recently approved for inflammatory bowel disease through an immediate release formulation and would potentially benefit from colonic targeted delivery to enhance the local drug concentration at the diseased site. However, their impact on the human gut microbiota and susceptibility to bacterial metabolism remain unexplored. With the use of calorimetric, optical density measurements, and metagenomics next-generation sequencing, we show that JAK inhibitors (tofacitinib citrate, baricitinib, filgotinib) have a minor impact on the composition of the human gut microbiota, while ozanimod exerts a significant antimicrobial effect, leading to a prevalence of the Enterococcus genus and a markedly different metabolic landscape when compared to the untreated microbiota. Moreover, ozanimod, unlike the JAK inhibitors, is the only drug subject to enzymatic degradation by the human gut microbiota sourced from six healthy donors. Overall, given the crucial role of the gut microbiome in health, screening assays to investigate the interaction of drugs with the microbiota should be encouraged for the pharmaceutical industry as a standard in the drug discovery and development process.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Inibidores de Janus Quinases , Moduladores do Receptor de Esfingosina 1 Fosfato , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Inibidores de Janus Quinases/farmacologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/metabolismo , Pirazóis/farmacologia , Colo/microbiologia , Colo/metabolismo , Colo/efeitos dos fármacos , Sulfonamidas/farmacologia , Sulfonamidas/administração & dosagem , Purinas , Azetidinas/farmacologia , Azetidinas/administração & dosagem , Compostos de Benzil/farmacologia , Compostos de Benzil/administração & dosagem , Piperidinas/farmacologia , Piperidinas/administração & dosagem , Pirimidinas/farmacologia , Pirimidinas/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Oxidiazóis/farmacologia , Oxidiazóis/administração & dosagem , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores , Pirróis/farmacologia , Pirróis/administração & dosagem , Indanos/farmacologia , Indanos/administração & dosagem , Piridinas , Triazóis
17.
Br J Clin Pharmacol ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078327

RESUMO

AIMS: Drug exposure and response is determined by pharmacokinetic (PK) and pharmacodynamic (PD) profiles. Interindividual differences in abundance of drug metabolizing enzymes (DMEs) and drug target proteins underpin PK and PD variability and impact treatment efficacy and tolerability. Extracellular vesicles (EVs) carry protein cargo inherited from originating cells and may be useful for defining differences in key proteins related to hepatic drug metabolism and the treatment of metabolic-associated fatty liver disease (MAFLD). We sought to quantify these proteins in liver-derived EVs and establish the profile relative to paired tissue. METHODS: EVs were recovered from human liver tissue samples (LT-EV, n = 11). Targeted liquid chromatography with tandem mass spectrometry (LC-MS/MS) assays were employed for absolute quantification of proteins in EV isolates and matched liver tissue. RESULTS: DMEs and MAFLD drug targets were readily detected and quantified in LT-EVs. Twelve of 15 DMEs exhibited moderate to strong correlation (Spearman ⍴ = 0.618-0.973) between tissue and EVs. Correlation in protein abundance was influenced by the extent of extra-hepatic expression of the target. CONCLUSIONS: This study provides evidence that key proteins related to PK and PD profiles can be measured in liver-derived EVs and abundance of liver-enriched DMEs are robustly correlated between paired tissue and EVs. The robust detection of protein markers related to drug PD profile in MAFLD opens the possibility to track within-subject changes in MAFLD and lays the foundation for future development of a liver-derived EV liquid biopsy to assess markers of drug exposure and response in vivo.

18.
Pharmaceuticals (Basel) ; 17(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39065694

RESUMO

Orally administered crocin rapidly and efficiently rescues depressive-like behaviors in depression models; however, crocin levels in the circulatory and central nervous systems are rather low. The underlying mechanism responsible for the inconsistency between pharmacokinetics and pharmacodynamics is unknown. To identify the active metabolites and clarify the underlying mechanisms, the pharmacokinetics and metabolic effects of the gut flora and hepatic and intestinal microsomes on crocin were examined, and the pharmacodynamics of crocin and its major metabolite, crocetin, were also evaluated in both normal and pseudo germ-free mice subjected to chronic social defeat stress. The results showed that oral administration of 300 mg/kg crocin significantly improved the depression-like behaviors of chronic social defeat stress mice, although the levels of crocin in the circulatory system were rather low (Cmax = 43.5 ± 8.6 µg/L; AUC = 151 ± 20.8 µg·h/L). However, the primary metabolite of crocetin was much more abundant in vivo (Cmax = 4662.5 ± 586.1 µg/L; AUC = 33,451.9 ± 3323.6 µg·h/L). Orally administered crocin was primarily metabolized into crocetin by the gut flora instead of hepatic or intestinal microsomal enzymes, and less than 10% of crocin was transformed into crocetin in the liver or intestinal microsomes. Inhibition of the gut flora dramatically reduced the production of and in vivo exposure to crocetin, and the rapid antidepressant effect of crocin disappeared. Moreover, crocetin showed rapid antidepressant effects similar to those of crocin, and the effects were independent of the gut flora. In conclusion, the metabolic transformation of crocin to crocetin primarily contributes to the rapid antidepressant effects of crocin and is dependent on the gut flora.

19.
J Pharmacol Toxicol Methods ; 128: 107536, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38972615

RESUMO

Standardization and validation of in vitro drug metabolism is essential for pre-clinical drug development as well as for in vitro toxicity assays including the lymphocyte toxicity assay (LTA) and the in vitro platelet toxicity assay (iPTA). Use of isolated liver microsomes (MIC) in in vitro testing has been utilized for a long time; however, the effect of species of origin and induction agents on the metabolic capacities of MIC is not adequately evaluated. In this study we investigated the impact of species of origin and induction agent on the capacity of MICs to bioactivate carbamazepine (CBZ) using cytotoxicity as a gross endpoint to measure the levels of cytotoxic metabolites generated by each type of MICs. Jurkat E6.1 cell line was used and MICs from human, rat, mouse, minipig and rabbit origin as well as rat MICs that is either non-induced or induced by phenobarbitone (PHB), dexamethasone (DEXA), 3-methylcholanthrene (3MC), clofibrate (CLOF) and isoniazid (INH) were investigated. MICs from minipig and rat MICs induced with 3MC exhibited the highest capacity to produce cytotoxic metabolites of CBZ. These findings will help optimize and standardize in vitro toxicity assays and provide guidance to pre-clinical investigation of drugs.


Assuntos
Carbamazepina , Microssomos Hepáticos , Especificidade da Espécie , Porco Miniatura , Carbamazepina/toxicidade , Animais , Humanos , Ratos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Camundongos , Suínos , Coelhos , Células Jurkat , Testes de Toxicidade/métodos , Anticonvulsivantes/toxicidade , Masculino , Isoniazida/toxicidade
20.
Front Pharmacol ; 15: 1406860, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957391

RESUMO

Currently 1.3 billion individuals globally engage in smoking, leading to significant morbidity and mortality, particularly among diabetic patients. There is urgent need for a better understanding of how smoking influences antidiabetic treatment efficacy. The review underscores the role of cigarette smoke, particularly polycyclic aromatic hydrocarbons (PAHs), in modulating the metabolic pathways of antidiabetic drugs, primarily through the induction of cytochrome P450 (CYP450) enzymes and uridine diphosphate (UDP)-glucuronosyltransferases (UGTs), thus impacting drug pharmacokinetics and therapeutic outcomes. Furthermore, the review addresses the relatively uncharted territory of how smoking cessation influences diabetes treatment, noting that cessation can lead to significant changes in drug metabolism, necessitating dosage adjustments. Special attention is given to the interaction between smoking cessation aids and antidiabetic medications, a critical area for patient safety and effective diabetes management. This scoping review aims to provide healthcare professionals with the knowledge to better support diabetic patients who smoke or are attempting to quit, ensuring tailored and effective treatment strategies. It also identifies gaps in current research, advocating for more studies to fill these voids, thereby enhancing patient care and treatment outcomes for this at-risk population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA