Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.289
Filtrar
1.
Mutat Res ; 829: 111872, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39018715

RESUMO

BACKGROUND: Among primary liver cancers, HCC is the most prevalent. Small noncoding RNAs called miRNAs control the expression of downstream target genes to take part in a variety of physiological and pathological processes, including those related to cancer. METHODS: miR-129-2-3p and SEMA4C expression levels were assessed using RT-qPCR. The CCK-8, invasion, and wound healing assays were used to confirm the capacity of HCC cells for proliferation, invasion and migration respectively. Serum SEMA4C levels were detected via ELISA. The RIP and dual-luciferase reporter assays were used to confirm the existence of intergenic binding sites. Cell apoptosis assay and cell cycle assay were performed to detect the apoptosis rate and cycle distribution of cells, and WB was performed to detect the protein expression of SEMA4C, RhoA, ROCK1, E-cadherin, N-cadherin, and vimentin. Furthermore, cancer-inhibiting role of miR-129-2-3p were further confirmed by animal tests. RESULTS: miR-129-2-3p expression was reduced in HCC tissues and cells. Overexpression of miR-129-2-3p decreased the proliferation, invasion, migration, and EMT in HCC cells, whereas inhibition of miR-129-2-3p had the opposite effects. Our research also showed that SEMA4C was increased in HCC tissues, serum and cells, and that SEMA4C knockdown prevented HCC cell invasion, migration, proliferation, and EMT. Overexpression of SEMA4C reversed the inhibitory effect of miR-129-2-3p on HCC. CONCLUSIONS: Overall, we discovered that through binding to SEMA4C, miR-129-2-3p regulates HCC cell proliferation, invasion, migration, and EMT.

2.
J Inorg Biochem ; 259: 112661, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39018748

RESUMO

In search of potential anticancer agents, we synthesized SNO-donor salicylaldimine main ligand-based Pt(II) complexes bearing NH3 as co-ligand at trans-position (C1-C6). These complexes showed similarity in structure with transplatin as the two N donor atoms of the main ligand and NH3 co-ligand were coordinated to Pt in trans position to each other. Each complex with different substituents on the main ligand was characterized thoroughly by detailed spectroscopic and spectrophotometric methods. Four of these complexes were studied in solid state by single crystal X-ray analysis. The stability of reference complex C1 was measured in solution state in DMSO­d6 or its mixture with D2O using 1H NMR methods. These complexes were further investigated for their anticancer activity in triple-negative-breast (TNBC) cells including MDA-MB-231, MDA-MB-468 and MDA-MB-436 cells. All these complexes showed satisfactory cytotoxic effect as revealed by the MTT results. Importantly, the highly active complex C4 anticancer effect was compared to the standard chemotherapeutic agents including cisplatin, oxaliplatin and 5-fluorouracil (5-FU). Functionally, C4 suppressed invasion, spheroids formation ability and clonogenic potential of cancer cells. C4 showed synergistic anticancer effect when used in combination with palbociclib, JQ1 and paclitaxel in TNBC cells. Mechanistically, C4 inhibited cyclin-dependent kinase (CDK)4/6 pathway and targeted the expressions of MYC/STAT3/CCND1/CNNE1 axis. Furthermore, C4 suppressed the EMT signaling pathway that suggested a role of C4 in the inhibition of TNBC metastasis. Our findings may pave further in detailed mechanistic study on these complexes as potential chemotherapeutic agents in different types of human cancers.

3.
Int J Biol Sci ; 20(9): 3285-3301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993559

RESUMO

Metabolic reprogramming is one of the essential features of tumors that may dramatically contribute to cancer metastasis. Employing liquid chromatography-tandem mass spectrometry-based metabolomics, we analyzed the metabolic profile from 12 pairwise serum samples of NSCLC brain metastasis patients before and after CyberKnife Stereotactic Radiotherapy. We evaluated the histopathological architecture of 144 surgically resected NSCLC brain metastases. Differential metabolites were screened and conducted for functional clustering and annotation. Metabolomic profiling identified a pathway that was enriched in the metabolism of branched-chain amino acids (BCAAs). Pathologically, adenocarcinoma with a solid growth pattern has a higher propensity for brain metastasis. Patients with high BCAT1 protein levels in lung adenocarcinoma tissues were associated with a poor prognosis. We found that brain NSCLC cells had elevated catabolism of BCAAs, which led to a depletion of α-KG. This depletion, in turn, reduced the expression and activity of the m6A demethylase ALKBH5. Thus, ALKBH5 inhibition participated in maintaining the m6A methylation of mesenchymal genes and promoted the occurrence of epithelial-mesenchymal transition (EMT) in NSCLC cells and the proliferation of NSCLC cells in the brain. BCAA catabolism plays an essential role in the metastasis of NSCLC cells.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Masculino , Feminino , Aminoácidos de Cadeia Ramificada/metabolismo , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Transaminases
4.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39000441

RESUMO

Although inhibitors targeting the PD1/PD-L1 immune checkpoint are showing comparably good outcomes, a significant percentage of head and neck squamous cell carcinoma (HNSCC) patients do not respond to treatment. Apart from using different treatment strategies, another possibility would be to target other immune checkpoints operating in these non-responding tumors. To obtain an overview of which checkpoint ligands are expressed on HNSCC tumor cells and if these ligands are affected by HGF/MET signaling, we used mRNA sequencing and antibody-based techniques for identifying checkpoint ligands in six HNSCC tumor cell lines. Furthermore, we compared our results to mRNA sequencing data. From the checkpoint ligands we investigated, VISTA was expressed the highest at the RNA level and was also the most ubiquitously expressed. PD-L2 and B7-H3 were expressed comparably lower and were not present in all cell lines to the same extent. B7-H4, however, was only detectable in the Detroit 562 cell line. Concerning the effect of HGF on the ligand levels, PD-L2 expression was enhanced with HGF stimulation, whereas other checkpoint ligand levels decreased with stimulation. B7-H4 levels in the Detroit 562 cell line drastically decreased with HGF stimulation. This is of interest because both the checkpoint ligand and the growth factor are reported to be connected to epithelial-mesenchymal transition in the literature.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço , Fator de Crescimento de Hepatócito , Proteínas de Checkpoint Imunológico , Proteínas Proto-Oncogênicas c-met , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento de Hepatócito/genética , Linhagem Celular Tumoral , Proteínas de Checkpoint Imunológico/metabolismo , Proteínas de Checkpoint Imunológico/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Proteína 2 Ligante de Morte Celular Programada 1/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Antígenos B7/metabolismo , Antígenos B7/genética
5.
J Pathol ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39022843

RESUMO

Metastasis is the primary culprit behind cancer-related fatalities in multiple cancer types, including prostate cancer. Despite great advances, the precise mechanisms underlying prostate cancer metastasis are far from complete. By using a transgenic mouse prostate cancer model (TRAMP) with and without Phf8 knockout, we have identified a crucial role of PHF8 in prostate cancer metastasis. By complexing with E2F1, PHF8 transcriptionally upregulates SNAI1 in a demethylation-dependent manner. The upregulated SNAI1 subsequently enhances epithelial-to-mesenchymal transition (EMT) and metastasis. Given the role of the abnormally activated PHF8/E2F1-SNAI1 axis in prostate cancer metastasis and poor prognosis, the levels of PHF8 or the activity of this axis could serve as biomarkers for prostate cancer metastasis. Moreover, targeting this axis could become a potential therapeutic strategy for prostate cancer treatment. © 2024 The Pathological Society of Great Britain and Ireland.

6.
Mol Biol Rep ; 51(1): 821, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023636

RESUMO

BACKGROUND: Our previous study has demonstrated that Nischarin (NISCH) exerts its antitumor effects in breast cancer (BC) by suppressing cell migration and invasion. This study aims to explore the underlying mechanism through which NISCH functions in BC. METHODS AND RESULTS: The relevance between EGF Like Repeats and Discoidin Domains 3 (EDIL3) mRNA expression and the overall survival of tumor patients was depicted by the Kaplan-Meier curve. The findings revealed that overexpressed NISCH attenuated cell motility and colony-forming capacities of Hs578T cells, yet silenced NISCH in MDA-MB-231 cells led to contrasting results. Western blot (WB) analysis indicated that overexpression of NISCH significantly down-regulated the Vimentin and Slug expression, and inactivated the FAK/ERK signaling pathway. RNA sequencing (RNA-seq) was performed in NISCH-overexpressed Hs578T cells and the control cells to analyze differentially expressed genes (DeGs), and the results showed a significant down-regulation of EDIL3 mRNA level upon overexpression of NISCH. Subsequent functional analyses demonstrated that overexpression of EDIL3 attenuated the inhibitory effect of NISCH on cell migration, invasion, colony formation, and tube formation. CONCLUSION: In summary, our finding preliminarily revealed that NISCH inhibits the epithelial-mesenchymal transition (EMT) process and angiogenesis in BC cells by down-regulating EDIL3 to inactivate the FAK/ERK signaling pathway, thereby suppressing the progression of BC. Our results hold promise for contributing to the deep understanding of BC pathogenesis and identifying new therapeutic strategies for clinical application.


Assuntos
Neoplasias da Mama , Movimento Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Neovascularização Patológica , Humanos , Transição Epitelial-Mesenquimal/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Linhagem Celular Tumoral , Movimento Celular/genética , Sistema de Sinalização das MAP Quinases/genética , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/genética , Proliferação de Células/genética , Vimentina/metabolismo , Vimentina/genética , Transdução de Sinais , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição da Família Snail/genética , Angiogênese , Proteínas de Ligação ao Cálcio , Moléculas de Adesão Celular
7.
Front Immunol ; 15: 1428920, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015566

RESUMO

Ferroptosis induces significant changes in mitochondrial morphology, including membrane condensation, volume reduction, cristae alteration, and outer membrane rupture, affecting mitochondrial function and cellular fate. Recent reports have described the intrinsic cellular iron metabolism and its intricate connection to ferroptosis, a significant kind of cell death characterized by iron dependence and oxidative stress regulation. Furthermore, updated molecular insights have elucidated the significance of mitochondria in ferroptosis and its implications in various cancers. In the context of cancer therapy, understanding the dual role of anastasis and ferroptosis in chemoresistance is crucial. Targeting the molecular pathways involved in anastasis may enhance the efficacy of ferroptosis inducers, providing a synergistic approach to overcome chemoresistance. Research into how DNA damage response (DDR) proteins, metabolic changes, and redox states interact during anastasis and ferroptosis can offer new insights into designing combinatorial therapeutic regimens against several cancers associated with stemness. These treatments could potentially inhibit anastasis while simultaneously inducing ferroptosis, thereby reducing the likelihood of cancer cells evading death and developing resistance to chemotherapy. The objective of this study is to explore the intricate interplay between anastasis, ferroptosis, EMT and chemoresistance, and immunotherapeutics to better understand their collective impact on cancer therapy outcomes. We searched public research databases including google scholar, PubMed, relemed, and the national library of medicine related to this topic. In this review, we discussed the interplay between the tricarboxylic acid cycle and glycolysis implicated in modulating ferroptosis, adding complexity to its regulatory mechanisms. Additionally, the regulatory role of reactive oxygen species (ROS) and the electron transport chain (ETC) in ferroptosis has garnered significant attention. Lipid metabolism, particularly involving GPX4 and System Xc- plays a significant role in both the progression of ferroptosis and cancer. There is a need to investigate the intricate interplay between anastasis, ferroptosis, and chemoresistance to better understand cancer therapy clinical outcomes. Integrating anastasis, and ferroptosis into strategies targeting chemoresistance and exploring its potential synergy with immunotherapy represent promising avenues for advancing chemoresistant cancer treatment. Understanding the intricate interplay among mitochondria, anastasis, ROS, and ferroptosis is vital in oncology, potentially revolutionizing personalized cancer treatment and drug development.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Ferroptose , Mitocôndrias , Neoplasias , Espécies Reativas de Oxigênio , Ferroptose/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Mitocôndrias/metabolismo , Animais , Metástase Neoplásica
8.
Front Oncol ; 14: 1410513, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952556

RESUMO

Levels of the Wnt pathway components are abnormally altered in gastric cancer cells, leading to malignant cell proliferation, invasion and metastasis, poor prognosis and chemoresistance. Therefore, it is important to understand the mechanism of Wnt signaling pathway in gastric cancer. We systematically reviewed the molecular mechanisms of the Wnt pathway in gastric cancer development; and summarize the progression and the challenges of research on molecular agents of the Wnt pathway.

9.
Med Oncol ; 41(8): 191, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954116

RESUMO

Zinc-finger proteins are involved in many biological processes. However, the role of Zinc-finger protein 334 (ZNF334) in cervical cancer remains unidentified. This study showed that promoter methylation of ZNF334 was responsible for its reduced expression. ZNF334 suppressed malignant biological behaviors in cervical cancer. Notably, ZNF334 reversed the EMT process both in vitro and in vivo. RNA-seq coupled with bioinformatics analysis caught P3H3 which is upregulated by ZNF334. Dual-luciferase reporter and Chromatin immunoprecipitation assays illustrated that ZNF334 directly regulate P3H3. Knockdown of P3H3 attenuated the reversal of EMT induced by ZNF334. Additionally, ZNF334 overexpression sensitized cervical cancer cells to the cytotoxic effects of paclitaxel, cyclosporine and sunitinib. In conclusions, this study illustrated that DNA methylation-based silencing ZNF334 played a vital role in cervical cancer, by regulating P3H3 in turn affects EMT. ZNF334 has the potential to become a novel diagnostic biomarker and a potential treatment target for cervical cancer.


Assuntos
Metilação de DNA , Transição Epitelial-Mesenquimal , Neoplasias do Colo do Útero , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Humanos , Feminino , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Animais , Camundongos , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Camundongos Nus , Regiões Promotoras Genéticas/genética , Histonas/metabolismo , Histonas/genética , Camundongos Endogâmicos BALB C
10.
Cell Biochem Biophys ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954352

RESUMO

Hepatocellular carcinoma (HCC), a widely prevalent malignancy strongly linked to inflammation, remains a significant public health concern. Triggering receptor expressed on myeloid cells 1 (TREM1), a modulator of inflammatory responses identified in recent years, has emerged as a crucial facilitator in cancer progression. Despite its significance, the precise regulatory mechanism of TREM1 in HCC metastasis remains unanswered. In the present investigation, we observed aberrant upregulation of TREM1 in HCC tissues, which was significantly linked to poorer overall survival. Inhibition of TREM1 expression resulted in a significant reduction in HCC Huh-7 and MHCC-97H cell proliferation, invasion, and epithelial-mesenchymal transition (EMT) process. Furthermore, inhibiting TREM1 decreased protein expressions of toll-like receptor 2/4 (TLR2/4) and major myeloid differentiation response gene 88 (MyD88), leading to the inactivation of phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) in HCC cells. Notably, these effects were reversed by treatment with TLR2-specific agonist (CU-T12-9), indicating a potential crosstalk between TREM1 and TLR2/4. Mechanistic studies revealed a direct interaction between TREM1 and both TLR2 and TLR4. In vivo studies demonstrated that inhibition of TREM1 suppressed the growth of HCC cells in the orthotopic implant model and its metastatic potential in the experimental lung metastasis model. Overall, our findings underscore the role of TREM1 inhibition in regulating EMT and metastasis of HCC cells by inactivating the TLR/PI3K/AKT signaling pathway, thereby providing deeper mechanistic insights into how TREM1 regulates metastasis during HCC progression.

11.
Growth Factors ; 42(2): 62-73, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38954805

RESUMO

BACKGROUND AND OBJECTIVE: Dysregulated expression of Forkhead Box N2 (FOXN2) has been detected in various cancer types. However, the underlying mechanisms by which FOXN2 contributes to the onset and progression of gastric cancer (GC) remain largely unexplored. This study aimed to elucidate the potential role of FOXN2 within GC, its downstream molecular mechanisms, and its feasibility as a novel serum biomarker for GC. METHODS: Tissue samples from GC patients and corresponding non-cancerous tissues were collected. Peripheral blood samples were obtained from GC patients and healthy controls. The expression of FOXN2 was determined using quantitative real-time PCR, western blotting, and immunohistochemistry. The expression of FOXN2 in GC cells was modulated by transfection with small interfering RNA (siRNA) or the pcDNA 3.1 expression vector. Cell proliferation was assessed using the Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine incorporation assays. The migratory and invasive capacities of cells were evaluated by Transwell assays, apoptosis rates were measured by flow cytometry, and the expression of proliferative, apoptotic, and epithelial-mesenchymal transition (EMT) markers were assessed by western blot analysis. RESULTS: FOXN2 was found to be overexpressed in the serum, tissues, and cells of GC, correlating with distant metastasis and TNM staging. FOXN2 demonstrated diagnostic value in differentiating GC patients from healthy individuals, with higher levels of FOXN2 being indicative of poorer survival rates. Silencing FOXN2 in vitro inhibited the proliferation, invasion, migration, and EMT of GC cells, while promoting apoptosis. FOXN2 was shown to regulate the transforming growth factor-beta (TGFß) receptor signaling pathway in GC cells via its interaction with Partitioning Defective 6 Homolog Alpha (PARD6A). CONCLUSION: In summary, our data suggest that FOXN2 acts as an oncogenic factor in GC, modulating the TGFß pathway by binding to PARD6A, thereby influencing gastric carcinogenesis. This study underscores the functional significance of FOXN2 as a potential serum biomarker and therapeutic target in GC.


Assuntos
Biomarcadores Tumorais , Transição Epitelial-Mesenquimal , Fatores de Transcrição Forkhead , Transdução de Sinais , Neoplasias Gástricas , Fator de Crescimento Transformador beta , Humanos , Neoplasias Gástricas/sangue , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/sangue , Proliferação de Células , Linhagem Celular Tumoral , Apoptose , Movimento Celular , Idoso , Regulação Neoplásica da Expressão Gênica
12.
Transl Oncol ; 47: 102027, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38954974

RESUMO

OBJECTIVE: Small cell lung cancer (SCLC) is a high-grade neuroendocrine tumor characterized by initial sensitivity to chemotherapy, followed by the development of drug resistance. The underlying mechanisms of resistance in SCLC have not been fully elucidated. Aldo-keto reductase family 1 member C3 (AKR1C3), is known to be associated with chemoradiotherapy resistance in diverse tumors. We aim to evaluate the prognostic significance and immune characteristics of AKR1C3 and investigate its potential role in promoting drug resistance in SCLC. METHODS: 81 postoperative SCLC tissues were used to analyze AKR1C3 prognostic value and immune features. The tissue microarrays were employed to validate the clinical significance of AKR1C3 in SCLC. The effects of AKR1C3 on SCLC cell proliferation, migration, apoptosis and tumor angiogenesis were detected by CCK-8, wound healing assay, transwell assay, flow cytometry and tube formation assay. RESULTS: AKR1C3 demonstrated the highest expression level compared to other AKR1C family genes, and multivariate cox regression analysis identified it as an independent prognostic factor for SCLC. High AKR1C3 expression patients who underwent chemoradiotherapy experienced significantly shorter overall survival (OS). Furthermore, AKR1C3 was involved in the regulation of the tumor immune microenvironment in SCLC. Silencing of AKR1C3 led to the inhibition of cell proliferation and migration, while simultaneously promoting apoptosis and reducing epithelial-mesenchymal transition (EMT) in SCLC. CONCLUSION: AKR1C3 promotes cell growth and metastasis, leading to drug resistance through inducing EMT and angiogenesis in SCLC.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38961002

RESUMO

Pulmonary fibrosis is a debilitating lung disease marked by excessive fibrotic tissue accumulation, which significantly impairs respiratory function. Given the limitations of current therapies, there is an increasing interest in exploring traditional herbal formulations like Jie Geng Tang (JGT) for treatment. This study examines the potential of JGT and its bioactive component, quercetin, in reversing bleomycin (BLM)-induced pulmonary fibrosis in mice. We employed a BLM-induced MLE-12 cell damage model for in vitro studies and a bleomycin-induced fibrosis model in C57BL/6 mice for in vivo experiments. In vitro assessments showed that JGT significantly enhanced cell viability and reduced apoptosis in MLE-12 cells treated with BLM. These findings underscore JGT's potential for cytoprotection against fibrotic agents. In vivo, JGT was effective in modulating the expression of E-cadherin and vimentin, key markers of the epithelial-mesenchymal transition (EMT) pathway, indicating its role in mitigating EMT-associated fibrotic changes in lung tissue. Quercetin, identified through network pharmacology analysis as a potential key bioactive component of JGT, was highlighted for its role in the regulatory mechanisms underlying fibrosis progression, particularly through the modulation of the IL-17 pathway and Il6 expression. By targeting inflammatory pathways and key processes like EMT, JGT and quercetin offer a potent alternative to conventional therapies, meriting further clinical exploration to harness their full therapeutic potential in fibrotic diseases.

14.
PeerJ ; 12: e17555, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948215

RESUMO

Background: PLAUR has been found upregulated in various tumors and closely correlated with the malignant phenotype of tumor cells. The aim of this study was to investigate the relationship between PLAUR and clear cell renal cell carcinoma (ccRCC) and its potential mechanism of promoting tumor progression. Methods: The expression levels and clinical significance of PLAUR, along with the associated signaling pathways, were extensively investigated in ccRCC samples obtained from The Cancer Genome Atlas (TCGA). PLAUR expression in 20 pairs of ccRCC tumor tissues and the adjacent tissues was assessed using qRT-PCR and IHC staining. Additionally, a series of in vitro experiments were conducted to investigate the impact of PLAUR suppression on cellular proliferation, migration, invasion, cell cycle progression, and apoptosis in ccRCC. The Western blot analysis was employed to investigate the expression levels of pivotal genes associated with the PI3K/AKT/mTOR signaling pathway. Results: The expression of PLAUR was significantly upregulated in ccRCC compared to normal renal tissues, and higher PLAUR expression in ccRCC was associated with a poorer prognosis than low expression. The in-vitro functional investigations demonstrated that knockdown of PLAUR significantly attenuated the proliferation, migration, and invasion capabilities of ccRCC cells. Concurrently, PLAUR knockdown effectively induced cellular apoptosis, modulated the cell cycle, inhibited the EMT process, and attenuated the activation of the PI3K/AKT/mTOR signaling pathway. PLAUR may represent a key mechanism underlying ccRCC progression. Conclusions: The involvement of PLAUR in ccRCC progression may be achieved through the activation of the PI3K/AKT/mTOR signaling pathway, making it a reliable biomarker for the identification and prediction of ccRCC.


Assuntos
Carcinoma de Células Renais , Proliferação de Células , Progressão da Doença , Neoplasias Renais , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Neoplasias Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Masculino , Feminino , Apoptose , Movimento Celular/genética , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica , Prognóstico , Regulação para Cima
15.
Curr Mol Pharmacol ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38988161

RESUMO

Nasopharyngeal carcinoma (NPC) is an epithelial malignancy caused by cancer of the mucosal epithelial cells of the nasopharynx. Most patients with NPC present with distant metastases and treatment resistance, both of which challenge current anti-tumour drugs. The mammalian target of the rapamycin (mTOR) signalling pathway is one of the most highly activated signalling pathways in NPC and plays an important role in various cellular activities. Dysfunction of mTOR and related signalling pathways induces tumour metabolism and growth. In this review, we summarize current evidence to evaluate the potential mechanisms by which mTOR is implicated in NPC. It was found that activating mTOR and its upstream and downstream signalling can promote tumor growth and survival of NPC. It is possible that EMT and autophagy regulated by cellular mTOR signalling activities may be implicated in the metastases and radioresistance of NPC.

16.
Dig Dis Sci ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990269

RESUMO

BACKGROUND: N-acetyltransferase 10 (NAT10), the only RNA cytosine acetyltransferase known in humans, contributes to cancer tumorigenesis and progression. This study aims to investigate the effect of NAT10 on the malignant biological properties of gastric cancer (GC) and its underlying mechanism. METHODS: The expression and prognostic significance of NAT10 in GC were analyzed using The Cancer Genome Atlas (TCGA) and Sun Yat-sen University (SYSU) cohorts. The influence of NAT10 on the malignant biological behaviors of GC was detected by Cell Counting Kit-8 (CCK-8) assay, plate colony formation assay, 5-ethynyl-2'-deoxyuridine (EdU), Transwell migration and invasion assays, scratch wound assay, flow cytometric analysis, and animal studies. The overall level of N4 acetylcytidine (ac4C) in GC was detected by liquid chromatography with tandem mass spectrometry (LC-MS/MS). The downstream signal pathways of NAT10 were analyzed by Gene Set Enrichment Analysis (GSEA) and verified by Western blot (WB) and immunofluorescence (IF). RESULTS: The significant upregulation of NAT10 expression in GC was associated with a poor prognosis. The knockdown of NAT10 markedly suppressed GC cell proliferation, migration, invasion, and cell cycle progression. Downregulating NAT10 reduced ac4C levels and inhibited AKT phosphorylation and epithelial-mesenchymal transition (EMT) in GC. CONCLUSIONS: NAT10 functions as an oncogene and may provide a new therapeutic target in GC.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38990453

RESUMO

BACKGROUND: The potential value of detecting epithelial-mesenchymal transition (EMT) CTCs in early breast cancer, especially during the neoadjuvant therapy period, requires further investigation. We analyzed dynamic CTC phenotype status, to improve recurrence risk stratification for patients with stage III breast cancers. METHODS: We enrolled 45 patients with stage III breast cancers from 2 clinical trials undergoing neoadjuvant chemotherapy and utilized the CanPatrol CTC enrichment technique pre- and post-chemotherapy to identify CTC phenotypes, including epithelial CTCs, biphenotypic epithelial/mesenchymal CTCs, and mesenchymal CTCs, in peripheral blood samples. Kaplan-Meier analyses were conducted to explore the prognostic value of dynamic change of CTC count and the proportion of CTCs with different phenotypes. Then, redefine the risk stratification based on CTC status and clinicopathological risk in combination. RESULTS: Increased proportion of M + CTCs was a high-risk CTC status that was associated with decreased DFS (HR, 3.584; 95% CI, 1.057-12.15). In a combined analysis with clinicopathological risk, patients with high-risk tumors had an elevated risk of recurrence compared to patients with low-risk tumors (HR, 4.482; 95% CI, 1.246-16.12). The recurrence risk could be effectively stratified by newly defined risk stratification criteria, with 5-year DFS of 100.0%, 77.3%, and 50.0%, respectively, for low-risk, mid-risk, and high-risk patients (P = 0.0077). Finally, in the ROC analysis, the redefined risk stratification demonstrated higher predictive significance with an AUC of 0.7727, compared to CTC status alone (AUC of 0.6751) or clinicopathological risk alone (AUC of 0.6858). CONCLUSION: The proportion of M + CTCs increased after neoadjuvant chemotherapy indicating a higher risk of tumor recurrence. Combining CTC status with clinicopathological risk has potential to redefine the risk stratification of stage III breast cancers and provide improved predictions of relapse.

18.
Clin Breast Cancer ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38997857

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. FAM3B, a secreted protein, has been extensively studied in various types of tumors. However, its function in breast cancer remains poorly understood. METHODS: We analyzed FAM3B expression data from breast cancer patients available at TCGA database and overall survival was analyzed by using the Kaplan-Meier plotter. MDA-MB-231 TNBC tumor cell line and hormone-responsive MCF-7 cell lines were transfected to overexpress FAM3B. We assessed cell death, tumorigenicity, and invasiveness in vitro through MTT analysis, flow cytometry assays, anchorage-independent tumor growth, and wound healing assays, respectively. We performed in vivo evaluation by tumor xenograft in nude mice. RESULTS: In silico analysis revealed that FAM3B expression was lower in all breast tumors. However, TNBC patients with high FAM3B expression had a poor prognosis. FAM3B overexpression protected MDA-MB-231 cells from cell death, with increased expression of Bcl-2 and Bcl-xL, and reduced caspase-3 activity. MDA-MB-231 cells overexpressing FAM3B also exhibited increased tumorigenicity and migration rates in vitro, displaying increased tumor growth and reduced survival rates in xenotransplanted nude mice. This phenotype is accompanied by the upregulation of EMT-related genes Slug, Snail, TGFBR2, vimentin, N-cadherin, MMP-2, MMP-9, and MMP-14. However, these effects were not observed in the MCF-7 cells overexpressing FAM3B. CONCLUSION: FAM3B overexpression contributes to tumor growth, promotion of metastasis, and, consequently, leads to a poor prognosis in the most aggressive forms of breast cancer. Future clinical research is necessary to validate FAM3B as both a diagnostic and a therapeutic strategy for TNBC.

19.
Funct Integr Genomics ; 24(4): 123, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992207

RESUMO

Hepatocellular carcinoma (HCC) is a common malignancy with a poor prognosis. It has been proven that long non-coding RNAs (lncRNAs) play an essential role in regulating HCC progression. However, the involvement of LINC01094 in regulating epithelial-mesenchymal transition (EMT) in HCC remains unclear. LINC01094 expression in HCC patients was retrieved from the Cancer Genome Atlas database. Overexpressing and downregulating LINC01094 were conducted to investigate its biological functions using Hep3B, SNU-387, and HuH-7 cells. Western blotting and morphological observation were performed to study the EMT in HCC cells. Transwell assay was adopted to determine the migration and invasion of HCC cells. The underlying mechanism of competitive endogenous RNAs (ceRNAs) was investigated using bioinformatics analysis, quantitative reverse-transcription polymerase chain reaction, and rescue experiments. Elevated LINC01094 expression was observed in HCC and associated with a poor prognosis. Knockdown of LINC01094 expression in SNU-387 and HuH-7 cells could inhibit migration, invasion, and EMT markers. Overexpression of LINC01094 indicated that LINC01094 promoted EMT via the TGF-ß/SMAD signaling pathway. The bioinformatics analysis revealed that miR-122-5p was a target of LINC01094. The miRWalk database analysis showed that TGFBR2, SMAD2, and SMAD3 were downstream targets of miR-122-5p. Mechanically, LINC01094 acted as a ceRNA that facilitated HCC metastasis by sponging miR-122-5p to regulate the expression of TGFBR2, SMAD2, and SMAD3. Further, TGF-ß1 could enhance the expression of LINC01094, forming a positive feedback loop. TGF-ß1-induced LINC01094 expression promotes HCC cell migration and invasion by targeting the miR-122-5p/TGFBR2-SMAD2-SMAD3 axis. LINC01094 may be a potential prognostic biomarker and therapeutic target for HCC metastasis.


Assuntos
Carcinoma Hepatocelular , Transição Epitelial-Mesenquimal , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Receptor do Fator de Crescimento Transformador beta Tipo II , Proteína Smad3 , Fator de Crescimento Transformador beta1 , Humanos , Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Proteína Smad3/metabolismo , Proteína Smad3/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais
20.
Artigo em Inglês | MEDLINE | ID: mdl-38994622

RESUMO

BACKGROUND: The emergence of drug resistance to oxaliplatin (OXA) is one of the critical obstacles in the therapy of advanced Hepatocellular Carcinoma (HCC). As an ethyl derivative of the natural compound epigallocatechin gallate (epigallocatechin-3-gallate, EGCG), Y6 was found to be able to enhance the sensitivity of HCC cells to doxorubicin. This study aimed to investigate the effect of Y6 on oxaliplatin resistance in HCC. METHODS: MTT was used to determine the reversal effect of Y6 on OXA resistance. To further explore the reversal mechanism, we treated OXA alone or in combination with Y6 or EGCG in drugresistant cells and observed the morphological changes of the cells. At the same time, transwell assay was used to detect the invasion and migration ability of cells. Moreover, Real-time PCR and Western blot analysis were performed to determine the expression levels of the miR-338-3p gene, HIF-1α/Twist proteins, and EMT-related proteins. RESULTS: We found that Y6 could inhibit the proliferation of HCC cells and effectively reverse the drug resistance of oxaliplatin-resistant human liver cancer cells (SMMC-7721/OXA) to OXA, and the reversal effect was more significant than that of its lead drug EGCG. Most of the cells in the control group and OXA group showed typical mesenchymal-like cell morphology, while most of the cells in co-administration groups showed typical epithelioid cell morphology, and the ability of the cells to invade and migrate decreased dramatically, particularly in Y6 plus OXA group. At the same time, Y6 could up-regulate the EMT epithelial marker protein E-cadherin and down-regulate the interstitial marker protein Vimentin. In addition, in co-administration groups, the expression of miR-338-3p was up-regulated, while the expression of HIF-1α and Twist was down-regulated. CONCLUSION: Y6 significantly enhanced the susceptibility of drug-resistant cells to OXA, and the process may be related to the regulation of miR-338-3p/HIF-1α / TWIST pathway to inhibit EMT. Therefore, Y6 could be considered an effective medication resistance reversal agent, which could improve the therapeutic effect for hepatocellular cancer patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA