Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Diagnostics (Basel) ; 14(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39272695

RESUMO

In electrocardiograms (ECGs), multiple forms of encryption and preservation formats create difficulties for data sharing and retrospective disease analysis. Additionally, photography and storage using mobile devices are convenient, but the images acquired contain different noise interferences. To address this problem, a suite of novel methodologies was proposed for converting paper-recorded ECGs into digital data. Firstly, this study ingeniously removed gridlines by utilizing the Hue Saturation Value (HSV) spatial properties of ECGs. Moreover, this study introduced an innovative adaptive local thresholding method with high robustness for foreground-background separation. Subsequently, an algorithm for the automatic recognition of calibration square waves was proposed to ensure consistency in amplitude, rather than solely in shape, for digital signals. The original signal reconstruction algorithm was validated with the MIT-BIH and PTB databases by comparing the difference between the reconstructed and the original signals. Moreover, the mean of the Pearson correlation coefficient was 0.97 and 0.98, respectively, while the mean absolute errors were 0.324 and 0.241, respectively. The method proposed in this study converts paper-recorded ECGs into a digital format, enabling direct analysis using software. Automated techniques for acquiring and restoring ECG reference voltages enhance the reconstruction accuracy. This innovative approach facilitates data storage, medical communication, and remote ECG analysis, and minimizes errors in remote diagnosis.

2.
SLAS Technol ; 29(5): 100193, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39307457

RESUMO

The increasing integration of telehealth systems underscores the importance of robust and secure methods for patient data management. Traditional authentication methods, such as passwords and PINs, are prone to breaches, underscoring the need for more secure alternatives. Therefore, there is a need for alternative approaches that provide enhanced security and user convenience. Biometric-based authentication systems uses individuals unique physical or behavioral characteristics for identification, have emerged as a promising solution. Specifically, Electrocardiogram (ECG) signals have gained attention among various biometric modalities due to their uniqueness, stability, and non-invasiveness. This paper presents CardioGaurd, a deep learning-based authentication system that leverages ECG signals-unique, stable, and non-invasive biometric markers. The proposed system uses a hybrid Convolution and Long short-term memory based model to obtain rich characteristics from the ECG signal and classify it as authentic or fake. CardioGaurd not only ensures secure access but also serves as a predictive tool by analyzing ECG patterns that could indicate early signs of cardiovascular abnormalities. This dual functionality enhances patient security and contributes to AI-driven disease prevention and early detection. Our results demonstrate that CardioGaurd offers superior performance in both security and potential predictive health insights compared to traditional models, thus supporting a shift towards more proactive and personalized telehealth solutions.

3.
Sensors (Basel) ; 24(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39204993

RESUMO

Heart Rate Variability (HRV) refers to the capability of the heart rhythm to vary at different times, typically reflecting the regulation of the heart by the autonomic nervous system. In recent years, with advancements in Electrocardiogram (ECG) signal processing technology, HRV features reflect various aspects of cardiac activity, such as variability in heart rate, cardiac health status, and responses. We extracted key features of HRV and used them to develop and evaluate an automatic recognition model for cardiac diseases. Consequently, we proposed the HRV Heart Disease Recognition (HHDR) method, employing the Spectral Magnitude Quantification (SMQ) technique for feature extraction. Firstly, the HRV signals are extracted through electrocardiogram signal processing. Then, by analyzing parts of the HRV signal within various frequency ranges, the SMQ method extracts rich features of partial information. Finally, the Random Forest (RF) classification computational method is employed to classify the extracted information, achieving efficient and accurate cardiac disease recognition. Experimental results indicate that this method surpasses current technologies in recognizing cardiac diseases, with an average accuracy rate of 95.1% for normal/diseased classification, and an average accuracy of 84.8% in classifying five different disease categories. Thus, the proposed HHDR method effectively utilizes the local information of HRV signals for efficient and accurate cardiac disease recognition, providing strong support for cardiac disease research in the medical field.


Assuntos
Algoritmos , Eletrocardiografia , Cardiopatias , Frequência Cardíaca , Processamento de Sinais Assistido por Computador , Humanos , Eletrocardiografia/métodos , Frequência Cardíaca/fisiologia , Cardiopatias/fisiopatologia , Cardiopatias/diagnóstico
4.
Comput Biol Med ; 179: 108877, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39029435

RESUMO

BACKGROUND: Sleep apnea (SLA) is a commonly encountered sleep disorder characterized by repetitive cessation of respiration while sleeping. In the past few years, researchers have focused on developing less complex and more cost-effective diagnostic approaches for identifying SLA recipients, in contrast to the cumbersome, complicated, and expensive conventional methods. METHOD: This study presents a biologically plausible learning approach of spiking neural networks (SNN) with temporal coding and a tempotron learning model for diagnosing SLA disorder using single-lead electrocardiogram (ECG) data information. The proposed framework utilizes temporal encoding and the leaky integrate and fire model to transform the ECG signal into spikes for capturing the signal's dynamic pattern nature and to simulate input response behaviors. The tempoton learning technique, a spike-based algorithm, trains the SNN model to identify SLA event patterns from encoded output spike trains. This study utilized ECG data to extract heart rate variability (HRV) and ECG-derived respiration (EDR) signals from 1-min segment data of ECG records for input to SNN model. Thirty-five recordings of both released and withheld data from the Apnea-ECG databases from Physionet have been applied to train the SNN model and validate the model's efficacy in identifying SLA occurrences. RESULTS: The proposed method demonstrated substantial improvements compared to other SLA detection techniques, achieving a significant accuracy of 94.63 % for per-segment detection, along with specificity, sensitivity, F1-score and AUC values of 96.21 %, 92.04 %, 0.9285, and 0.9851 respectively. The accuracy for per-recording detection achieved 100 %, with a correlation coefficient value of 0.986. Additionally, the experiment used UCD data for validation methods, achieving an accuracy of 84.573 %. CONCLUSIONS: These results suggest the effectiveness and accessibility of the presented approach for accurately identifying SLA cases. The suggested model enhances the performance of SLA detection when contrasted with various techniques based on feature engineering and feature learning.


Assuntos
Eletrocardiografia , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador , Síndromes da Apneia do Sono , Humanos , Eletrocardiografia/métodos , Síndromes da Apneia do Sono/diagnóstico , Síndromes da Apneia do Sono/fisiopatologia , Masculino , Frequência Cardíaca/fisiologia , Feminino , Algoritmos
5.
Sensors (Basel) ; 24(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000979

RESUMO

With cardiovascular diseases (CVD) remaining a leading cause of mortality, wearable devices for monitoring cardiac activity have gained significant, renewed interest among the medical community. This paper introduces an innovative ECG monitoring system based on a single-lead ECG machine, enhanced using machine learning methods. The system only processes and analyzes ECG data, but it can also be used to predict potential heart disease at an early stage. The wearable device was built on the ADS1298 and a microcontroller STM32L151xD. A server module based on the architecture style of the REST API was designed to facilitate interaction with the web-based segment of the system. The module is responsible for receiving data in real time from the microcontroller and delivering this data to the web-based segment of the module. Algorithms for analyzing ECG signals have been developed, including band filter artifact removal, K-means clustering for signal segmentation, and PQRST analysis. Machine learning methods, such as isolation forests, have been employed for ECG anomaly detection. Moreover, a comparative analysis with various machine learning methods, including logistic regression, random forest, SVM, XGBoost, decision forest, and CNNs, was conducted to predict the incidence of cardiovascular diseases. Convoluted neural networks (CNN) showed an accuracy of 0.926, proving their high effectiveness for ECG data processing.


Assuntos
Algoritmos , Eletrocardiografia , Aprendizado de Máquina , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador , Dispositivos Eletrônicos Vestíveis , Humanos , Eletrocardiografia/métodos , Eletrocardiografia/instrumentação , Doenças Cardiovasculares/diagnóstico , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos
6.
Sensors (Basel) ; 24(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39066042

RESUMO

The aim of this study is to address the challenge of 12-lead ECG delineation by different encoder-decoder architectures of deep neural networks (DNNs). This study compares four concepts for encoder-decoders based on a fully convolutional architecture (CED-Net) and its modifications with a recurrent layer (CED-LSTM-Net), residual connections between symmetrical encoder and decoder feature maps (CED-U-Net), and sequential residual blocks (CED-Res-Net). All DNNs transform 12-lead representative beats to three diagnostic ECG intervals (P-wave, QRS-complex, QT-interval) used for the global delineation of the representative beat (P-onset, P-offset, QRS-onset, QRS-offset, T-offset). All DNNs were trained and optimized using the large PhysioNet ECG database (PTB-XL) under identical conditions, applying an advanced approach for machine-based supervised learning with a reference algorithm for ECG delineation (ETM, Schiller AG, Baar, Switzerland). The test results indicate that all DNN architectures are equally capable of reproducing the reference delineation algorithm's measurements in the diagnostic PTB database with an average P-wave detection accuracy (96.6%) and time and duration errors: mean values (-2.6 to 2.4 ms) and standard deviations (2.9 to 11.4 ms). The validation according to the standard-based evaluation practices of diagnostic electrocardiographs with the CSE database outlines a CED-Net model, which measures P-duration (2.6 ± 11.0 ms), PQ-interval (0.9 ± 5.8 ms), QRS-duration (-2.4 ± 5.4 ms), and QT-interval (-0.7 ± 10.3 ms), which meet all standard tolerances. Noise tests with high-frequency, low-frequency, and power-line frequency noise (50/60 Hz) confirm that CED-Net, CED-Res-Net, and CED-LSTM-Net are robust to all types of noise, mostly presenting a mean duration error < 2.5 ms when compared to measurements without noise. Reduced noise immunity is observed for the U-net architecture. Comparative analysis with other published studies scores this research within the lower range of time errors, highlighting its competitive performance.


Assuntos
Algoritmos , Eletrocardiografia , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador , Eletrocardiografia/métodos , Humanos , Frequência Cardíaca/fisiologia , Bases de Dados Factuais
7.
Math Biosci Eng ; 21(4): 5521-5535, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38872546

RESUMO

Early diagnosis of abnormal electrocardiogram (ECG) signals can provide useful information for the prevention and detection of arrhythmia diseases. Due to the similarities in Normal beat (N) and Supraventricular Premature Beat (S) categories and imbalance of ECG categories, arrhythmia classification cannot achieve satisfactory classification results under the inter-patient assessment paradigm. In this paper, a multi-path parallel deep convolutional neural network was proposed for arrhythmia classification. Furthermore, a global average RR interval was introduced to address the issue of similarities between N vs. S categories, and a weighted loss function was developed to solve the imbalance problem using the dynamically adjusted weights based on the proportion of each class in the input batch. The MIT-BIH arrhythmia dataset was used to validate the classification performances of the proposed method. Experimental results under the intra-patient evaluation paradigm and inter-patient evaluation paradigm showed that the proposed method could achieve better classification results than other methods. Among them, the accuracy, average sensitivity, average precision, and average specificity under the intra-patient paradigm were 98.73%, 94.89%, 89.38%, and 98.24%, respectively. The accuracy, average sensitivity, average precision, and average specificity under the inter-patient paradigm were 91.22%, 89.91%, 68.23%, and 95.23%, respectively.


Assuntos
Algoritmos , Arritmias Cardíacas , Eletrocardiografia , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador , Humanos , Arritmias Cardíacas/classificação , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/fisiopatologia , Eletrocardiografia/métodos , Sensibilidade e Especificidade , Aprendizado Profundo , Reprodutibilidade dos Testes , Bases de Dados Factuais
8.
Biosensors (Basel) ; 14(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38667194

RESUMO

Deep learning technology has been widely adopted in the research of automatic arrhythmia detection. However, there are several limitations in existing diagnostic models, e.g., difficulties in extracting temporal information from long-term ECG signals, a plethora of parameters, and sluggish operation speed. Additionally, the diagnosis performance of arrhythmia is prone to mistakes from signal noise. This paper proposes a smartphone-based m-health system for arrhythmia diagnosis. First, we design a cycle-GAN-based ECG denoising model which takes real-world noise signals as input and aims to produce clean ECG signals. In order to train its two generators and two discriminators simultaneously, we explore an unsupervised pre-training strategy to initialize the generator and accelerate the convergence speed during training. Second, we propose an arrhythmia diagnosis model based on the time convolution network (TCN). This model can identify 34 common arrhythmia events using eight-lead ECG signals, and we deploy such a model on the Android platform to develop an at-home ECG monitoring system. Experimental results have demonstrated that our approach outperforms the existing noise reduction methods and arrhythmia diagnosis models in terms of denoising effect, recognition accuracy, model size, and operation speed, making it more suitable for deployment on mobile devices for m-health monitoring services.


Assuntos
Arritmias Cardíacas , Eletrocardiografia , Smartphone , Arritmias Cardíacas/diagnóstico , Humanos , Monitorização Fisiológica , Processamento de Sinais Assistido por Computador , Telemedicina , Algoritmos
9.
Front Physiol ; 15: 1362185, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655032

RESUMO

Introduction: Atrial fibrillation (AF) is the most common cardiac arrhythmia, which is clinically identified with irregular and rapid heartbeat rhythm. AF puts a patient at risk of forming blood clots, which can eventually lead to heart failure, stroke, or even sudden death. Electrocardiography (ECG), which involves acquiring bioelectrical signals from the body surface to reflect heart activity, is a standard procedure for detecting AF. However, the occurrence of AF is often intermittent, costing a significant amount of time and effort from medical doctors to identify AF episodes. Moreover, human error is inevitable, as even experienced medical professionals can overlook or misinterpret subtle signs of AF. As such, it is of critical importance to develop an advanced analytical model that can automatically interpret ECG signals and provide decision support for AF diagnostics. Methods: In this paper, we propose an innovative deep-learning method for automated AF identification using single-lead ECGs. We first extract time-frequency features from ECG signals using continuous wavelet transform (CWT). Second, the convolutional neural networks enhanced with residual learning (ReNet) are employed as the functional approximator to interpret the time-frequency features extracted by CWT. Third, we propose to incorporate a multi-branching structure into the ResNet to address the issue of class imbalance, where normal ECGs significantly outnumber instances of AF in ECG datasets. Results and Discussion: We evaluate the proposed Multi-branching Resnet with CWT (CWT-MB-Resnet) with two ECG datasets, i.e., PhysioNet/CinC challenge 2017 and ECGs obtained from the University of Oklahoma Health Sciences Center (OUHSC). The proposed CWT-MB-Resnet demonstrates robust prediction performance, achieving an F1 score of 0.8865 for the PhysioNet dataset and 0.7369 for the OUHSC dataset. The experimental results signify the model's superior capability in balancing precision and recall, which is a desired attribute for ensuring reliable medical diagnoses.

10.
BMC Med Inform Decis Mak ; 24(1): 94, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600479

RESUMO

Electrocardiogram (ECG) signals are very important for heart disease diagnosis. In this paper, a novel early prediction method based on Nested Long Short-Term Memory (Nested LSTM) is developed for sudden cardiac death risk detection. First, wavelet denoising and normalization techniques are utilized for reliable reconstruction of ECG signals from extreme noise conditions. Then, a nested LSTM structure is adopted, which can guide the memory forgetting and memory selection of ECG signals, so as to improve the data processing ability and prediction accuracy of ECG signals. To demonstrate the effectiveness of the proposed method, four different models with different signal prediction techniques are used for comparison. The extensive experimental results show that this method can realize an accurate prediction of the cardiac beat's starting point and track the trend of ECG signals effectively. This study holds significant value for timely intervention for patients at risk of sudden cardiac death.


Assuntos
Eletrocardiografia , Processamento de Sinais Assistido por Computador , Humanos , Eletrocardiografia/métodos , Morte Súbita Cardíaca/etiologia , Algoritmos
11.
Artigo em Inglês | MEDLINE | ID: mdl-38653933

RESUMO

BACKGROUND: Electrocardiograms (ECG) are an important source of information on human heart health and are widely used to detect different types of arrhythmias. OBJECTIVE: With the advancement of deep learning, end-to-end ECG classification models based on neural networks have been developed. However, deeper network layers lead to gradient vanishing. Moreover, different channels and periods of an ECG signal hold varying significance for identifying different types of ECG abnormalities. METHODS: To solve these two problems, an ECG classification method based on a residual attention neural network is proposed in this paper. The residual network (ResNet) is used to solve the gradient vanishing problem. Moreover, it has fewer model parameters, and its structure is simpler. An attention mechanism is added to focus on key information, integrate channel features, and improve voting methods to alleviate the problem of data imbalance. RESULTS: Experiments and verifications are conducted using the PhysioNet/CinC Challenge 2017 dataset. The average F1 value is 0.817, which is 0.064 higher than that for the ResNet model. Compared with the mainstream methods, the performance is excellent.

12.
Math Biosci Eng ; 21(3): 4286-4308, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38549328

RESUMO

The electrocardiogram (ECG) is a widely used diagnostic tool for cardiovascular diseases. However, ECG recording is often subject to various noises, which can limit its clinical evaluation. To address this issue, we propose a novel Transformer-based convolutional neural network framework with adaptively parametric ReLU (APtrans-CNN) for ECG signal denoising. The proposed APtrans-CNN architecture combines the strengths of transformers in global feature learning and CNNs in local feature learning to address the inadequacy of learning with long sequence time-series features. By fully exploiting the global features of ECG signals, our framework can effectively extract critical information that is necessary for signal denoising. We also introduce an adaptively parametric ReLU that can assign a value to the negative information contained in the ECG signal, thereby overcoming the limitation of ReLU to retain negative information. Additionally, we introduce a dynamic feature aggregation module that enables automatic learning and retention of valuable features while discarding useless noise information. Results obtained from two datasets demonstrate that our proposed APtrans-CNN can accurately extract pure ECG signals from noisy datasets and is adaptable to various applications. Specifically, when the input consists of ECG signals with a signal-to-noise ratio (SNR) of -4 dB, APtrans-CNN successfully increases the SNR to more than 6 dB, resulting in the diagnostic model's accuracy exceeding 96%.


Assuntos
Redes Neurais de Computação , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído , Eletrocardiografia/métodos , Fontes de Energia Elétrica , Algoritmos
13.
Front Neurosci ; 18: 1324933, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440395

RESUMO

Introduction: Sleep apnoea syndrome (SAS) is a serious sleep disorder and early detection of sleep apnoea not only reduces treatment costs but also saves lives. Conventional polysomnography (PSG) is widely regarded as the gold standard diagnostic tool for sleep apnoea. However, this method is expensive, time-consuming and inherently disruptive to sleep. Recent studies have pointed out that ECG analysis is a simple and effective diagnostic method for sleep apnea, which can effectively provide physicians with an aid to diagnosis and reduce patients' suffering. Methods: To this end, in this paper proposes a LightGBM hybrid model based on ECG signals for efficient detection of sleep apnea. Firstly, the improved Isolated Forest algorithm is introduced to remove abnormal data and solve the data sample imbalance problem. Secondly, the parameters of LightGBM algorithm are optimised by the improved TPE (Tree-structured Parzen Estimator) algorithm to determine the best parameter configuration of the model. Finally, the fusion model TPE_OptGBM is used to detect sleep apnoea. In the experimental phase, we validated the model based on the sleep apnoea ECG database provided by Phillips-University of Marburg, Germany. Results: The experimental results show that the model proposed in this paper achieves an accuracy of 95.08%, a precision of 94.80%, a recall of 97.51%, and an F1 value of 96.14%. Discussion: All of these evaluation indicators are better than the current mainstream models, which is expected to assist the doctor's diagnostic process and provide a better medical experience for patients.

14.
Biomed Phys Eng Express ; 10(3)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38316022

RESUMO

AIM OF THE STUDY: This research endeavours to optimize cardiac anomaly detection by introducing a method focused on selecting the most effective Daubechis wavelet families. The principal aim is to differentiate between cardiac states that are normal and abnormal by utilizing longer electrocardiogram (ECG) signal events based on the Apnea ECG dataset. Apnea ECG is often used to detect sleep apnea, a sleep disorder characterized by repeated interruptions in breathing during sleep. By using machine learning methods, such as Principal Component Analysis (PCA) and different classifiers, the goal is to improve the precision of cardiac irregularity identification. Used method. To extract important statistical and sub-band information from lengthy ECG signal episodes, the study uses a novel method that combines discrete wavelet transform with Principal Component Analysis (PCA) for dimension reduction. The methodology focuses on successfully categorizing ECG signals by utilizing several classifiers, including multilayer perceptron (MLP) neural network, Ensemble Subspace K-Nearest Neighbour(KNN), and Ensemble Bagged Trees, together with varied Daubechis wavelet families (db2, db3, db4, db5, db6). Brief Description of Results. The results emphasize the importance of the chosen Daubechis wavelet family, db5, and its superiority in ECG representation. The method distinguishes normal and abnormal ECG signals well on the Physionet Apnea ECG database. The Neural Network-based method accurately recognizes 100% of healthy signals and 97.8% of problematic ones with 98.6% accuracy. FINDINGS: The Ensemble Subspace K-Nearest Neighbour (KNN) and Ensemble Bagged Trees methods got 87.1% accuracy and 0.89 and 0.87 AOC curve values on this dataset, showing that the method works. Precision values of 0.96, 0.86, and 0.86 for MLP Neural Network, KNN Subspace, and Ensemble Bagged Trees confirm their robustness. These findings suggest wavelet families and machine learning can improve cardiac abnormality detection and categorization.


Assuntos
Algoritmos , Síndromes da Apneia do Sono , Humanos , Análise de Ondaletas , Síndromes da Apneia do Sono/diagnóstico , Redes Neurais de Computação , Eletrocardiografia/métodos
15.
Cogn Neurodyn ; 18(1): 95-108, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38406197

RESUMO

Neuropsychiatric disorders are one of the leading causes of disability. Mental health problems can occur due to various biological and environmental factors. The absence of definitive confirmatory diagnostic tests for psychiatric disorders complicates the diagnosis. It's critical to distinguish between bipolar disorder, depression, and schizophrenia since their symptoms and treatments differ. Because of brain-heart autonomic connections, electrocardiography (ECG) signals can be changed in behavioral disorders. In this research, we have automatically classified bipolar, depression, and schizophrenia from ECG signals. In this work, a new hand-crafted feature engineering model has been proposed to detect psychiatric disorders automatically. The main objective of this model is to accurately detect psychiatric disorders using ECG beats with linear time complexity. Therefore, we collected a new ECG signal dataset containing 3,570 ECG beats with four categories. The used categories are bipolar, depression, schizophrenia, and control. Furthermore, a new ternary pattern-based signal classification model has been proposed to classify these four categories. Our proposal contains four essential phases, and these phases are (i) multileveled feature extraction using multilevel discrete wavelet transform and ternary pattern, (ii) the best features selection applying iterative Chi2 selector, (iii) classification with artificial neural network (ANN) to calculate lead wise results and (iv) calculation the voted/general classification accuracy using iterative majority voting (IMV) algorithm. tenfold cross-validation is one of the most used validation techniques in the literature, and this validation model gives robust classification results. Using ANN with tenfold cross-validation, lead-by-lead and voted results have been calculated. The lead-by-lead accuracy range of the proposed model using the ANN classifier is from 73.67 to 89.19%. By deploying the IMV method, the general classification performance of our ternary pattern-based ECG classification model is increased from 89.19 to 96.25%. The findings and the calculated classification accuracies (single lead and voted) clearly demonstrated the success of the proposed ternary pattern-based advanced signal processing model. By using this model, a new wearable device can be proposed.

16.
J Electrocardiol ; 83: 41-48, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38306814

RESUMO

Machine learning is poised to revolutionize medicine with algorithms that spot cardiac arrhythmia. An automated diagnostic approach can boost the efficacy of diagnosing life-threatening arrhythmia disorders in routine medical procedures. In this paper, we propose a deep learning network CLINet for ECG signal classification. Our network uses convolution, LSTM and involution layers to bring their unique advantages together. For both convolution and involution layers, we use multiple, large size kernels for multi-scale representation learning. CLINet does not require complicated pre-processing and can handle electrocardiograms of any length. Our network achieves 99.90% accuracy on the ICCAD dataset and 99.94% accuracy on the MIT-BIH dataset. With only 297 K parameters, our model can be easily embedded in smart wearable devices. The source code of CLINet is available at https://github.com/CandleLabAI/CLINet-ECG-Classification-2024.


Assuntos
Aprendizado Profundo , Humanos , Processamento de Sinais Assistido por Computador , Eletrocardiografia/métodos , Algoritmos , Software , Arritmias Cardíacas/diagnóstico
17.
Comput Methods Programs Biomed ; 247: 108076, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422891

RESUMO

BACKGROUND AND AIM: Anxiety disorder is common; early diagnosis is crucial for management. Anxiety can induce physiological changes in the brain and heart. We aimed to develop an efficient and accurate handcrafted feature engineering model for automated anxiety detection using ECG signals. MATERIALS AND METHODS: We studied open-access electrocardiography (ECG) data of 19 subjects collected via wearable sensors while they were shown videos that might induce anxiety. Using the Hamilton Anxiety Rating Scale, subjects are categorized into normal, light anxiety, moderate anxiety, and severe anxiety groups. ECGs were divided into non-overlapping 4- (Case 1), 5- (Case 2), and 6-second (Case 3) segments for analysis. We proposed a self-organized dynamic pattern-based feature extraction function-probabilistic binary pattern (PBP)-in which patterns within the function were determined by the probabilities of the input signal-dependent values. This was combined with tunable q-factor wavelet transform to facilitate multileveled generation of feature vectors in both spatial and frequency domains. Neighborhood component analysis and Chi2 functions were used to select features and reduce data dimensionality. Shallow k-nearest neighbors and support vector machine classifiers were used to calculate four (=2 × 2) classifier-wise results per input signal. From the latter, novel self-organized combinational majority voting was applied to calculate an additional five voted results. The optimal final model outcome was chosen from among the nine (classifier-wise and voted) results using a greedy algorithm. RESULTS: Our model achieved classification accuracies of over 98.5 % for all three cases. Ablation studies confirmed the incremental accuracy of PBP-based feature engineering over traditional local binary pattern feature extraction. CONCLUSIONS: The results demonstrated the feasibility and accuracy of our PBP-based feature engineering model for anxiety classification using ECG signals.


Assuntos
Eletrocardiografia , Análise de Ondaletas , Humanos , Algoritmos , Ansiedade/diagnóstico , Transtornos de Ansiedade , Processamento de Sinais Assistido por Computador
18.
Int J Sports Physiol Perform ; 19(1): 13-18, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37917971

RESUMO

PURPOSE: The accuracy of heart rate (HR) measured with a wrist-worn photoplethysmography (PPG) monitor is altered during rest-exercise and exercise-rest transitions, which questions the validity of postexercise HR-recovery (HRR) parameters estimated from this device. METHODS: Thirty participants (50% female) randomly performed two 13-minute sequences (3' rest, 5' submaximal-intensity exercise, and 5' passive recovery) on treadmill and bicycle ergometers. HR was measured concomitantly with a 10-lead electrocardiogram (ECG) and a wrist-worn PPG monitor (Polar Unite). HRR was assessed by calculating Δ60 (the difference between HR during exercise and HR 60 s after exercise cessation) and by fitting HRR data into a monoexponential model. RESULTS: By focusing on Δ60 and τ (the time constant of the monoexponential curve), levels of association (r) of the Unite versus the 10-lead ECG were high to very high (.73 < r < .93), and coefficients of variation were >20% (in absolute value), except for Δ60 in the bicycle ergometer condition (11.7%). In 97% of cases, the decrease in HR after exercise appeared later with the Unite. By adjusting the time window used for the analysis according to this time lag, coefficients of variation of Δ60 decreased below 10% in the bicycle ergometer condition. CONCLUSIONS: If a wrist-worn PPG monitor is used to assess HRR, we recommend performing the submaximal-intensity exercise on a bicycle ergometer and focusing on Δ60. Furthermore, to obtain a more accurate Δ60, the time lag between the end of the exercise and the effective decrease in HR should also be considered before the calculation.


Assuntos
Fotopletismografia , Punho , Humanos , Feminino , Masculino , Frequência Cardíaca/fisiologia , Exercício Físico/fisiologia , Teste de Esforço
19.
Physiol Meas ; 44(12)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37944176

RESUMO

Objective. The T-wave in electrocardiogram (ECG) signal has the potential to enumerate various cardiac dysfunctions in the cardiovascular system. The primary objective of this research is to develop an efficient method for detecting T-waves in ECG signals, with potential applications in clinical diagnosis and continuous patient monitoring.Approach. In this work, we propose a novel algorithm for T-wave peak detection, which relies on a non-decimated stationary wavelet transform method (NSWT) and involves the cancellation of the QRS complex by utilizing its local extrema. The proposed scheme contains three stages: firstly, the technique is pre-processed using a two-stage median filter and Savitzky-Golay (SG) filter to remove the various artifacts from the ECG signal. Secondly, the NSWT technique is implemented using the bior 4.4 mother wavelet without downsampling, employing 24scale analysis, and involves the cancellation of QRS-complex using its local positions. After that, Sauvola technique is used to estimate the baseline and remove the P-wave peaks to enhance T-peaks for accurate detection in the ECG signal. Additionally, the moving average window and adaptive thresholding are employed to enhance and identify the location of the T-wave peaks. Thirdly, false positive T-peaks are corrected using the kurtosis coefficients method.Main results. The robustness and efficiency of the proposed technique have been corroborated by the QT database (QTDB). The results are also validated on a self-recorded database. In QTDB database, the sensitivity of 98.20%, positive predictivity of 99.82%, accuracy of 98.04%, and detection error rate of 1.95% have been achieved. The self-recorded dataset attains a sensitivity, positive predictivity, accuracy, and detection error rate of 99.94%, 99.96%, 99.90%, and 0.09% respectively.Significance. A T-wave peak detection based on NSWT and QRS complex cancellation, along with kurtosis analysis technique, demonstrates superior performance and enhanced detection accuracy compared to state-of-the-art techniques.


Assuntos
Processamento de Sinais Assistido por Computador , Análise de Ondaletas , Humanos , Reprodutibilidade dos Testes , Eletrocardiografia/métodos , Arritmias Cardíacas/diagnóstico , Algoritmos
20.
Sensors (Basel) ; 23(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37896480

RESUMO

A variety of technologies that could enhance driving safety are being actively explored, with the aim of reducing traffic accidents by accurately recognizing the driver's state. In this field, three mainstream detection methods have been widely applied, namely visual monitoring, physiological indicator monitoring and vehicle behavior analysis. In order to achieve more accurate driver state recognition, we adopted a multi-sensor fusion approach. We monitored driver physiological signals, electroencephalogram (EEG) signals and electrocardiogram (ECG) signals to determine fatigue state, while an in-vehicle camera observed driver behavior and provided more information for driver state assessment. In addition, an outside camera was used to monitor vehicle position to determine whether there were any driving deviations due to distraction or fatigue. After a series of experimental validations, our research results showed that our multi-sensor approach exhibited good performance for driver state recognition. This study could provide a solid foundation and development direction for future in-depth driver state recognition research, which is expected to further improve road safety.


Assuntos
Condução de Veículo , Humanos , Retroalimentação , Acidentes de Trânsito/prevenção & controle , Fadiga/diagnóstico , Eletroencefalografia , Eletrocardiografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA