Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 59(10): 2665-2685, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38414155

RESUMO

The small ventrolateral neurons (sLNvs) are key components of the central clock in the Drosophila brain. They signal via the neuropeptide pigment-dispersing factor (PDF) to align the molecular clockwork of different central clock neurons and to modulate downstream circuits. The dorsal terminals of the sLNvs undergo daily morphological changes that affect presynaptic sites organised by the active zone protein Bruchpilot (BRP), a homolog of mammalian ELKS proteins. However, the role of these presynaptic sites for PDF release is ill-defined. Here, we combined expansion microscopy with labelling of active zones by endogenously tagged BRP to examine the spatial correlation between PDF-containing dense-core vesicles and BRP-labelled active zones. We found that the number of BRP-labelled puncta in the sLNv terminals was similar while their density differed between Zeitgeber time (ZT) 2 and 14. The relative distance between BRP- and PDF-labelled puncta was increased in the morning, around the reported time of PDF release. Spontaneous dense-core vesicle release profiles of sLNvs in a publicly available ssTEM dataset (FAFB) consistently lacked spatial correlation to BRP-organised active zones. RNAi-mediated downregulation of brp and other active zone proteins expressed by the sLNvs did not affect PDF-dependent locomotor rhythmicity. In contrast, down-regulation of genes encoding proteins of the canonical vesicle release machinery, the dense-core vesicle-related protein CADPS, as well as PDF impaired locomotor rhythmicity. Taken together, our study suggests that PDF release from the sLNvs is independent of BRP-organised active zones, while BRP may be redistributed to active zones in a time-dependent manner.


Assuntos
Proteínas de Drosophila , Neurônios , Neuropeptídeos , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Neurônios/metabolismo , Drosophila , Terminações Pré-Sinápticas/metabolismo , Ritmo Circadiano/fisiologia , Encéfalo/metabolismo , Drosophila melanogaster , Transdução de Sinais/fisiologia
2.
Adv Neurobiol ; 33: 23-42, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37615862

RESUMO

The Cytomatrix Assembled at the active Zone (CAZ) of a presynaptic terminal displays electron-dense appearance and defines the center of the synaptic vesicle release. The protein constituents of CAZ are multiple-domain scaffolds that interact extensively with each other and also with an ensemble of synaptic vesicle proteins to ensure docking, fusion, and recycling. Reflecting the central roles of the active zone in synaptic transmission, CAZ proteins are highly conserved throughout evolution. As the nervous system increases complexity and diversity in types of neurons and synapses, CAZ proteins expand in the number of gene and protein isoforms and interacting partners. This chapter summarizes the discovery of the core CAZ proteins and current knowledge of their functions.


Assuntos
Sinapses , Vesículas Sinápticas , Humanos , Neurônios , Transmissão Sináptica
3.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108413

RESUMO

The cytomatrix at the active zone-associated structural protein (CAST) and its homologue, named ELKS, being rich in glutamate (E), leucine (L), lysine (K), and serine (S), belong to a family of proteins that organize presynaptic active zones at nerve terminals. These proteins interact with other active zone proteins, including RIMs, Munc13s, Bassoon, and the ß subunit of Ca2+ channels, and have various roles in neurotransmitter release. A previous study showed that depletion of CAST/ELKS in the retina causes morphological changes and functional impairment of this structure. In this study, we investigated the roles of CAST and ELKS in ectopic synapse localization. We found that the involvement of these proteins in ribbon synapse distribution is complex. Unexpectedly, CAST and ELKS, in photoreceptors or in horizontal cells, did not play a major role in ribbon synapse ectopic localization. However, depletion of CAST and ELKS in the mature retina resulted in degeneration of the photoreceptors. These findings suggest that CAST and ELKS play critical roles in maintaining neural signal transduction in the retina, but the regulation of photoreceptor triad synapse distribution is not solely dependent on their actions within photoreceptors and horizontal cells.


Assuntos
Proteínas do Tecido Nervoso , Sinapses , Proteínas do Tecido Nervoso/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Retina/metabolismo , Células Fotorreceptoras/metabolismo , Terminações Pré-Sinápticas/metabolismo
4.
Front Immunol ; 13: 937736, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311756

RESUMO

Persistent infection and tumorigenesis by papillomaviruses (PVs) require viral manipulation of various cellular processes, including those involved in innate immune responses. The cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) pathway has emerged as an essential innate immune sensing system, that recognizes DNA and trigger potent antiviral effector responses. In this study, we found that bovine PV (BPV) E5 protein, the major oncoprotein of bovine delta PVs, interacts with STING but not with cGAS in a spontaneous BPV infection of neoplastic urothelial cells of cattle. Real-time RT-PCR revealed a significant reduction in both cGAS and STING transcripts in E5-expressing cells. Furthermore, western blot (WB) analysis failed to detect any variation in the expression of interferon-inducible protein 16 (IFI16), an upstream effector of the STING pathway. A ternary complex composed of E5/STING/IFI16 was also observed. Co-immunoprecipitation studies showed that STING interacts with a protein network composed of total and phosphorylated TANK-binding kinase 1 (TBK1), total and phosphorylated interferon regulatory factor 3 (IRF3), IRF7, IKKα, IKKß, IKKϵ, ELKS, MEKK3, and TAK1. RT-qPCR revealed a significant reduction in TBK1 mRNA levels in BPV-infected cells. WB analysis revealed significantly reduced expression levels of pTBK1, which is essential for the activation and phosphorylation of IRF3, a prerequisite for the latter to enter the nucleus to activate type 1 IFN genes. WB also revealed significantly down-expression of IKKα, IKKß, IKKϵ, and overexpression of IRF7, ELKS, MEKK3, and TAK1in BPV-positive urothelial cells compared with that in uninfected healthy cells. Phosphorylated p65 (p-p65) was significantly reduced in both the nuclear and cytosolic compartments of BPV-infected cells compared with that in uninfected urothelial cells. Our results suggest that the innate immune signaling pathway mediated by cGAS-STING is impaired in cells infected with BPV. Therefore, effective immune responses are not elicited against these viruses, which facilitates persistent viral infection and subsequent tumorigenesis.


Assuntos
Quinase I-kappa B , Viroses , Bovinos , Animais , Quinase I-kappa B/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Transdução de Sinais , Papillomaviridae , Proteínas Oncogênicas , Carcinogênese , Interferons
5.
Am J Transl Res ; 13(5): 4120-4136, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150003

RESUMO

OBJECTIVE: We aimed to investigate the mechanism of circular RNA circ_0084927 in the progression of breast cancer (BC). METHODS: The levels of circ_0084927, miR-142-3p, and ELKS/RAB6-interacting/CAST family member-1 (ERC1) mRNA in the BC tissues and cells were detected by qRT-PCR. CCK8, colony formation, Transwell, and flow cytometry assays were performed to examine the cell proliferation, colony formation, cell invasion, and apoptosis, respectively, in the BC cells with regulated expressions of circ_0084927, miR-142-3p, and ERC1. RNase R treatment was employed to verify the circular structure of circ_0084927. Nucleocytoplasmic separation experiment, bioinformatics analysis, dual-luciferase reporter assay, and RNA immunoprecipitation were performed to investigate the ceRNA mechanism of circ_0084927. RESULTS: High levels of circ_0084927 and ERC1 and low levels of miR-142-3p were detected in the BC tissues and cells. Knockdown of circ_0084927 promoted apoptosis and inhibited proliferation, colony formation, and invasion of BC cells (all P<0.05), whereas overexpression of circ_0084927 in the BC cells achieved the opposite effects. miR-142-3p is the target of circ_0084927. Overexpression of miR-142-3p could inhibit BC cell proliferation, colony formation, and cell invasion and induce apoptosis of the BC cells (all P<0.05), and the effects of miR-142-3p knockout on the BC cells could be reversed by silencing circ_0084927. miR-142-3p could target ERC1. Both ERC1 silencing and circ_0084927 knockout in the BC cells could achieve the tumor-suppressing effect, and this effect could be more remarkable under simultaneous ERC1 silencing and circ_0084927 knockout (all P<0.05). CONCLUSION: Circ_0084927 can promote the progression of BC by regulating the miR-142-3p/ERC1 axis.

6.
Cell Rep ; 31(10): 107712, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32521280

RESUMO

Neurons face unique transport challenges. They need to deliver cargo over long axonal distances and to many presynaptic nerve terminals. Rab GTPases are master regulators of vesicular traffic, but essential presynaptic Rabs have not been identified. Here, we find that Rab6, a Golgi-derived GTPase for constitutive secretion, associates with mobile axonal cargo and localizes to nerve terminals. ELKS1 is a stationary presynaptic protein with Golgin homology that binds to Rab6. Knockout and rescue experiments for ELKS1 and Rab6 establish that ELKS1 captures Rab6 cargo. The ELKS1-Rab6-capturing mechanism can be transferred to mitochondria by mistargeting ELKS1 or Rab6 to them. We conclude that nerve terminals have repurposed mechanisms from constitutive exocytosis for their highly regulated secretion. By employing Golgin-like mechanisms with anchored ELKS extending its coiled-coils to capture Rab6 cargo, they have spatially separated cargo capture from fusion. ELKS complexes connect to active zones and may mediate vesicle progression toward release sites.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
Mol Metab ; 27S: S81-S91, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31500835

RESUMO

BACKGROUND: Insulin is stored within large dense-core granules in pancreatic beta (ß)-cells and is released by Ca2+-triggered exocytosis with increasing blood glucose levels. Polarized and targeted secretion of insulin from ß-cells in pancreatic islets into the vasculature has been proposed; however, the mechanisms related to cellular and molecular localization remain largely unknown. Within nerve terminals, the Ca2+-dependent release of a polarized transmitter is limited to the active zone, a highly specialized area of the presynaptic membrane. Several active zone-specific proteins have been characterized; among them, the CAST/ELKS protein family members have the ability to form large protein complexes with other active zone proteins to control the structure and function of the active zone for tight regulation of neurotransmitter release. Notably, ELKS but not CAST is also expressed in ß-cells, implying that ELKS may be involved in polarized insulin secretion from ß-cells. SCOPE OF REVIEW: This review provides an overview of the current findings regarding the role(s) of ELKS and other active zone proteins in ß-cells and focuses on the molecular mechanism underlying ELKS regulation within polarized insulin secretion from islets. MAJOR CONCLUSIONS: ELKS localizes at the vascular-facing plasma membrane of ß-cells in mouse pancreatic islets. ELKS forms a potent insulin secretion complex with L-type voltage-dependent Ca2+ channels on the vascular-facing plasma membrane of ß-cells, enabling polarized Ca2+ influx and first-phase insulin secretion from islets. This model provides novel insights into the functional polarity observed during insulin secretion from ß-cells within islets at the molecular level. This active zone-like region formed by ELKS at the vascular side of the plasma membrane is essential for coordinating physiological insulin secretion and may be disrupted in diabetes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Humanos
8.
Cell Rep ; 26(5): 1213-1226.e7, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30699350

RESUMO

Pancreatic ß cells secrete insulin by Ca2+-triggered exocytosis. However, there is no apparent secretory site similar to the neuronal active zones, and the cellular and molecular localization mechanism underlying polarized exocytosis remains elusive. Here, we report that ELKS, a vertebrate active zone protein, is used in ß cells to regulate Ca2+ influx for insulin secretion. ß cell-specific ELKS-knockout (KO) mice showed impaired glucose-stimulated first-phase insulin secretion and reduced L-type voltage-dependent Ca2+ channel (VDCC) current density. In situ Ca2+ imaging of ß cells within islets expressing a membrane-bound G-CaMP8b Ca2+ sensor demonstrated initial local Ca2+ signals at the ELKS-localized vascular side of the ß cell plasma membrane, which were markedly decreased in ELKS-KO ß cells. Mechanistically, ELKS directly interacted with the VDCC-ß subunit via the GK domain. These findings suggest that ELKS and VDCCs form a potent insulin secretion complex at the vascular side of the ß cell plasma membrane for polarized Ca2+ influx and first-phase insulin secretion from pancreatic islets.


Assuntos
Cálcio/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Subunidades Proteicas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/metabolismo , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Glucose/farmacologia , Humanos , Insulina/metabolismo , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Proteínas do Tecido Nervoso/deficiência , Ligação Proteica/efeitos dos fármacos , Proteínas rab de Ligação ao GTP/deficiência
9.
Cell Rep ; 24(2): 284-293.e6, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29996090

RESUMO

In the presynaptic terminal, the magnitude and location of Ca2+ entry through voltage-gated Ca2+ channels (VGCCs) regulate the efficacy of neurotransmitter release. However, how presynaptic active zone proteins control mammalian VGCC levels and organization is unclear. To address this, we deleted the CAST/ELKS protein family at the calyx of Held, a CaV2.1 channel-exclusive presynaptic terminal. We found that loss of CAST/ELKS reduces the CaV2.1 current density with concomitant reductions in CaV2.1 channel numbers and clusters. Surprisingly, deletion of CAST/ELKS increases release probability while decreasing the readily releasable pool, with no change in active zone ultrastructure. In addition, Ca2+ channel coupling is unchanged, but spontaneous release rates are elevated. Thus, our data identify distinct roles for CAST/ELKS as positive regulators of CaV2.1 channel density and suggest that they regulate release probability through a post-priming step that controls synaptic vesicle fusogenicity.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto/metabolismo , Ativação do Canal Iônico , Proteínas do Tecido Nervoso/metabolismo , Sinapses/metabolismo , Potenciais de Ação/fisiologia , Animais , Proteínas do Citoesqueleto/deficiência , Cinética , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/deficiência , Neurotransmissores/metabolismo , Probabilidade , Sinapses/ultraestrutura , Transmissão Sináptica/fisiologia , Proteínas rab de Ligação ao GTP
10.
Open Biol ; 8(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29491150

RESUMO

Synaptic vesicle exocytosis relies on the tethering of release ready vesicles close to voltage-gated Ca2+ channels and specific lipids at the future site of fusion. This enables rapid and efficient neurotransmitter secretion during presynaptic depolarization by an action potential. Extensive research has revealed that this tethering is mediated by an active zone, a protein dense structure that is attached to the presynaptic plasma membrane and opposed to postsynaptic receptors. Although roles of individual active zone proteins in exocytosis are in part understood, the molecular mechanisms that hold the protein scaffold at the active zone together and link it to the presynaptic plasma membrane have remained unknown. This is largely due to redundancy within and across scaffolding protein families at the active zone. Recent studies, however, have uncovered that ELKS proteins, also called ERC, Rab6IP2 or CAST, act as active zone scaffolds redundant with RIMs. This redundancy has led to diverse synaptic phenotypes in studies of ELKS knockout mice, perhaps because different synapses rely to a variable extent on scaffolding redundancy. In this review, we first evaluate the need for presynaptic scaffolding, and we then discuss how the diverse synaptic and non-synaptic functional roles of ELKS support the hypothesis that ELKS provides molecular scaffolding for organizing vesicle traffic at the presynaptic active zone and in other cellular compartments.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas de Transporte/química , Proteínas do Tecido Nervoso/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Transporte/metabolismo , Exocitose , Humanos , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Sinapses , Transmissão Sináptica , Proteínas rab de Ligação ao GTP
11.
Cell ; 172(4): 706-718.e15, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29398114

RESUMO

Dopamine controls essential brain functions through volume transmission. Different from fast synaptic transmission, where neurotransmitter release and receptor activation are tightly coupled by an active zone, dopamine transmission is widespread and may not necessitate these organized release sites. Here, we determine whether striatal dopamine secretion employs specialized machinery for release. Using super resolution microscopy, we identified co-clustering of the active zone scaffolding proteins bassoon, RIM and ELKS in ∼30% of dopamine varicosities. Conditional RIM knockout disrupted this scaffold and, unexpectedly, abolished dopamine release, while ELKS knockout had no effect. Optogenetic experiments revealed that dopamine release was fast and had a high release probability, indicating the presence of protein scaffolds for coupling Ca2+ influx to vesicle fusion. Hence, dopamine secretion is mediated by sparse, mechanistically specialized active zone-like release sites. This architecture supports spatially and temporally precise coding for dopamine and provides molecular machinery for regulation.


Assuntos
Axônios/metabolismo , Corpo Estriado/metabolismo , Dopamina/metabolismo , Transmissão Sináptica/fisiologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Corpo Estriado/citologia , Dopamina/genética , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas rab de Ligação ao GTP
12.
Mol Neurobiol ; 55(6): 4513-4528, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28685386

RESUMO

Among all the biological systems in vertebrates, the central nervous system (CNS) is the most complex, and its function depends on specialized contacts among neurons called synapses. The assembly and organization of synapses must be exquisitely regulated for a normal brain function and network activity. There has been a tremendous effort in recent decades to understand the molecular and cellular mechanisms participating in the formation of new synapses and their organization, maintenance, and regulation. At the vertebrate presynapses, proteins such as Piccolo, Bassoon, RIM, RIM-BPs, CAST/ELKS, liprin-α, and Munc13 are constant residents and participate in multiple and dynamic interactions with other regulatory proteins, which define network activity and normal brain function. Here, we review the function of these active zone (AZ) proteins and diverse factors involved in AZ assembly and maintenance, with an emphasis on axonal trafficking of precursor vesicles, protein homo- and hetero-oligomeric interactions as a mechanism of AZ trapping and stabilization, and the role of F-actin in presynaptic assembly and its modulation by Wnt signaling.


Assuntos
Terminações Pré-Sinápticas/metabolismo , Vertebrados/metabolismo , Animais , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Via de Sinalização Wnt
13.
Neurosci Res ; 127: 25-32, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29275163

RESUMO

Our brain functions rely on sophisticated communication between synapses in the nervous system. Most synapses utilize a specialized submembranous structure, the so-called 'active zone', for the efficient transmission of chemical signals. The presynaptic active zone plays pivotal roles in the precise regulation of neurotransmitter release from the nerve terminals in a temporally and spatially coordinated manner. During the last two decades, several active zone-specific proteins have been isolated and characterized, including Bassoon, Piccolo/Aczonin, RIM, Munc13-1, ELKS, and CAST. The CAST/ELKS family is capable of potent direct interactions with other active zone proteins, forming a large protein complex that seems to be a molecular basis for electron density in the presynaptic active zone. The molecular details of the integrity of the active zone been well studied, however, we are just beginning to understanding its physiological significance in higher brain functions such as learning and memory, emotion, and consciousness. Focusing on the CAST/ELKS protein family, this review describes their biochemical properties, physiological functions in brain areas such as the hippocampus, and the significance of CAST phosphorylation in presynaptic short-term plasticity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/metabolismo , Sinapses/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Humanos , Estrutura Molecular , Fosforilação/fisiologia , Transdução de Sinais/fisiologia
14.
Elife ; 52016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27253063

RESUMO

In a presynaptic nerve terminal, synaptic strength is determined by the pool of readily releasable vesicles (RRP) and the probability of release (P) of each RRP vesicle. These parameters are controlled at the active zone and vary across synapses, but how such synapse specific control is achieved is not understood. ELKS proteins are enriched at vertebrate active zones and enhance P at inhibitory hippocampal synapses, but ELKS functions at excitatory synapses are not known. Studying conditional knockout mice for ELKS, we find that ELKS enhances the RRP at excitatory synapses without affecting P. Surprisingly, ELKS C-terminal sequences, which interact with RIM, are dispensable for RRP enhancement. Instead, the N-terminal ELKS coiled-coil domains that bind to Liprin-α and Bassoon are necessary to control RRP. Thus, ELKS removal has differential, synapse-specific effects on RRP and P, and our findings establish important roles for ELKS N-terminal domains in synaptic vesicle priming.


Assuntos
Proteínas de Transporte/metabolismo , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Terminações Pré-Sinápticas/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Hipocampo/citologia , Camundongos , Camundongos Knockout , Proteínas/metabolismo , Transmissão Sináptica , Proteínas rab de Ligação ao GTP
15.
J Exp Bot ; 67(13): 3897-907, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27270999

RESUMO

AMPK and TOR protein kinases are the major control points of energy signaling in eukaryotic cells and organisms. They form the core of a complex regulatory network to co-ordinate metabolic activities in the cytosol with those in the mitochondria and plastids. Despite its relevance, it is still unclear when and how this regulatory pathway was formed during evolution, and to what extent its representations in the major eukaryotic lineages resemble each other. Here we have traced 153 essential proteins forming the human AMPK-TOR pathways across 412 species representing all three domains of life-prokaryotes (bacteria, archaea) and eukaryotes-and reconstructed their evolutionary history. The resulting phylogenetic profiles indicate the presence of primordial core pathways including seven proto-kinases in the last eukaryotic common ancestor. The evolutionary origins of the oldest components of the AMPK pathway, however, extend into the pre-eukaryotic era, and descendants of these ancient proteins can still be found in contemporary prokaryotes. The TOR complex in turn appears as a eukaryotic invention, possibly to aid in retrograde signaling between the mitochondria and the remainder of the cell. Within the eukaryotes, AMPK/TOR showed both a highly conserved core structure and a considerable plasticity. Most notably, KING1, a protein originally assigned as the γ subunit of AMPK in plants, is more closely related to the yeast SDS23 gene family than to the γ subunits in animals or fungi. This suggests its functional difference from a canonical AMPK γ subunit.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Archaea/genética , Bactérias/genética , Eucariotos/genética , Evolução Molecular , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Evolução Biológica , Serina-Treonina Quinases TOR/metabolismo
16.
J Neurosci ; 34(37): 12289-303, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25209271

RESUMO

In a presynaptic nerve terminal, synaptic vesicle exocytosis is restricted to specialized sites called active zones. At these sites, neurotransmitter release is determined by the number of releasable vesicles and their probability of release. Proteins at the active zone set these parameters by controlling the presynaptic Ca(2+) signal, and through docking and priming of synaptic vesicles. Vertebrate ELKS proteins are enriched at presynaptic active zones, but their functions are not well understood. ELKS proteins are produced by two genes in vertebrates, and each gene contributes ∼50% to total brain ELKS. We generated knock-out mice for ELKS1 and found that its constitutive removal causes lethality. To bypass lethality, and to circumvent redundancy between ELKS1 and ELKS2 in synaptic transmission, we used a conditional genetic approach to remove both genes in cultured hippocampal neurons after synapses are established. Simultaneous removal of ELKS1 and ELKS2 resulted in a 50% decrease of neurotransmitter release at inhibitory synapses, paralleled by a reduction in release probability. Removal of ELKS did not affect synapse numbers or their electron microscopic appearance. Using Ca(2+) imaging, we found that loss of ELKS caused a 30% reduction in single action potential-triggered Ca(2+) influx in inhibitory nerve terminals, consistent with the deficits in synaptic transmission and release probability. Unlike deletion of the active zone proteins RIM, RIM-BP, or bruchpilot, ELKS removal did not lead to a measurable reduction in presynaptic Ca(2+) channel levels. Our results reveal that ELKS is required for normal Ca(2+) influx at nerve terminals of inhibitory hippocampal neurons.


Assuntos
Sinalização do Cálcio/fisiologia , Proteínas de Transporte/metabolismo , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Inibição Neural/fisiologia , Neurônios/fisiologia , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Potenciais de Ação/fisiologia , Animais , Cálcio/metabolismo , Feminino , Masculino , Camundongos , Camundongos Knockout , Proteínas rab de Ligação ao GTP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA