Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 288, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500084

RESUMO

BACKGROUND: Larch is an important component of northern forests and a major cultivated tree species in restoration of forest cover using improved seed material. In recent years, the continuous low seed production has severely affected the production of improved variety seedlings and natural regeneration. However, research on the reproductive growth of gymnosperms is extremely scarce. RESULTS: In this study, based on differential transcriptome analysis of two asexual reproductive phases, namely high-yield and low-yield, we further screened 5 ERF family genes that may affect the reproductive development of larch. We analyzed their genetic relationships and predicted their physicochemical properties. The expression patterns of these genes were analyzed in different tissues, developmental stages, hormone treatments, and environmental conditions in hybrid larch. CONCLUSION: The results showed that all 5 genes were induced by low temperature and ABA, and their expression patterns in different tissues suggested a suppressive role in the development of female cones in larch. Among them, LkoERF3-like1 and LkoERF071 may be involved in the flowering age pathway. This study enriches the scarce research on reproductive development in gymnosperms and provides a theoretical basis and research direction for regulating the reproductive development of larch in seed orchards.


Assuntos
Larix , Filogenia , Reprodução/genética , Florestas , Árvores
2.
Int J Mol Sci ; 24(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36835107

RESUMO

The Ethylene Responsive Factor (ERF) transcription factor family is important for regulating plant growth and stress responses. Although the expression patterns of ERF family members have been reported in many plant species, their role in Populus alba × Populus glandulosa, an important model plant for forest research, remains unclear. In this study, we identified 209 PagERF transcription factors by analyzing the P. alba × P. glandulosa genome. We analyzed their amino acid sequences, molecular weight, theoretical pI (Isoelectric point), instability index, aliphatic index, grand average of hydropathicity, and subcellular localization. Most PagERFs were predicted to localize in the nucleus, with only a few PagERFs localized in the cytoplasm and nucleus. Phylogenetic analysis divided the PagERF proteins into ten groups, Class I to X, with those belonging to the same group containing similar motifs. Cis-acting elements associated with plant hormones, abiotic stress responses, and MYB binding sites were analyzed in the promoters of PagERF genes. We used transcriptome data to analyze the expression patterns of PagERF genes in different tissues of P. alba × P. glandulosa, including axillary buds, young leaves, functional leaves, cambium, xylem, and roots, and the results indicated that PagERF genes are expressed in all tissues of P. alba × P. glandulosa, especially in roots. Quantitative verification results were consistent with transcriptome data. When P. alba × P. glandulosa seedlings were treated with 6% polyethylene glycol 6000 (PEG6000), the results of RT-qRCR showed that nine PagERF genes responded to drought stress in various tissues. This study provides a new perspective on the roles of PagERF family members in regulating plant growth and development, and responses to stress in P. alba × P. glandulosa. Our study provides a theoretical basis for ERF family research in the future.


Assuntos
Populus , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Populus/genética , Secas , Filogenia , Regulação da Expressão Gênica de Plantas , Etilenos/metabolismo , Proteínas de Plantas/genética , Estresse Fisiológico
3.
Int J Mol Sci ; 24(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36835560

RESUMO

Teak (Tectona grandis) is one of the most important wood sources, and it is cultivated in tropical regions with a significant market around the world. Abiotic stresses are an increasingly common and worrying environmental phenomenon because it causes production losses in both agriculture and forestry. Plants adapt to these stress conditions by activation or repression of specific genes, and they synthesize numerous stress proteins to maintain their cellular function. For example, APETALA2/ethylene response factor (AP2/ERF) was found to be involved in stress signal transduction. A search in the teak transcriptome database identified an AP2/ERF gene named TgERF1 with a key AP2/ERF domain. We then verified that the TgERF1 expression is rapidly induced by Polyethylene Glycol (PEG), NaCl, and exogenous phytohormone treatments, suggesting a potential role in drought and salt stress tolerance in teak. The full-length coding sequence of TgERF1 gene was isolated from teak young stems, characterized, cloned, and constitutively overexpressed in tobacco plants. In transgenic tobacco plants, the overexpressed TgERF1 protein was localized exclusively in the cell nucleus, as expected for a transcription factor. Furthermore, functional characterization of TgERF1 provided evidence that TgERF1 is a promising candidate gene to be used as selective marker on plant breeding intending to improve plant stress tolerance.


Assuntos
Nicotiana , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Nicotiana/genética , Secas , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Tolerância ao Sal/genética , Proteínas de Plantas/genética , Filogenia
4.
Acta Pharmaceutica Sinica ; (12): 3428-3438, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-999073

RESUMO

The AP2/ERF gene family is one of the largest transcription factor families in the plant kingdom, and plays an important role in response to biological and abiotic stresses, plant hormone responses, and plant growth and development. In this study, the AP2/ERF family of Panax notoginseng was identified by bioinformatics methods, and the physicochemical properties, structure, phylogenetic relationship, expression pattern and function of PnDREB4 gene of the family were analyzed. The results showed that 140 AP2/ERF family members were identified in P. notoginseng, which were divided into DREB, ERF, AP2, RAV and Sololit subgroups. The physicochemical properties and motifs of proteins were similar among the subgroups. There were 34 differentially expressed genes in the AP2/ERF family of Fusarium oxysporum infected P. notoginseng plants, and 19 genes were up-regulated. The expression level of PnDREB84 was up-regulated with the extension of Fusarium oxysporum infection time in the range of 0-96 h. The content of ABA and SA in P. notoginseng plants overexpressing PnDREB84 gene increased after 4 ℃ stress. The results showed that PnDREB84 gene plays a dual regulatory role in the process of biological stress and abiotic stress. PnDREB84 gene can be used as a potential molecular marker for the breeding of new varieties of P. notoginseng. The identification of AP2/ERF transcription factor and function analysis of PnDREB84 gene of P. notoginseng provided data support for the analysis of stress resistance mechanism of P. notoginseng and the breeding of new varieties.

5.
Plant Commun ; 3(6): 100420, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-35949168

RESUMO

Whole-genome duplication (WGD or polyploidization) has been suggested as a genetic contributor to angiosperm adaptation to environmental changes. However, many eudicot lineages did not undergo recent WGD (R-WGD) around and/or after the Cretaceous-Paleogene (K-Pg) boundary, times of severe environmental changes; how those plants survived has been largely ignored. Here, we collected 22 plants from major branches of the eudicot phylogeny and classified them into two groups according to the occurrence or absence of R-WGD: 12 R-WGD-containing plants (R-WGD-Y) and 10 R-WGD-lacking plants (R-WGD-N). Subsequently, we identified 496 gene-rich families in R-WGD-Y and revealed that members of the AP2/ERF transcription factor family were convergently over-retained after R-WGDs and showed exceptional cold stimulation. The evolutionary trajectories of the AP2/ERF family were then compared between R-WGD-Y and R-WGD-N to reveal convergent expansions of the AP2/ERF III and IX subfamilies through recurrent independent WGDs and tandem duplications (TDs) after the radiation of the plants. The expansions showed coincident enrichments in- times around and/or after the K-Pg boundary, when global cooling was a major environmental stressor. Consequently, convergent expansions and co-retentions of AP2/ERF III C-repeat binding factor (CBF) duplicates and their regulons in different eudicot lineages contributed to the rewiring of cold-specific regulatory networks. Moreover, promoter analysis of cold-responsive AP2/ERF genes revealed an underlying cis-regulatory code (G-box: CACGTG). We propose a seesaw model of WGDs and TDs in the convergent expansion of AP2/ERF III and IX genes that has contributed to eudicot adaptation during paleoenvironmental changes, and we suggest that TD may be a reciprocal/alternative mechanism for genetic innovation in plants that lack WGD.


Assuntos
Evolução Molecular , Proteínas de Plantas , Adaptação Fisiológica/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
BMC Genomics ; 23(1): 516, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842574

RESUMO

BACKGROUND: Plant species from Rosaceae family are economically important. One of the major environmental factors impacting those species is cold stress. Although several Rosaceae plant genomes have recently been sequenced, there have been very few research conducted on cold upregulated genes and their promoter binding sites. In this study, we used computational approaches to identify and analyse potential cold stress response genes across ten Rosaceae family members. RESULTS: Cold stress upregulated gene data from apple and strawberry were used to identify syntelogs in other Rosaceae species. Gene duplication analysis was carried out to better understand the distribution of these syntelog genes in different Rosaceae members. A total of 11,145 popular abiotic stress transcription factor-binding sites were identified in the upstream region of these potential cold-responsive genes, which were subsequently categorised into distinct transcription factor (TF) classes. MYB classes of transcription factor binding site (TFBS) were abundant, followed by bHLH, WRKY, and AP2/ERF. TFBS patterns in the promoter regions were compared among these species and gene families, found to be quite different even amongst functionally related syntelogs. A case study on important cold stress responsive transcription factor family, AP2/ERF showed less conservation in TFBS patterns in the promoter regions. This indicates that syntelogs from the same group may be comparable at the gene level but not at the level of cis-regulatory elements. Therefore, for such genes from the same family, different repertoire of TFs could be recruited for regulation and expression. Duplication events must have played a significant role in the similarity of TFBS patterns amongst few syntelogs of closely related species. CONCLUSIONS: Our study overall suggests that, despite being from the same gene family, different combinations of TFs may play a role in their regulation and expression. The findings of this study will provide information about potential genes involved in the cold stress response, which will aid future functional research of these gene families involved in many important biological processes.


Assuntos
Resposta ao Choque Frio , Rosaceae , Resposta ao Choque Frio/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rosaceae/genética , Rosaceae/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
BMC Plant Biol ; 22(1): 258, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610574

RESUMO

Ethylene response factor (ERF) transcription factors constitute a subfamily of the AP2/ERF superfamily in plants and play multiple roles in plant growth and development as well as in stress responses. In this study, the GsERF1 gene from the wild soybean BW69 line (an Al-resistant Glycine soja line) was rapidly induced in response to aluminum stress. Quantitative real-time PCR (qRT-PCR) analysis showed that the GsERF1 gene maintained a constitutive expression pattern and was induced in soybean in response to aluminum stress, with increased amounts of transcripts detected in the roots. The putative GsERF1 protein, which contains an AP2 domain, was located in the nucleus and maintained transactivation activity. In addition, under AlCl3 treatment, GsERF1 overexpression increased the relative growth rate of the roots of Arabidopsis and weakened the hematoxylin staining of hairy roots. Ethylene synthesis-related genes such as ACS4, ACS5 and ACS6 were upregulated in GsERF1 transgenic lines compared with the wild type under AlCl3 treatment. Furthermore, the expression levels of stress/ABA-responsive marker genes, including ABI1, ABI2, ABI4, ABI5 and RD29B, in the GsERF1 transgenic lines were affected by AlCl3 treatment, unlike those in the wild type. Taken together, the results indicated that overexpression of GsERF1 may enhance aluminum tolerance of Arabidopsis through an ethylene-mediated pathway and/or ABA signaling pathway, the findings of which lay a foundation for breeding soybean plants tolerant to aluminum stress.


Assuntos
Arabidopsis , Alumínio/metabolismo , Alumínio/toxicidade , Arabidopsis/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Plantas Geneticamente Modificadas/fisiologia , Glycine max/genética , Glycine max/metabolismo , Estresse Fisiológico/genética
8.
Front Plant Sci ; 13: 847754, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371131

RESUMO

APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF), a plant-specific transcription factor (TF) family, plays an essential role in the growth and development of plants, and in their response to biotic and abiotic stresses. However, information on AP2/ERF in Cucurbita moschata (pumpkin), an edible and medicinal vegetable used worldwide, is scarce. A total of 212 AP2/ERF genes were identified in the C. moschata genome (CmoAP2/ERFs). Based on phylogenetic analysis, they were divided into four groups-28 AP2s, 92 ERFs, 86 dehydration-responsive element-binding (DREB) factors, and 6 ABI3/VPs (RAV). The 212 AP2/ERF genes were unevenly distributed on the 20 chromosomes of C. moschata. The results of structural analysis showed the absence of introns on 132 CmoAP2/ERFs. Four pairs of tandem duplication and 155 pairs of segmental duplication events were identified, which indicated that segmental duplications might be the main reason for the expansion of the CmoAP2/ERF family. The analysis of cis-regulatory elements (CREs) showed that most of the CmoAP2/ERFs contained hormone response elements (ABREs, EREs) in their promoters, suggesting that AP2/ERFs could contribute to the processes regulated by ethylene and abscisic acid. By comparing the transcriptome of ethephon-treated and control plants, we found that 16 CmoAP2/ERFs were significantly upregulated after ethephon treatment. Furthermore, we determined the expression patterns of these genes at different developmental stages of female and male flowers. This study provides insights into the identification, classification, physicochemical property, phylogenetic analysis, chromosomal location, gene structure, motif identification, and CRE prediction of the AP2/ERF superfamily in C. moschata. Sixteen CmoAP2/ERF genes were identified as ethylene-inducible genes. The results of this study will be valuable for understanding the roles of CmoAP2/ERFs in ethylene response and should provide a foundation for elucidating the function of AP2/ERF TFs in C. moschata.

9.
Plants (Basel) ; 11(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35214887

RESUMO

Cork oak (Quercus suber) is a species native to Mediterranean areas and its adaptation to the increasingly prevalent abiotic stresses, such as soil salinization, remain unknown. In sequence with recent studies on salt stress response in the leaf, it is fundamental to uncover the plasticity of roots directly exposed to high salinity to better understand how Q. suber copes with salt stress. In the present study we aimed to unveil the antioxidants and key-genes involved in the stress-responses (early vs. later responses) of Q. suber roots exposed to high salinity. Two-month-old Q. suber plants were watered with 300 mM NaCl solution and enzymatic and non-enzymatic antioxidants, lipid peroxidation and the relative expression of genes related to stress response were analysed 8 h and 6 days after salt treatment. After an 8 h of exposure, roots activated the expression of QsLTI30 and QsFAD7 genes involved in stress membrane protection, and QsRAV1 and QsCZF1 genes involved in tolerance and adaptation. As a result of the continued salinity stress (6 days), lipid peroxidation increased, which was associated with an upregulation of QsLTI30 gene. Moreover, other protective mechanisms were activated, such as the upregulation of genes related to antioxidant status, QsCSD1 and QsAPX2, and the increase of the antioxidant enzyme activities of superoxide dismutase, catalase, and ascorbate peroxidase, concomitantly with total antioxidant activity and phenols. These data suggest a response dependent on the time of salinity exposure, leading Q. suber roots to adopt protective complementary strategies to deal with salt stress.

10.
BMC Genomics ; 22(1): 807, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749659

RESUMO

BACKGROUND: Liriodendron chinense is a distinctive ornamental tree species due to its unique leaves and tulip-like flowers. The discovery of genes involved in leaf development and morphogenesis is critical for uncovering the underlying genetic basis of these traits. Genes in the AP2/ERF family are recognized as plant-specific transcription factors that contribute to plant growth, hormone-induced development, ethylene response factors, and stress responses. RESULTS: In this study, we identified 104 putative AP2/ERF genes in the recently released L. chinense genome and transcriptome database. In addition, all 104 genes were grouped into four subfamilies, the AP2, ERF, RAV, and Soloist subfamilies. This classification was further supported by the results of gene structure and conserved motif analyses. Intriguingly, after application of a series test of cluster analysis, three AP2 genes, LcERF 94, LcERF 96, and LcERF 98, were identified as tissue-specific in buds based on the expression profiles of various tissues. These results were further validated via RT-qPCR assays and were highly consistent with the STC analysis. We further investigated the dynamic changes of immature leaves by dissecting fresh shoots into seven discontinuous periods, which were empirically identified as shoot apical meristem (SAM), leaf primordia and tender leaf developmental stages according to the anatomic structure. Subsequently, these three candidates were highly expressed in SAM and leaf primordia but rarely in tender leaves, indicating that they were mainly involved in early leaf development and morphogenesis. Moreover, these three genes displayed nuclear subcellular localizations through the transient transformation of tobacco epidermal cells. CONCLUSIONS: Overall, we identified 104 AP2/ERF family members at the genome-wide level and discerned three candidate genes that might participate in the development and morphogenesis of the leaf primordium in L. chinense.


Assuntos
Regulação da Expressão Gênica de Plantas , Liriodendron , Liriodendron/metabolismo , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
PeerJ ; 9: e11076, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33954030

RESUMO

AP2/ERF transcription factors (TFs) play indispensable roles in plant growth, development, and especially in various abiotic stresses responses. The AP2/ERF TF family has been discovered and classified in more than 50 species. However, little is known about the AP2/ERF gene family of Chinese willow (Salix matsudana), which is a tetraploid ornamental tree species that is widely planted and is also considered as a species that can improve the soil salinity of coastal beaches. In this study, 364 AP2/ERF genes of Salix matsudana (SmAP2/ERF) were identified depending on the recently produced whole genome sequencing data of Salix matsudana. These genes were renamed according to the chromosomal location of the SmAP2/ERF genes. The SmAP2/ERF genes included three major subfamilies: AP2 (55 members), ERF (301 members), and RAV (six members) and two Soloist genes. Genes' structure and conserved motifs were analyzed in SmAP2/ERF family members, and introns were not found in most genes of the ERF subfamily, some unique motifs were found to be important for the function of SmAP2/ERF genes. Syntenic relationships between the SmAP2/ERF genes and AP2/ERF genes from Populus trichocarpa and Salix purpurea showed that Salix matsudana is genetically more closely related to Populus trichocarpa than to Salix purpurea. Evolution analysis on paralog gene pairs suggested that progenitor of S. matsudana originated from hybridization between two different diploid salix germplasms and underwent genome duplication not more than 10 Mya. RNA sequencing results demonstrated the differential expression patterns of some SmAP2/ERF genes under salt stress and this information can help reveal the mechanism of salt tolerance regulation in Salix matsudana.

12.
Plants (Basel) ; 10(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924007

RESUMO

We used an integrated morpho-physiological, biochemical, and genetic approach to investigate the salt responses of four lines (TN1.11, TN6.18, JA17, and A10) of Medicago truncatula. Results showed that TN1.11 exhibited a high tolerance to salinity, compared with the other lines, recording a salinity induced an increase in soluble sugars and soluble proteins, a slight decrease in malondialdehyde (MDA) accumulation, and less reduction in plant biomass. TN6.18 was the most susceptible to salinity as it showed less plant weight, had elevated levels of MDA, and lower levels of soluble sugars and soluble proteins under salt stress. As transcription factors of the APETALA2/ethylene responsive factor (AP2/ERF) family play important roles in plant growth, development, and responses to biotic and abiotic stresses, we performed a functional characterization of MtERF1 gene. Real-time PCR analysis revealed that MtERF1 is mainly expressed in roots and is inducible by NaCl and low temperature. Additionally, under salt stress, a greater increase in the expression of MtERF1 was found in TN1.11 plants than that in TN6.18. Therefore, the MtERF1 pattern of expression may provide a useful marker for discriminating among lines of M. truncatula and can be used as a tool in breeding programs aiming at obtaining Medicago lines with improved salt tolerance.

13.
BMC Plant Biol ; 18(1): 46, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29558898

RESUMO

BACKGROUND: In plants, ERF genes participate in a variety of regulatory pathways, such as plant growth and biotic and/or abiotic stress responses. Although the genome of Chinese white pear ('Dangshansuli') has been released, knowledge regarding the ERF family in pear, such as gene functions, evolutionary history and expression patterns, remains limited. RESULTS: In our study, a total of 155 members of ERF families were identified in pear (Pyrus bretschneideri). The Ka and Ks values suggested that whole-genome duplication (WGD) and dispersed duplication have effectively contributed to the expansion of the pear ERF family. Gene structure and phylogeny analysis divided the PbrERF family into 12 groups, and their gene functions were predicted by comparative analysis. qRT-PCR was carried out to verify the relative expression levels of 7 genes in group III using wild and cultivated pear fruits at three key developmental stages. Wild samples had higher expression of these genes than cultivated samples, especially at the enlarged fruit stage. The transcriptome data of pear seedlings subjected to dehydration treatment further revealed that 4 of the 7 genes responded to drought conditions. CONCLUSION: The AP2/ERF gene family is greatly expanded in pear. Comparative analysis revealed the probability of ERF genes performing functional roles in multiple pathways. Expression analysis at different stages of pear fruit development in wild and cultivated samples indicated that genes in group III might be involved in abiotic and/or biotic stresses. Further transcriptome data on seedlings subjected to drought treatment verified the potential role of ERF genes in stress response. These results will provide a valuable reference for understanding the function and evolution of the ERF family in higher plants.


Assuntos
Evolução Molecular , Proteínas de Plantas/genética , Pyrus/genética , Secas , Duplicação Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Pyrus/fisiologia
14.
EXCLI J ; 14: 1187-206, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27152109

RESUMO

Apetala2-ethylene-responsive element binding factor (AP2-ERF) superfamily with common AP2-DNA binding domain have developmentally and physiologically important roles in plants. Since common bean genome project has been completed recently, it is possible to identify all of the AP2-ERF genes in the common bean genome. In this study, a comprehensive genome-wide in silico analysis identified 180 AP2-ERF superfamily genes in common bean (Phaseolus vulgaris). Based on the amino acid alignment and phylogenetic analyses, superfamily members were classified into four subfamilies: DREB (54), ERF (95), AP2 (27) and RAV (3), as well as one soloist. The physical and chemical characteristics of amino acids, interaction between AP2-ERF proteins, cis elements of promoter region of AP2-ERF genes and phylogenetic trees were predicted and analyzed. Additionally, expression levels of AP2-ERF genes were evaluated by in silico and qRT-PCR analyses. In silico micro-RNA target transcript analyses identified nearly all PvAP2-ERF genes as targets of by 44 different plant species' miRNAs were identified in this study. The most abundant target genes were PvAP2/ERF-20-25-62-78-113-173. miR156, miR172 and miR838 were the most important miRNAs found in targeting and BLAST analyses. Interactome analysis revealed that the transcription factor PvAP2-ERF78, an ortholog of Arabidopsis At2G28550, was potentially interacted with at least 15 proteins, indicating that it was very important in transcriptional regulation. Here we present the first study to identify and characterize the AP2-ERF transcription factors in common bean using whole-genome analysis, and the findings may serve as a references for future functional research on the transcription factors in common bean.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA