Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
1.
Mycopathologia ; 189(3): 40, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704798

RESUMO

Candida parapsilosis complex has recently received special attention due to naturally occurring FKS1 polymorphism associated with high minimal inhibitory concentrations for echinocandin and the increase of clonal outbreaks of strains resistant to commonly used antifungals such as fluconazole. Despite the previous fact, little is known about the genetic mechanism associated with echinocandin resistance. Therefore, the present study was designed to investigate the mechanism of acquired echinocandin resistance in C. parapsilosis complex strains. A total of 15 clinical C. parapsilosis complex isolates were sub-cultured for 30 days at a low concentration of micafungin at ½ the lowest MIC value of the tested isolates (0.12 µg/ml). After culturing, all the isolates were checked phenotypically for antifungal resistance and genotypically for echinocandin resistance by checking FKS1 gene hot spot one (HS1) and HS2 mutations. In vitro induction of echinocandin resistance confirmed the rapid development of resistance at low concentration micafungin, with no difference among C. parapsilosis, C. metapsilosis, and C. orthopsilosis in the resistance development. For the first time we identified different FKS1 HS1 and or HS2 mutations responsible for echinocandin resistance such as R658S and L1376F in C. parapsilosis, S656X, R658X, R658T, W1370X, X1371I, V1371X, and R1373X (corresponding to their location in C. parapsilosis) in C. metapsilosis, and L648F and R1366H in C. orthopsilosis. Our results are of significant concern, since the rapid development of resistance may occur clinically after short-term exposure to antifungals as recently described in other fungal species with the potential of untreatable infections.


Assuntos
Antifúngicos , Candida parapsilosis , Farmacorresistência Fúngica , Equinocandinas , Testes de Sensibilidade Microbiana , Farmacorresistência Fúngica/genética , Antifúngicos/farmacologia , Equinocandinas/farmacologia , Humanos , Candida parapsilosis/genética , Candida parapsilosis/efeitos dos fármacos , Candidíase/microbiologia , Proteínas Fúngicas/genética , Glucosiltransferases/genética , Mutação de Sentido Incorreto , Micafungina/farmacologia , Mutação
2.
Front Pharmacol ; 15: 1376656, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601473

RESUMO

Echinocandins, a prominent class of antifungals, are known for their broad-spectrum activity and favorable safety profiles. However, their bioavailability and efficacy via oral route are suboptimal. In this study, caspofungin and micafungin, the two most commonly used echinocandins, were evaluated in various in vitro environments simulating intestinal lumen. The results revealed that while both antifungals are effective in standard medium, their efficacy significantly diminishes in the presence of human small bowel aspirates and bovine bile. The study suggests that bowel contents and specifically bile acids may be a suppressive component, hindering the antifungal effects of echinocandins. This novel exploration sheds light on the poor oral bioavailability of echinocandins. The findings imply that echinocandins alone, regardless of administration route, may not be optimal for gastrointestinal (GI) fungal infections or invasive fungal infections originating from intestinal translocation. Further clinical investigations are warranted to validate and expand upon these observations.

3.
Lett Appl Microbiol ; 77(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38658187

RESUMO

Species from Candida parapsilosis complex are frequently found in neonatal candidemia. The antifungal agents to treat this infection are limited and the occurrence of low in vitro susceptibility to echinocandins such as micafungin has been observed. In this context, the chaperone Hsp90 could be a target to reduce resistance. Thus, the objective of this research was to identify isolates from the C. parapsilosis complex and verify the action of Hsp90 inhibitors associated with micafungin. The fungal identification was based on genetic sequencing and mass spectrometry. Minimal inhibitory concentrations were determined by broth microdilution method according to Clinical Laboratory and Standards Institute. The evaluation of the interaction between micafungin with Hsp90 inhibitors was realized using the checkerboard methodology. According to the polyphasic taxonomy, C. parapsilosis sensu stricto was the most frequently identified, followed by C. orthopsilosis and C. metapsilosis, and one isolate of Lodderomyces elongisporus was identified by genetic sequencing. The Hsp90 inhibitor geladanamycin associated with micafungin showed a synergic effect in 31.25% of the isolates, a better result was observed with radicicol, which shows synergic effect in 56.25% tested yeasts. The results obtained demonstrate that blocking Hsp90 could be effective to reduce antifungal resistance to echinocandins.


Assuntos
Antifúngicos , Candida parapsilosis , Proteínas de Choque Térmico HSP90 , Micafungina , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Micafungina/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/genética , Humanos , Candida parapsilosis/efeitos dos fármacos , Candida parapsilosis/isolamento & purificação , Candida parapsilosis/genética , Recém-Nascido , Equinocandinas/farmacologia , Benzoquinonas/farmacologia , Lipopeptídeos/farmacologia , Sinergismo Farmacológico , Lactamas Macrocíclicas/farmacologia , Candidemia/microbiologia , Farmacorresistência Fúngica , Candida/efeitos dos fármacos , Candida/classificação , Candida/genética
4.
Pathogens ; 13(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38535591

RESUMO

(1) Background: Despite being considered a non-pathogenic yeast, recently, a growing occurrence of Saccharomyces cerevisiae infections has been noted. There is little knowledge about the drug susceptibility of this species. Therefore, the objective of this research was to expand it and determine the drug susceptibility profile of a local collection of clinical isolates of this species. (2) Methods: This study contained 55 clinical isolates identified as Saccharomyces cerevisiae using the MALDI-TOF method. The susceptibility of Saccharomyces cerevisiae was tested to 10 antifungals (amphotericin B, flucytosine, fluconazole, voriconazole, posaconazole, micafungin, anidulafungin, caspofungin, and itraconazole) using MICRONAUT-AT tests and manogepix, a new drug, using the microdilution method according to EUCAST. (3) Results: Overall, most strains were classified as sensitive to amphotericin B and flucytosine (MIC ranges of ≤0.03-1 and ≤0.06-0.125, respectively) and also to echinocandins. However, five isolates expressed high MIC values for all of the tested azoles, indicating cross-resistance. The MIC range for manogepix was 0.001-0.125 mg/L, with an MIC50 of 0.03 mg/L and an MIC90 of 0.06 mg/L. (4) Conclusions: The occurrence of resistance to azoles may be a concerning problem and therefore should be investigated further. However, the new antifungal manogepix appears to be an interesting new therapeutic option for treating such infections.

5.
Trends Pharmacol Sci ; 45(4): 366-384, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493014

RESUMO

Fungal infections are a major threat to human health. The limited availability of antifungal drugs, the emergence of drug resistance, and a growing susceptible population highlight the critical need for novel antifungal agents. The enzymes involved in fungal cell wall synthesis offer potential targets for antifungal drug development. Recent studies have enhanced our focus on the enzyme Fks1, which synthesizes ß-1,3-glucan, a critical component of the cell wall. These studies provide a deeper understanding of Fks1's function in cell wall biosynthesis, pathogenicity, structural biology, evolutionary conservation across fungi, and interaction with current antifungal drugs. Here, we discuss the role of Fks1 in the survival and adaptation of fungi, guided by insights from evolutionary and structural analyses. Furthermore, we delve into the dynamics of Fks1 modulation with novel antifungal strategies and assess its potential as an antifungal drug target.


Assuntos
Antifúngicos , Equinocandinas , Humanos , Antifúngicos/farmacologia , Descoberta de Drogas
6.
Int J Infect Dis ; 143: 107020, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38548167

RESUMO

OBJECTIVES: De-escalation (DES) from echinocandins to azoles is recommended by several medical societies in Candida infections. We summarise the evidence of DES on clinical and microbiological cure and 30-day survival and compare it with continuing the treatment with echinocandins (non-DES). METHODS: We searched MEDLINE, Embase, Web of Science and Scopus. Studies describing DES in inpatients and reporting any of the outcomes evaluated were included. Pooled estimates of the tree outcomes were calculated with a fixed or random-effects model. Heterogeneity was explored stratifying by subgroups and via meta-regression. This systematic review is registered with PROSPERO (CRD42023475486). RESULTS: Of 1853 records identified, 9 studies were included, totalling 1575 patients. Five studies stepped-down to fluconazole; one to voriconazole and three to any of azoles. The mean day of DES was 5.2 (4.6-6.5) days. The clinical cure OR was 1.29 (95% CI: 0.88-1.88); the microbiological cure 1.62 (95% CI: 0.71-3.71); and 30-day survival 2.17 (95% CI: 1.09-4.32). The 30-day survival data into subgroups showed higher effect on critically ill patients and serious-risk bias studies. Meta-regression did not identify significant effect modifiers. CONCLUSIONS: DES is a safe strategy; it showed no higher 30-day mortality and a trend towards greater clinical and microbiological cure.


Assuntos
Antifúngicos , Candidíase , Humanos , Antifúngicos/uso terapêutico , Candidíase/tratamento farmacológico , Candidíase/mortalidade , Candidíase/microbiologia , Fluconazol/uso terapêutico , Candida/efeitos dos fármacos , Voriconazol/uso terapêutico , Equinocandinas/uso terapêutico , Resultado do Tratamento , Azóis/uso terapêutico , Azóis/farmacologia
7.
J Infect Dis ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502709

RESUMO

On March 22, 2023, the FDA approved rezafungin (REZZAYO) for the treatment of candidemia and invasive candidiasis in adults with limited or no alternative treatment options. Rezafungin is an echinocandin that supports weekly dosing, enabling outpatient parenteral treatment that potentially avoids the need for a central venous catheter. Approval of rezafungin was based on a single adequate and well-controlled phase 3 study designed with a Day 30 all-cause mortality primary endpoint and 20% noninferiority margin, which demonstrated that rezafungin is noninferior to the comparator echinocandin. Nonclinical studies of rezafungin in non-human primates identified a neurotoxicity safety signal; however, rezafungin's safety profile in the completed clinical studies was similar to other FDA-approved echinocandins. Here we describe the rationale for this approval and important considerations during the review process for a flexible development program intended to expedite the availability of antimicrobial therapies to treat serious infections in patients with limited treatment options.

8.
Future Microbiol ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497911

RESUMO

Antifungal infections are becoming a major concern to human health due to antimicrobial resistance. Echinocandins have been promising agents against resistant fungal infections, primarily caspofungin, which has a more effective mechanism of action than azoles and polyenes. However, fungi such as Cryptococcus neoformans appear to be inheritably resistant to these drugs, which is concerning due to the high clinical importance of C. neoformans. In this review, we review the history of C. neoformans and the treatments used to treat antifungals over the years, focusing on caspofungin, while highlighting the C. neoformans problem and possible explanations for its inherent resistance.


Caspofungin is a drug used to treat several types of fungal infections. Resistance to caspofungin is a huge problem, especially in those that are immunocompromised. It is important to understand the history of caspofungin discovery, its clinical applications and its mechanism of action, as well as if a new drug target could be used overcome resistance. This review may perform guide new studies combining caspofungin with other drugs and indicate new potential targets for caspofungin.

9.
Curr Res Microb Sci ; 6: 100220, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38303967

RESUMO

Aspergillus species encompass a variety of infections, ranging from invasive aspergillosis to allergic conditions, contingent upon the immune status of the host. In this spectrum, Aspergillus terreus stands out due to its emergence as a notable pathogen and its intrinsic resistance to amphotericin-B. The significance of Aspergillus-associated infections has witnessed a marked increase in the past few decades, particularly with the increasing number of immunocompromised individuals. The exploration of epidemiology, morphological transitions, immunopathology, and novel treatment approaches such as new antifungal drugs (PC945, olorofim) and combinational therapy using antifungal drugs and phytochemicals (Phytochemicals: quercetin, shikonin, artemisinin), also using immunotherapies to modulate immune response has resulted in better outcomes. Furthermore, in the context COVID-19 era and its aftermath, fungal infections have emerged as a substantial challenge for both immunocompromised and immunocompetent individuals. This is attributed to the use of immune-suppressing therapies during COVID-19 infections and the increase in transplant cases. Consequently, this review aims to provide an updated overview encompassing the epidemiology, germination events, immunopathology, and novel drug treatment strategies against Aspergillus terreus-associated infections.

10.
J Feline Med Surg ; 26(1): 1098612X231220047, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189264

RESUMO

CLINICAL RELEVANCE: Invasive fungal infections (IFIs) and oomycoses (hereafter termed invasive fungal-like infections [IFLIs]) are characterised by penetration of tissues by fungal elements. The environment is the most common reservoir of infection. IFIs and IFLIs can be frustrating to treat because long treatment times are usually required and, even after attaining clinical cure, there may be a risk of relapse. Owner compliance with medication administration and recheck examinations can also decline over time. In addition, some antifungal drugs are expensive, have variable interpatient pharmacokinetic properties, can only be administered parenterally and/or have common adverse effects (AEs). Despite these limitations, treatment can be very rewarding, especially when an otherwise progressive and fatal disease is cured. AIM: In the second of a two-part article series, the spectrum of activity, mechanisms of action, pharmacokinetic and pharmacodynamic properties, and AEs of antifungal drugs are reviewed, and the treatment and prognosis of specific IFIs/IFLIs - dermatophytic pseudomycetoma, cryptococcosis, sino-orbital aspergillosis, coccidioidomycosis, histoplasmosis, sporotrichosis, phaeohyphomycosis, mucormycosis and oomycosis - are discussed. Part 1 reviewed the diagnostic approach to IFIs and IFLIs. EVIDENCE BASE: Information on antifungal drugs is drawn from pharmacokinetic studies in cats. Where such studies have not been performed, data from 'preclinical' animals (non-human studies) and human studies are reviewed. The review also draws on the wider published evidence and the authors' combined expertise in feline medicine, mycology, dermatology, clinical pathology and anatomical pathology. ABBREVIATIONS FOR ANTIFUNGAL DRUGS: AMB (amphotericin B); FC (flucytosine); FCZ (fluconazole); ISA (isavuconazole); ITZ (itraconazole); KCZ (ketoconazole); PCZ (posaconazole); TRB (terbinafine); VCZ (voriconazole).


Assuntos
Doenças do Gato , Coccidioidomicose , Infecções Fúngicas Invasivas , Gatos , Animais , Antifúngicos/uso terapêutico , Infecções Fúngicas Invasivas/veterinária , Itraconazol , Terbinafina , Coccidioidomicose/veterinária , Doenças do Gato/tratamento farmacológico
11.
Mycologia ; 116(2): 258-266, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38232343

RESUMO

Fusarium spp. has emerged as an opportunistic etiological agent with clinical manifestations varying from localized infections to deep-seated systemic disease. It is also a phytopathogen of economic impact. There are few reports on the species diversity of this genus, and no comprehensive studies on the epidemiology nor the antifungal susceptibility of Fusarium in Mexico. The present multicentric study aims to shed light on the species distribution and antifungal susceptibility patterns of 116 strains of Fusarium isolated from clinical and environmental samples. Isolates were identified by standard phenotypic characteristics and by sequencing of the ITS (internal transcribed spacer), TEF1 (translation elongation factor 1-α), RPB2 (RNA polymerase II core subunit), and/or CAM1 (calmodulin) regions. Susceptibility tests were carried out against 15 antifungals of clinical and agricultural use. Regarding Fusarium distribution, we identified 27 species belonging to eight different species complexes. The most frequently isolated species for both clinical and environmental samples were F. falciforme (34%), F. oxysporum sensu stricto (12%), F. keratoplasticum (8%), and F. solani sensu stricto (8%). All Fusarium isolates showed minimum inhibitory concentrations (MICs) equal to or above the maximum concentration evaluated for fluconazole, 5-fluocytosine, caspofungin, micafungin, and anidulafungin. All isolates had a MIC of ≤16 µg/mL for voriconazole, with a mode of 4 µg/mL. F. verticillioides appeared to be the most susceptible to all antifungals tested.


Assuntos
Antifúngicos , Fusarium , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , México , Testes de Sensibilidade Microbiana
12.
Mycoses ; 67(1): e13669, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37946667

RESUMO

BACKGROUND: The natural history of candidemia in kidney transplant recipients (KTR) remains poorly understood. This study aimed to evaluate mortality, prognostic factors and overall graft loss after candidemia in KTRs. METHODS: This is a retrospective multicentre study enrolling all KTRs ≥15 years old with candidemia diagnosed at hospitals in Brazil, Spain and Italy from 2010 to 2020. Primary endpoints were mortality rates at 14 and 30 days. Secondary endpoints were prognostic factors of 14-day mortality and overall graft loss. RESULTS: We enrolled 93 KTRs of which 75 were from Brazil. The mean time interval from transplantation to the onset of candidemia was 45.2 ± 61.5 months. 42% of all patients were on haemodialysis, 31.3% had an episode of sepsis and 39% underwent surgery within 30 days before fungemia. European patients were more likely to receive echinocandin (32 vs. 72%, p < .001). 22.7% of Brazilian patients did not receive any antifungal before death. All-cause mortality at 14 days was higher in Brazil (41.3 vs. 11.1%, p = .016). Candida colonisation (OR 6.91 [95% CI: 1.08-44.3], p = .042) and hypotension (OR 4.87 [95% CI: 1.62-14.66], p = .005) were associated with 14-day mortality. Echinocandin treatment had a protective effect (OR 0.19 [95% CI: 0.05-0.73], p = .015). Graft loss at 90 days occurred in 48% of patients (70.7 in Brazil vs. 22.2% in Europe, p < .01). CONCLUSIONS: Candidemia in KTR is usually documented late after engraftment in patients requiring HD, surgical procedures and dysbiosis secondary to antibiotic use. Mortality was higher in Brazil. Echinocandin therapy was associated with improved survival.


Assuntos
Candidemia , Transplante de Rim , Adolescente , Humanos , Antifúngicos/uso terapêutico , Candidemia/tratamento farmacológico , Candidemia/epidemiologia , Candidemia/microbiologia , Equinocandinas/uso terapêutico , Transplante de Rim/efeitos adversos , Prognóstico , Estudos Retrospectivos , Fatores de Risco , Adulto
13.
Ann Pharmacother ; 58(3): 305-321, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37272474

RESUMO

OBJECTIVE: To provide updates on the epidemiology and recommendations for management of candidemia in patients with critical illness. DATA SOURCES: A literature search using the PubMed database (inception to March 2023) was conducted using the search terms "invasive candidiasis," "candidemia," "critically ill," "azoles," "echinocandin," "antifungal agents," "rapid diagnostics," "antifungal susceptibility testing," "therapeutic drug monitoring," "antifungal dosing," "persistent candidemia," and "Candida biofilm." STUDY SELECTION/DATA EXTRACTION: Clinical data were limited to those published in the English language. Ongoing trials were identified through ClinicalTrials.gov. DATA SYNTHESIS: A total of 109 articles were reviewed including 25 pharmacokinetic/pharmacodynamic studies and 30 studies including patient data, 13 of which were randomized controlled clinical trials. The remaining 54 articles included fungal surveillance data, in vitro studies, review articles, and survey data. The current 2016 Infectious Diseases Society of America (IDSA) Clinical Practice Guideline for the Management of Candidiasis provides recommendations for selecting empiric and definitive antifungal therapies for candidemia, but data are limited regarding optimized dosing strategies in critically ill patients with dynamic pharmacokinetic changes or persistent candidemia complicated. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE: Outcomes due to candidemia remain poor despite improved diagnostic platforms, antifungal susceptibility testing, and antifungal therapy selection for candidemia in critically ill patients. Earlier detection and identification of the species causing candidemia combined with recognition of patient-specific factors leading to dosing discrepancies are crucial to improving outcomes in critically ill patients with candidemia. CONCLUSIONS: Treatment of candidemia in critically ill patients must account for the incidence of non-albicans Candida species and trends in antifungal resistance as well as overcome the complex pathophysiologic changes to avoid suboptimal antifungal exposure.


Assuntos
Candidemia , Adulto , Humanos , Candidemia/diagnóstico , Candidemia/tratamento farmacológico , Candidemia/epidemiologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Estado Terminal , Equinocandinas/farmacologia , Equinocandinas/uso terapêutico , Candida , Unidades de Terapia Intensiva , Testes de Sensibilidade Microbiana
14.
Microbiol Spectr ; 12(1): e0208623, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38018978

RESUMO

IMPORTANCE: Multidrug resistance is a rising problem among non-Candida albicans species, such as Candida auris. This therapeutic problem has been very important during the COVID-19 pandemic. The World Health Organization has included C. auris in its global priority list of health-threatening fungi, to study this emerging multidrug-resistant species and to develop effective alternative therapies. In the present study, the synergistic effect of the combination of amphotericin B and echinocandins has been demonstrated against blood isolates of C. auris. Different susceptibility responses were also observed between aggregative and non-aggregative phenotypes. The antifungal activity of these drug combinations against C. auris was also demonstrated in the Caenorhabditis elegans host model of candidiasis, confirming the suitability and usefulness of this model in the search for solutions to antimicrobial resistance.


Assuntos
Anfotericina B , Equinocandinas , Animais , Humanos , Equinocandinas/farmacologia , Anfotericina B/farmacologia , Candida auris , Caenorhabditis elegans , Candida , Pandemias , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico
15.
Cells ; 12(22)2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37998390

RESUMO

Candidiasis is a highly pervasive infection posing major health risks, especially for immunocompromised populations. Pathogenic Candida species have evolved intrinsic and acquired resistance to a variety of antifungal medications. The primary goal of this literature review is to summarize the molecular mechanisms associated with antifungal resistance in Candida species. Resistance can be conferred via gain-of-function mutations in target pathway genes or their transcriptional regulators. Therefore, an overview of the known gene mutations is presented for the following antifungals: azoles (fluconazole, voriconazole, posaconazole and itraconazole), echinocandins (caspofungin, anidulafungin and micafungin), polyenes (amphotericin B and nystatin) and 5-fluorocytosine (5-FC). The following mutation hot spots were identified: (1) ergosterol biosynthesis pathway mutations (ERG11 and UPC2), resulting in azole resistance; (2) overexpression of the efflux pumps, promoting azole resistance (transcription factor genes: tac1 and mrr1; transporter genes: CDR1, CDR2, MDR1, PDR16 and SNQ2); (3) cell wall biosynthesis mutations (FKS1, FKS2 and PDR1), conferring resistance to echinocandins; (4) mutations of nucleic acid synthesis/repair genes (FCY1, FCY2 and FUR1), resulting in 5-FC resistance; and (5) biofilm production, promoting general antifungal resistance. This review also provides a summary of standardized inhibitory breakpoints obtained from international guidelines for prominent Candida species. Notably, N. glabrata, P. kudriavzevii and C. auris demonstrate fluconazole resistance.


Assuntos
Antifúngicos , Candida , Antifúngicos/farmacologia , Candida/genética , Fluconazol/farmacologia , Equinocandinas/farmacologia , Azóis/farmacologia
16.
Int J Antimicrob Agents ; 62(6): 107007, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839719

RESUMO

OBJECTIVES: Critically ill patients frequently require continuous renal replacement therapy. Echinocandins are recommended as first-line treatment of candidemia. Preliminary results suggested echinocandin sequestration in a polyacrylonitrile filter. The present study aimed to determine whether increasing the dose might balance sequestration. METHODS: An STX filter (Baxter-Gambro) was used. A liquid chromatography-mass spectrometry method was used for dosage of caspofungin. In vitro drug disposition was evaluated by NeckEpur (Neckepur, Versailles, France) technology using a crystalloid medium instead of diluted/reconstituted blood, focusing on the disposition of the unbound fraction of drugs. Two concentrations were assessed. RESULTS: At the low dose, the mean measured initial concentration in the central compartment (CC) was 5.1 ± 0.6 mg/L. One hundred percent of the initial amount was eliminated from the CC within the 6-h session. The mean total clearance from the CC was 9.6 ± 2.5 L/h. The mean percentages of elimination resulting from sequestration and diafiltration were 96.0 ± 5.0 and 4.0 ± 5.2%, respectively. At high dose, the mean measured initial concentration in the CC was 13.1 mg/L. One hundred percent of the initial amount was eliminated from the CC within the 6-h session. The mean total clearance from the CC was 9.5 L/h. The mean percentages of elimination resulting from sequestration and filtration were 88.5% and 11.5%, respectively. CONCLUSION: Increasing the dose does not mitigate caspofungin sequestration in the STX filter. The results raise caution about the simultaneous use of caspofungin and polyacrylonitrile-derived filters. Intermittent modes of renal replacement therapy might be considered. For sensitive species, fluconazole might be an alternative.


Assuntos
Antifúngicos , Equinocandinas , Humanos , Caspofungina , Antifúngicos/uso terapêutico , Equinocandinas/uso terapêutico , Resinas Acrílicas , Lipopeptídeos
17.
Crit Care ; 27(1): 382, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789338

RESUMO

BACKGROUND: Regardless of the available antifungals, intraabdominal candidiasis (IAC) mortality continues to be high and represents a challenge for clinicians. MAIN BODY: This opinion paper discusses alternative antifungal options for treating IAC. This clinical entity should be addressed separately from candidemia due to the peculiarity of the required penetration of antifungals into the peritoneal cavity. Intraabdominal concentrations may be further restricted in critically ill patients where pathophysiological facts alter normal drug distribution. Echinocandins are recommended as first-line treatment in guidelines for invasive candidiasis. However, considering published data, our pharmacodynamic analysis suggests the required increase of doses, postulated by some authors, to attain adequate pharmacokinetic (PK) levels in peritoneal fluid. Given the limited evidence in the literature on PK/PD-based treatments of IAC, an algorithm is proposed to guide antifungal treatment. Liposomal amphotericin B is advocated as first-line therapy in patients with sepsis/septic shock presenting candidemia or endophthalmitis, or with prior exposure to echinocandins and/or fluconazole, or with infections by Candida glabrata. Other situations and alternatives, such as new compounds or combination therapy, are also analysed. CONCLUSION: There is a critical need for more robust clinical trials, studies examining patient heterogeneity and surveillance of antifungal resistance to enhance patient care and optimise treatment outcomes. Such evidence will help refine the existing guidelines and contribute to a more personalised and effective approach to treating this serious medical condition. Meanwhile, it is suggested to broaden the consideration of other options, such as liposomal amphotericin B, as first-line treatment until the results of the fungogram are available and antifungal stewardship could be implemented to prevent the development of resistance.


Assuntos
Candidemia , Candidíase Invasiva , Humanos , Antifúngicos/efeitos adversos , Candidemia/tratamento farmacológico , Equinocandinas/farmacologia , Equinocandinas/uso terapêutico , Candidíase Invasiva/tratamento farmacológico
18.
Front Cell Infect Microbiol ; 13: 1276406, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900311

RESUMO

Reactive oxidant species (ROS) are unstable, highly reactive molecules that are produced by cells either as byproducts of metabolism or synthesized by specialized enzymes. ROS can be detrimental, e.g., by damaging cellular macromolecules, or beneficial, e.g., by participating in signaling. An increasing body of evidence shows that various fungal species, including both yeasts and molds, increase ROS production upon exposure to the antifungal drugs currently used in the clinic: azoles, polyenes, and echinocandins. However, the implications of these findings are still largely unclear due to gaps in knowledge regarding the chemical nature, molecular origins, and functional consequences of these ROS. Because the detection of ROS in fungal cells has largely relied on fluorescent probes that lack specificity, the chemical nature of the ROS is not known, and it may vary depending on the specific fungus-drug combination. In several instances, the origin of antifungal drug-induced ROS has been identified as the mitochondria, but further experiments are necessary to strengthen this conclusion and to investigate other potential cellular ROS sources, such as the ER, peroxisomes, and ROS-producing enzymes. With respect to the function of the ROS, several studies have shown that they contribute to the drugs' fungicidal activities and may be part of drug-induced programmed cell death (PCD). However, whether these "pro-death" ROS are a primary consequence of the antifungal mechanism of action or a secondary consequence of drug-induced PCD remains unclear. Finally, several recent studies have raised the possibility that ROS induction can serve an adaptive role, promoting antifungal drug tolerance and the evolution of drug resistance. Filling these gaps in knowledge will reveal a new aspect of fungal biology and may identify new ways to potentiate antifungal drug activity or prevent the evolution of antifungal drug resistance.


Assuntos
Antifúngicos , Oxidantes , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Equinocandinas/farmacologia , Apoptose
19.
Med Klin Intensivmed Notfmed ; 118(6): 470-476, 2023 Sep.
Artigo em Alemão | MEDLINE | ID: mdl-37644243

RESUMO

BACKGROUND: Invasive fungal infections caused by Candida or Aspergillus are associated with a high mortality. Knowledge about the risk factors, diagnosis and treatment management is crucial for improving the survival of those affected. OBJECTIVE: To give a practical overview about risk factors and treatment management of Candida and Aspergillus infections as well as providing an outlook on new antifungal agents. MATERIAL AND METHODS: Summary of the relevant literature and recommendations on candidemia and invasive candidiasis as well as invasive and chronic pulmonary aspergillosis. RESULTS: The first line treatment of candidemia and invasive candidiasis are echinocandins including caspofungin, anidulafungin and micafungin. Regular blood cultures have to be taken to determine the duration of treatment. After the first negative control blood culture treatment should be continued for another 14 days. The first line treatment of invasive pulmonary aspergillosis is azoles including voriconazole and isavuconazole. The duration of treatment depends on disease severity and is recommended for 6-12 weeks. The duration of treatment for chronic pulmonary aspergillosis is 6-12 months. Therapeutic drug monitoring is recommended for voriconazole and for posaconazole. New antifungal agents including olorofim, fosmanogepix, opelconazole, rezafungin or ibrexafungerp will broaden the therapeutic spectrum in the foreseeable future. CONCLUSION: Knowledge about risk factors and the correct treatment management is crucial for the survival of patients with invasive fungal infections.


Assuntos
Candidemia , Candidíase Invasiva , Infecções Fúngicas Invasivas , Aspergilose Pulmonar , Humanos , Antifúngicos/efeitos adversos , Candida , Voriconazol , Aspergillus , Candidíase Invasiva/diagnóstico , Candidíase Invasiva/tratamento farmacológico
20.
Infect Drug Resist ; 16: 5395-5403, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621698

RESUMO

Introduction: The emergence of resistance in Trichophyton rubrum to azoles and terbinafine has become increasingly evident in recent years, necessitating the development of novel antifungal drugs and the exploration of new indications for existing agents. Methods: In this study, we retrospectively evaluated the in vitro antifungal activity of 3 echinocandins (anidulafungin, caspofungin, and micafungin) against 73 clinical isolates of T. rubrum collected from a teaching hospital in Shanghai, China, using EUCAST E.DEF 9.3.1 with minor modification. We also reviewed the susceptibility of T. rubrum to echinocandins globally by literature searching. Results: Our findings revealed that micafungin exhibited the lowest modal minimum effective concentration (MEC) value (0.08 mg/L, n = 28) and the lowest geometric mean (GM) MEC value (0.014 mg/L) among the 73 isolates of T. rubrum tested, followed by anidulafungin with a modal MEC value of 0.016 mg/L (n = 67) and a GM of 0.018 mg/L. Caspofungin displayed a higher modal MEC value of 0.5 mg/L (n = 35) and a GM of 0.308 mg/L. Despite variations in methodologies, similar results were obtained from the review of five relevant studies included in our analysis. Discussion: Echinocandins exhibited excellent in vitro activity against T. rubrum isolates, with micafungin and anidulafungin demonstrating greater potency than caspofungin. These findings suggest that echinocandins could be considered as potential treatment options for managing recalcitrant dermatophytoses resulting from the emergence of resistance. However, it is important to note that the clinical efficacy of these in vitro findings has yet to be established and warrants further investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...