Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 643: 123232, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37460049

RESUMO

During the last decades, there has been growing interest in the application of functionalized mesoporous nanomaterials as stimuli-responsive carriers for drug delivery. However, at present there is not a standardized methodology to evaluate their performance. The limitations of the different techniques reported in literature give rise to the necessity for new, simple, and cost-effective alternatives. This work constitutes a step forward in the development of advanced in vitro procedures for testing the behavior of nanocarriers, proposing a novel microfluidic platform. To test the capacity of the reported tool, the performance of amino-functionalized MCM-41 nanoparticles has been assessed. These materials show a pH-responsive mechanism, which prevents the drug release at acidic conditions, maximizing its distribution at neutral pH, thus, the selected release medium mimicked gastrointestinal conditions. As a first approximation, the delivery of Ru(bipy)32+ was evaluated, proving the advantages of the proposed microfluidic system: i) continuous flow of particles and media, ii) rigorous control of the residence time, temperature and pH, iii) enhanced mixing, iv) possibility to simulate different human body conditions and, v) possible integration with the continuous synthesis of nanocarriers. Finally, the microfluidic tool was used to analyze the delivery of the anti-inflammatory drug ibuprofen.


Assuntos
Portadores de Fármacos , Nanopartículas , Humanos , Microfluídica , Sistemas de Liberação de Medicamentos , Dióxido de Silício , Concentração de Íons de Hidrogênio , Liberação Controlada de Fármacos
2.
Chemistry ; 29(43): e202301012, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37173870

RESUMO

Over the past few decades, stimuli-responsive materials have been widely applied to porous surfaces. Permeability and conductivity control of ions confined in nanochannels modified with stimuli-responsive materials, however, have been less investigated. In this work, the permeability and conductivity control of ions confined in nanochannels of anodic aluminum oxide (AAO) templates modified with thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) brushes are demonstrated. By surface-initiated atom transfer radical polymerization (SI-ATRP), PNIPAM brushes are successfully grafted onto the hexagonally packed cylindrical nanopores of AAO templates. The surface hydrophilicities of the membranes can be reversibly altered because of the lower critical solution temperature (LCST) behavior of the PNIPAM polymer brushes. From electrochemical impedance spectroscopy (EIS) analysis, the temperature-gating behaviors of the AAO-g-PNIPAM membranes exhibit larger impedance changes than those of the pure AAO membranes at higher temperatures because of the aggregation of the grafted PNIPAM chains. The reversible surface properties caused by the extended and collapsed states of the polymer chains are also demonstrated by dye release tests. The smart thermo-gated and ion-controlled nanoporous membranes are suitable for future smart membrane applications.

3.
Int J Mol Sci ; 24(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37175406

RESUMO

Sensitive systems with controlled release of drugs or diagnostic markers are attractive for solving the problems of biomedicine and antitumor therapy. In this study, new decasubstituted pillar[5]arene derivatives containing L-Tryptophan and L-Phenylalanine residues have been synthesized as pH-responsive drug nanocarriers. Fluorescein dye (Fluo) was loaded into the pillar[5]arene associates and used as a spectroscopic probe to evaluate the release in buffered solutions with pH 4.5, 7.4, and 9.2. The nature of the substituents in the pillar[5]arene structure has a huge influence on the rate of delivering. When the dye was loaded into the associates based on pillar[5]arene derivatives containing L-Tryptophan, the Fluo release occurs in the neutral (pH = 7.4) and alkaline (pH = 9.2) buffered solutions. When the dye was loaded into the associates based on pillar[5]arene with L-Phenylalanine fragments, the absence of release was observed in every pH evaluated. This happens as the result of different packing of the dye in the structure of the associate. This fact was confirmed by different fluorescence mechanisms (aggregation-caused quenching and aggregation-induced emission) and association constants. It was shown that the macrocycle with L-Phenylalanine fragments binds the dye more efficiently (lgKa = 3.92). The experimental results indicate that the pillar[5]arene derivatives with amino acids fragments have a high potential to be used as a pH-responsive drug delivery devices, especially for promoting the intracellular delivering, due to its nanometric size.


Assuntos
Nanopartículas , Triptofano , Fluoresceína , Fenilalanina , Nanopartículas/química
4.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675294

RESUMO

The work is devoted to preparing and characterizing the properties of photosensitive composites, based on chitosan proposed for photodynamic therapy. Chitosan films with a 5% addition of two BODIPY dyes were prepared by solution casting. These dyes are dipyrromethene boron derivatives with N-alkyl phthalimide substituent, differing in the presence of iodine atoms in positions 2 and 6 of the BODIPY core. The spectral properties of the obtained materials have been studied by infrared and UV-vis absorption spectroscopy and fluorescence, both in solutions and in a solid state. Surface properties were investigated using the contact angle measurement. The morphology of the sample has been characterized by Scanning Electron and Atomic Force Microscopy. Particular attention was paid to studying the protein absorption and kinetics of the dye release from the chitosan. Adding BODIPY to the chitosan matrix leads to a slight increase in hydrophilicity, higher structure heterogeneity, and roughness, than pure chitosan. The presence of iodine atoms in the BODIPY structure caused the bathochromic effect, but the emission quantum yield decreased in the composites. It has been found that BODIPY-doped chitosan interacts better with human serum albumin and acidic α-glycoprotein than unmodified chitosan. The release rate of dyes from films immersed in methanol depends on the iodine present in the structure.


Assuntos
Quitosana , Corantes Fluorescentes , Humanos , Corantes Fluorescentes/química , Boro/química
5.
Biosens Bioelectron ; 197: 113775, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34781179

RESUMO

Catheter-associated urinary tract infections resulting from urease-positive microorganisms are more likely to cause a urinary catheter blockage owing to the urease activity of the microbes. Catheter blockage can be dangerous and increases the risk of severe infections, such as sepsis. Ureases, a virulence factor in Proteus mirabilis, cause an increase in urine pH - leading to blockage. An optimised biosensor "lozenge" is presented here, which is able to detect impending catheter blockage. This lozenge has been optimised to allow easy manufacture and commercialisation. It functions as a sensor in a physiologically representative model of a catheterised urinary tract, providing 6.7 h warning prior to catheter blockage. The lozenge is stable in healthy human urine and can be sterilized for clinical use by ethylene oxide. Clinically, the lozenge will provide a visible indication of impending catheter blockage, enabling quicker clinical intervention and thus reducing the morbidity and mortality associated with blockage.


Assuntos
Técnicas Biossensoriais , Infecções por Proteus , Infecções Urinárias , Biofilmes , Humanos , Proteus mirabilis , Cateteres Urinários/efeitos adversos , Infecções Urinárias/diagnóstico
6.
Methods Mol Biol ; 2402: 285-290, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34854051

RESUMO

Assessment of bacterial dye release following exposure to antimicrobial peptides (AMPs) provides a detailed understanding regarding their interaction with the inner and outer membrane of bacteria, and the leak of bacterial intracellular materials. This underpins the overall antimicrobial mechanism of these membrane-active peptides. DiSC3(5) is a membrane potential sensitive dye and can characterize the changes in bacterial membrane potential following exposure to AMPs (see Note 1). SYTOX Green is a nucleic acid stain that enters the cell upon loss of membrane integrity after exposure to AMPs and binds to DNA. SYTO9 is another nucleic acid stain, whereas propidium iodide (PI) is a fluorescent intercalating agent that can be used to stain cells and nucleic acids. Both of these stains are widely used to monitor the viability of bacteria following exposure to AMPs. This chapter describes the methods of using these as bacterial dye release experiments for assessment of the antimicrobial mechanism of AMPs.


Assuntos
Peptídeos Antimicrobianos/química , Antibacterianos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias , Testes de Sensibilidade Microbiana , Ácidos Nucleicos , Propídio
7.
Materials (Basel) ; 14(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801523

RESUMO

Chitosan was used as a protective matrix for the photosensitive dye-squaraine (2,4-bis[4-(dimethylamino)phenyl]cyclobutane-1,3-diol). The physicochemical properties of the obtained systems, both in solution and in a solid-state, were investigated. However, it was found that diluted chitosan solutions with a few percent additions of dye show an intense fluorescence, which is suppressed in the solid-state. This is related to the morphology of the heterogeneous modified chitosan films. The important advantage of using a biopolymer matrix is the prevention of dye degradation under the influence of high energy ultraviolet (UV) radiation while the dye presence improves the chitosan heat resistance. It is caused by mutual interactions between macromolecules and dye. Owing to the protective action of chitosan, the dye release in liquid medium is limited. Chitosan solutions with a few percent additions of squaraine can be used in biomedical imaging thanks to the ability to emit light, while chitosan films can be protective coatings resistant to high temperatures and UV radiation.

8.
Polymers (Basel) ; 13(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807825

RESUMO

Silk fibroin (SF) is a promising and versatile biodegradable protein for biomedical applications. This study aimed to develop a prolonged release device by incorporating SF microparticles containing dyes into SF hydrogels. The influence of dyes on incorporation and release kinetics in SF based devices were evaluated regarding their hydrophilicity, molar mass, and cationic/anionic character. Hydrophobic and cationic dyes presented high encapsulation efficiency, probably related to electrostatic and hydrophobic interactions with SF. The addition of SF microparticles in SF hydrogels was an effective method to prolong the release, increasing the release time by 10-fold.

9.
Micromachines (Basel) ; 12(3)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33671037

RESUMO

The aim of this study is to determine the efficiency of loading and release of several zwitterionic, neutral, anionic and cationic dyes into/from mesoporous nanoparticles to find the optimum loading and release conditions for their application in detection protocols. The loading is carried out for MCM-41 type silica supports suspended in phosphate-buffered saline (PBS) buffer (pH 7.4) or in acetonitrile, involving the dyes (rhodamine B chloride, rhodamine 101 chloride, rhodamine 101 perchlorate, rhodamine 101 inner salt, meso-(4-hydroxyphenyl)-BODIPY, sulforhodamine B sodium salt and fluorescein 27). As a general trend, rhodamine-based dyes are loaded with higher efficiency, when compared with BODIPY and fluorescein dyes. Between the rhodamine-based dyes, their charge and the solvent in which the loading process is carried out play important roles for the amount of cargo that can be loaded into the materials. The delivery experiments carried out in PBS buffer at pH 7.4 reveal for all the materials that anionic dyes are more efficiently released compared to their neutral or cationic counterparts. The overall best performance is achieved with the negatively charged sulforhodamine B dye in acetonitrile. This material also shows a high delivery degree in PBS.

10.
Colloids Surf B Biointerfaces ; 169: 242-248, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29778963

RESUMO

The dissolution of microporous silica nanoparticles (NP) in aqueous environments of different biologically relevant pH was studied in order to assess their potential as drug delivery vehicles. Silica NPs, loaded with fluorescein, were prepared using different organosilane precursors (tetraethoxysilane, ethyl triethoxysilane or a 1:1 molar ratio of both) and NP dissolution was evaluated in aqueous conditions at pH 4, pH 6 and pH 7.4. These conditions correspond to the acidity of the intracellular environment (late endosome, early endosome, cytosol respectively) and gastrointestinal tract ('fed' stomach, duodenum and jejunum respectively). All NPs degraded at pH 6 and pH 7.4, while no dissolution was observed at pH 4. NP dissolution could be clearly visualised as mesoporous hollows and surface defects using electron microscopy, and was supported by UV-vis, fluorimetry and DLS data. The dissolution profiles of the NPs are particularly suited to the requirements of oral drug delivery, whereby NPs must resist degradation in the harsh acidic conditions of the stomach (pH 4), but dissolve and release their cargo in the small intestine (pH 6-7.4). Particle cores made solely of ethyl triethoxysilane exhibited a 'burst release' of encapsulated fluorescein at pH 6 and pH 7.4, whereas NPs synthesised with tetraethoxysilane released fluorescein in a more sustained fashion. Thus, by varying the organosilane precursor used in NP formation, it is possible to modify particle dissolution rates and tune the release profile of encapsulated fluorescein. The flexible synthesis afforded by silica NPs to achieve pH-responsive dissolution therefore makes this class of nanomaterial an adaptable platform that may be well suited to oral delivery applications.


Assuntos
Fluoresceína/química , Nanopartículas/química , Silanos/química , Dióxido de Silício/química , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Solubilidade , Propriedades de Superfície , Água/química
11.
ACS Nano ; 12(1): 813-819, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29244483

RESUMO

The mode of action of membrane-active molecules, such as antimicrobial, anticancer, cell penetrating, and fusion peptides and their synthetic mimics, transfection agents, drug permeation enhancers, and biological signaling molecules (e.g., quorum sensing), involves either the general or local destabilization of the target membrane or the formation of defined, rather stable pores. Some effects aim at killing the cell, while others need to be limited in space and time to avoid serious damage. Biological tests reveal translocation of compounds and cell death but do not provide a detailed, mechanistic, and quantitative understanding of the modes of action and their molecular basis. Model membrane studies of membrane leakage have been used for decades to tackle this issue, but their interpretation in terms of biology has remained challenging and often quite limited. Here we compare two recent, powerful protocols to study model membrane leakage: the microscopic detection of dye influx into giant liposomes and time-correlated single photon counting experiments to characterize dye efflux from large unilamellar vesicles. A statistical treatment of both data sets does not only harmonize apparent discrepancies but also makes us aware of principal issues that have been confusing the interpretation of model membrane leakage data so far. Moreover, our study reveals a fundamental difference between nano- and microscale systems that needs to be taken into account when conclusions about microscale objects, such as cells, are drawn from nanoscale models.


Assuntos
Fluoresceínas/metabolismo , Corantes Fluorescentes/metabolismo , Lipossomos/metabolismo , Permeabilidade da Membrana Celular , Microscopia de Fluorescência , Tamanho da Partícula , Permeabilidade , Espectrometria de Fluorescência
12.
Chem Phys Lipids ; 200: 139-146, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27725161

RESUMO

Because of the amphipathicity and conical molecular shape of fatty acids, they can efficiently incorporate into lipid membranes and disturb membrane integrity, chain packing, and lateral pressure profile. These phenomena affect both model membranes as well as biological membranes. We investigated the feasibility of exploiting fatty acids as permeability enhancers in drug delivery systems for enhancing drug release from liposomal carriers and drug uptake by target cells. Saturated fatty acids, with acyl chain length from C8 to C20, were tested using model drug delivery liposomes of 1,2- dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and the breast cancer MCF-7 cell line as a model cell. A calcein release assay demonstrated reduction in the membrane permeability barrier of the DPPC liposomes, proportionally to the length of the fatty acid. Differential scanning calorimetry (DSC) and dynamic light scattering (DLS) experiments revealed that C12 to C20 fatty acids can stabilize DPPC liposomal bilayers and induce the formation of large structures, probably due to liposome aggregation and bilayer morphological changes. On the other hand, the short fatty acids C8 and C10 tend to destabilize the bilayers and only moderately cause the formation of large structures. The effect of fatty acids on DPPC liposomes was not completely transferrable to the MCF-7 cell line. Using cytotoxicity assays, the cells were found to be relatively insensitive to the fatty acids at apoptotic sub-millimolar concentrations. Increasing the fatty acid concentration to few millimolar substantially reduced the viability of the cells, most likely via the induction of necrosis and cell lysis. A bioluminescence living-cell-based luciferase assay showed that saturated fatty acids in sub-cytotoxic concentrations cannot reduce the permeability barrier of cell membranes. Our results confirm that the membrane perturbing effect of fatty acids on model membranes cannot simply be carried over to biological membranes of live cells.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Ácidos Graxos/farmacologia , 1,2-Dipalmitoilfosfatidilcolina/análogos & derivados , 1,2-Dipalmitoilfosfatidilcolina/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ácidos Graxos/química , Fluoresceínas/química , Corantes Fluorescentes/química , Humanos , Lipossomos/química , Medições Luminescentes , Células MCF-7 , Relação Estrutura-Atividade , Termodinâmica
13.
Carbohydr Polym ; 136: 137-45, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26572339

RESUMO

Chitosan and bilayered--Rhodamine 6G impregnated silica-chitosan--coatings (300-3000 nm thick) were prepared and investigated as a model for controlled drug release. Properties of native, ionically (sodium triphosphate) and covalently (glutaraldehyde) cross-linked layers of chitosan in contact with aqueous phase (modeling human blood pH of ca. 7.3) were investigated. The cross-linking was confirmed by attenuated total reflection (ATR) Fourier transform infrared (FTIR), energy-dispersive spectroscopy (EDS) and solid state (13)C nuclear magnetic resonance (NMR) spectroscopy. The evolution of advancing water contact angles as a function of time was measured, and from the results restricted mobility of polymer segments in the interfacial layer of cross-linked chitosan coatings were assumed. Spectroscopic ellipsometry measurements showed that covalent cross-linking leads to a lowered, while ionic cross-linking to an increased swelling degree of chitosan layers. Despite the swelling behavior both cross-linked chitosan layers showed significant retard effect on dye release from the bilayered coatings.


Assuntos
Quitosana/química , Corantes/química , Portadores de Fármacos/química , Rodaminas/química , Dióxido de Silício/química , Preparações de Ação Retardada , Humanos , Concentração de Íons de Hidrogênio , Permeabilidade , Porosidade , Água/química
14.
Int J Pharm ; 491(1-2): 49-57, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26056930

RESUMO

The overexpression of secretory phospholipase A2 (sPLA2) in tumors has opened new avenues for enzyme-triggered active unloading of liposomal antitumor drug carriers selectively at the target tumor. However, the effects of the liposome composition, drug encapsulation, and tumor microenvironment on the activity of sPLA2 are still not well understood. We carried out a physico-chemical study to characterize the sPLA2-assisted breakdown of liposomes using dye-release assays in the context of drug delivery and under physiologically relevant conditions. The influence of temperature, lipid concentration, enzyme concentration, and drug loading on the hydrolysis of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC, Tm=42°C) liposomes with snake venom sPLA2 was investigated. The sensitivity of human sPLA2 to the liposome composition was checked using binary lipid mixtures of phosphatidylcholine (PC) and phosphatidylglycerol (PG) phospholipids with C14 and C16 acyl chains. Increasing temperature (36-41°C) was found to mainly shorten the enzyme lag-time, whereas the effect on lipid hydrolysis rate was modest. The enzyme lag-time was also found to be inversely dependent on the lipid-to-enzyme ratio. Drug encapsulation can alter the hydrolysis profile of the carrier liposomes. The activity of human sPLA2 was highly sensitive to the phospholipid acyl-chain length and negative surface charge density of the liposomes. We believe our work will prove useful for the optimization of sPLA2-susceptible liposomal formulations as well as will provide a solid ground for predicting the hydrolysis profile of the liposomes in vivo at the target site.


Assuntos
Lipossomos/química , Fosfolipases A2/química , Antineoplásicos/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Hidrólise , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Fosfolipídeos/química , Temperatura
15.
Biochim Biophys Acta ; 1838(9): 2140-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24200946

RESUMO

UyCT peptides are antimicrobial peptides isolated from the venom of the Australian scorpion. The activity of the UyCT peptides against Gram positive and Gram negative bacteria and red blood cells was determined. The membrane interactions of these peptides were evaluated by dye release (DR) of the fluorophore calcein from liposomes and isothermal titration calorimetry (ITC); and their secondary structure was determined by circular dichroism (CD). Three different lipid systems were used to mimic red blood cells, Escherichia coli and Staphylococcus aureus membranes. UyCT peptides exhibited broad spectrum antimicrobial activity with low MIC for S. aureus and multi-drug resistant Gram negative strains. Peptide combinations showed some synergy enhancing their potency but not hemolytic activity. The UyCT peptides adopted a helical structure in lipid environments and DR results confirmed that the mechanism of action is by disrupting the membrane. ITC data indicated that UyCT peptides preferred prokaryotic rather than eukaryotic membranes. The overall results suggest that UyCT peptides could be pharmaceutical leads for the treatment of Gram negative multiresistant bacterial infections, especially against Acinetobacter baumanni, and candidates for peptidomimetics to enhance their potency and minimize hemolysis. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.


Assuntos
Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/química , Membrana Celular/efeitos dos fármacos , Peptídeos/química , Acinetobacter baumannii/efeitos dos fármacos , Animais , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Dicroísmo Circular , Escherichia coli/efeitos dos fármacos , Humanos , Bicamadas Lipídicas/química , Lipossomos/química , Lipossomos/metabolismo , Peptídeos/farmacologia , Estrutura Secundária de Proteína , Escorpiões/química , Staphylococcus aureus/efeitos dos fármacos
16.
Toxicol Sci ; 136(1): 131-43, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23976781

RESUMO

Polymeric nanoparticles (PNPs) are a promising platform for drug, gene, and vaccine delivery. Although generally regarded as safe, the toxicity of PNPs is not well documented. The present study investigated in vitro toxicity of poly-ε-caprolactone, poly(DL-lactic acid), poly(lactide-cocaprolactone), and poly(lactide-co-glycide) NPs and possible mechanism of toxicity. The concentration-dependent effect of PNPs on cell viability was determined in a macrophage (RAW 264.7), hepatocyte (Hep G2), lung epithelial (A549), kidney epithelial (A498), and neuronal (Neuro 2A) cell lines. PNPs show toxicity at high concentrations in all cell lines. PNPs were efficiently internalized by RAW 264.7 cells and stimulated reactive oxygen species and tumor necrosis factor-alpha production. However, reactive nitrogen species and interleukin-6 production as well as lysosomal and mitochondrial stability remained unaffected. The intracellular degradation of PNPs was determined by monitoring changes in osmolality of culture medium and a novel fluorescence recovery after quenching assay. Cell death showed a good correlation with osmolality of culture medium suggesting the role of increased osmolality in cell death.


Assuntos
Nanopartículas , Polímeros/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Concentração Osmolar , Poliésteres/toxicidade , Poliglactina 910/toxicidade , Polímeros/química , Polímeros/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
RSC Adv ; 2(31): 11876-11886, 2012 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-29242742

RESUMO

Dye-loaded lipid nano-droplets present an attractive alternative to inorganic nanoparticles, as they are composed of non-toxic biodegradable materials and easy to prepare. However, to achieve high fluorescence brightness, the nano-droplets have to be heavily loaded with the dyes avoiding fluorescence self-quenching and release (leakage) of the encapsulated dyes from the nano-droplets in biological media. In the present work, we have designed highly lipophilic fluorescent derivatives of 3-alkoxyflavone (F888) and Nile Red (NR668) that can be encapsulated in the lipophilic core of stable nano-emulsion droplets at exceptionally high concentrations in the oil core, i.e. up to 170 mM and 17 mM, respectively, corresponding to ~ 830 and 80 dyes per 40-nm droplet. Despite this high loading, these dyes keep high fluorescence quantum yield and thus, provide high nano-droplet brightness, probably due to their bulky structure preventing self-quenching. Moreover, simultaneous encapsulation of both dyes at high concentrations in single nano-droplets allows observation of FRET. FRET and fluorescence correlation spectroscopy (FCS) studies showed that NR668 release in the serum-containing medium is very slow, while the reference hydrophobic dye Nile Red leaks immediately. This drastic difference in the leakage profile between NR668 and Nile Red was confirmed by in vitro cellular studies as well as by in vivo angiography imaging on zebrafish model, where the NR668-loaded nano-droplets remained in the blood circulation, while the parent Nile Red leaked rapidly from the droplets distributing all over the animal body. This study suggests new molecular design strategies for obtaining bright nano-droplets without dye leakage and their use as efficient and stable optical contrast agents in vitro and in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA