Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 203: 106011, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084776

RESUMO

To accommodate growth, insects must periodically shed their exoskeletons. In Manduca sexta, Drosophila melanogaster and Tribolium castaneum, Bursicon (Burs)/ Partner of bursicon (Pburs)-LGR2 signal is an indispensable component for the proper execution of ecdysis behavior during adult eclosion. Nevertheless, the behavioral events and the roles of bursicon signaling in other insects deserve further exploration. In the current paper, we found that the pupal-adult ecdysis in Henosepilachna vigintioctomaculata could be divided into three distinct stages, preecdysis, ecdysis and postecdysis. Preecdysis behavioral sequences included abdomen twitches, dorsal-ventral contractions and air filling that function to loosen the old cuticle. Ecdysis events began with anterior-posterior contractions that gradually split the old integument along the dorsal body midline, followed by freeing of legs and mouthparts, and culminated in detachment from pupal cuticle. Postecdysis behavioral processes contained three actions: perch selection and stretching of elytra and hindwings. RNA interference for HvBurs, HvPburs or Hvrk (encoding LGR2) strongly impaired wing expansion actions, and slightly influenced preecdysis and ecdysis behaviors. The RNAi beetles failed to extend their elytra and hindwings. In addition, injected with dsrk also caused kinked femurs and tibia. Our findings establish that bursicon pathway is involved in regulation of adult eclosion behavior, especially wing expansion motor programs. Given that wings facilitate food foraging, courtship, predator avoidance, dispersal and migration, our results provide a potential target for controlling H. vigintioctomaculata.


Assuntos
Besouros , Animais , Besouros/fisiologia , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Transdução de Sinais , Muda/fisiologia , Pupa , Interferência de RNA , Comportamento Animal , Hormônios de Invertebrado/metabolismo , Asas de Animais
2.
Artigo em Inglês | MEDLINE | ID: mdl-38909649

RESUMO

Drosophila larvae and pupae are vulnerable to seasonal abiotic stressors such as humidity and temperature. In wild low-humidity habitats, desiccation stress can occur as Drosophila larvae forsake wet food in search of a drier pupation site. Henceforth, the hypothesis that developmental humidity impacts pupation height, affecting larval and pupae water balance and fitness-related traits, was examined. Accordingly, warm-adapted Drosophilid- Zaprionus indianus from two seasons were reared under season-specific simulated conditions, with significantly varying relative humidity (summer RH: 40%; rainy RH: 80%), but nearly identical temperatures. A trade-off between pupation height and developmental humidity was observed. Drier summer conditions lead to pupae wandering farther from drier glass surfaces, resulting in higher pupation height (17.3 cm) while rainy pupae prefer wet food, resulting in lower pupation height (7.12 cm). Additionally, density-dependent pupation height was developmental humidity-specific, with most rainy-season pupae pupated on wetter food, while dry summer pupae pupated on glass surfaces or cotton. Nevertheless, flies from far pupation exhibited greater desiccation resistance, fecundity, and copulation duration than those from near pupation. The cuticular lipid mass of larvae and pupae was higher during far-than-near pupation, indicating decreased water loss rates compared to near-pupation. Finally, pupae eclosion (%) was unaffected by greater humidity (85%) in either season. Still, it considerably decreased at lower humidity (RH: 0% and 38%) for rainy pupae, further supporting the selection of low-humidity desiccation resistance in pupae. In conclusion, low humidity is crucial for survival of pre-adult stages of Zaprionus indianus under desiccation stress and for preference of pupation site.


Assuntos
Umidade , Larva , Pupa , Estações do Ano , Animais , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , Índia , Larva/fisiologia , Larva/crescimento & desenvolvimento , Dessecação , Drosophilidae/fisiologia , Drosophilidae/crescimento & desenvolvimento , Temperatura , Drosophila/fisiologia , Drosophila/crescimento & desenvolvimento
3.
Proc Natl Acad Sci U S A ; 121(11): e2308067121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442160

RESUMO

Circadian clocks impose daily periodicities to behavior, physiology, and metabolism. This control is mediated by a central clock and by peripheral clocks, which are synchronized to provide the organism with a unified time through mechanisms that are not fully understood. Here, we characterized in Drosophila the cellular and molecular mechanisms involved in coupling the central clock and the peripheral clock located in the prothoracic gland (PG), which together control the circadian rhythm of emergence of adult flies. The time signal from central clock neurons is transmitted via small neuropeptide F (sNPF) to neurons that produce the neuropeptide Prothoracicotropic Hormone (PTTH), which is then translated into daily oscillations of Ca2+ concentration and PTTH levels. PTTH signaling is required at the end of metamorphosis and transmits time information to the PG through changes in the expression of the PTTH receptor tyrosine kinase (RTK), TORSO, and of ERK phosphorylation, a key component of PTTH transduction. In addition to PTTH, we demonstrate that signaling mediated by other RTKs contributes to the rhythmicity of emergence. Interestingly, the ligand to one of these receptors (Pvf2) plays an autocrine role in the PG, which may explain why both central brain and PG clocks are required for the circadian gating of emergence. Our findings show that the coupling between the central and the PG clock is unexpectedly complex and involves several RTKs that act in concert and could serve as a paradigm to understand how circadian clocks are coordinated.


Assuntos
Antígenos de Grupos Sanguíneos , Relógios Circadianos , Animais , Relógios Circadianos/genética , Drosophila , Transdução de Sinais , Receptores Proteína Tirosina Quinases/genética , Fosforilação , Fatores de Crescimento do Endotélio Vascular
4.
J Insect Physiol ; 154: 104618, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38286255

RESUMO

With increasing soil depth, the amplitude and phase of the daily temperature cycle decreases and is delayed, respectively. The onion fly, Delia antiqua, which pupates at a soil depth of 2-20 cm, advances the eclosion phase of its circadian clock as the temperature amplitude decreases. This "temperature-amplitude response" compensates for the depth-dependent phase delay of the temperature change and ensures eclosion in the early morning. To clarify the physiological mechanisms that induce a temperature-amplitude response, we performed phase-resetting experiments using a 12-h high- or low-temperature pulse with an amplitude of 1 °C or 4 °C. Based on the results obtained, four phase transition curves and four phase response curves were constructed. These curves show that the phase of the eclosion clock shifted more as the magnitude of the temperature change increased. The 24-h temperature cycle delayed, rather than advanced, the phase of the D. antiqua circadian eclosion rhythm. Therefore, we propose that a small phase delay is caused by a small temperature amplitude at a deep site in the soil and a large phase delay is caused by a large temperature amplitude at a shallow site, leading to the temperature-amplitude response exhibited by D. antiqua.


Assuntos
Relógios Circadianos , Animais , Cebolas , Temperatura , Ritmo Circadiano/fisiologia , Solo
5.
Dev Cell ; 59(1): 125-140.e12, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38096823

RESUMO

During organ development, tissue stem cells first expand via symmetric divisions and then switch to asymmetric divisions to minimize the time to obtain a mature tissue. In the Drosophila midgut, intestinal stem cells switch their divisions from symmetric to asymmetric at midpupal development to produce enteroendocrine cells. However, the signals that initiate this switch are unknown. Here, we identify the signal as ecdysteroids. In the presence of ecdysone, EcR and Usp promote the expression of E93 to suppress Br expression, resulting in asymmetric divisions. Surprisingly, the primary source of pupal ecdysone is not from the prothoracic gland but from dorsal internal oblique muscles (DIOMs), a group of transient skeletal muscles that are required for eclosion. Genetic analysis shows that DIOMs secrete ecdysteroids during mTOR-mediated muscle remodeling. Our findings identify sequential endocrine and mechanical roles for skeletal muscle, which ensure the timely asymmetric divisions of intestinal stem cells.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Ecdisteroides , Ecdisona/metabolismo , Divisão Celular Assimétrica , Proteínas de Drosophila/genética , Músculos/metabolismo
6.
Rev. biol. trop ; 71(1)dic. 2023.
Artigo em Espanhol | LILACS, SaludCR | ID: biblio-1514960

RESUMO

Introducción: El Campamento Tortuguero de Cedeño ha sido el sitio menos investigado del Golfo de Fonseca, donde se protege a la tortuga golfina en Honduras desde 1975. Objetivo: Evaluar la anidación de la tortuga Golfina (Lepidochelys olivacea) durante la temporada de veda entre el 2011 y 2021 en Campamento Tortuguero Cedeño, Choluteca, Honduras. Métodos: Entre 2011 a 2021, se llevó a cabo el monitoreo diario de las actividades de anidación durante la veda del 1 al 25 de septiembre. Los patrullajes se realizaron entre las 6:00-18:00 h, y las 18:00-5:00 h. Se registró el número total de tortugas que anidaban y se recogieron sus huevos, que se transportaron al criadero, donde se tabularon los resultados de las puestas y las crías. Resultados: Se registró un total 1 065 tortugas de L. olivacea, 95 051 huevos recolectados, 1 065 nidos marcados en tres playas que fueron reubicados en viveros artificiales y una eclosión exitosa de 62 747 neonatos. La playa Las Doradas fue el sitio con el mayor número de tortugas anidadoras, seguido de Los Delgaditos y por último Cedeño. El promedio de la frecuencia de anidación fue de 96 nidos. Del 2011 al 2021 el esfuerzo de recolección de los nidos aumentó en un 91.6 %, pasando de 84 a 161 nidos. El número de personas patrullando se asoció con la cantidad de nidos detectados en las playas. Conclusión: Los esfuerzos de monitoreo y conservación para la especie han indicado que ha habido un incremento en la anidación de L. olivacea en las tres playas, con un mayor incremento en Playa Las Doradas. Este escenario comprueba la funcionalidad de la veda en esta zona.


Introduction: The Cedeño Turtle Camp has been the least researched site in the Fonseca Gulf, where Olive Ridley Turtles in Honduras have been protected since 1975. Objective: To evaluate the nesting of Olive Ridley turtles (Lepidochelys olivacea) during the closed season from 2011 to 2021 in Campamento Tortuguero Cedeño, Choluteca, Honduras. Methods: From 2011 to 2021, daily monitoring of nesting activities was conducted during the closed season from the 1st to 25th of September. Patrols were conducted between 6:00-18:00 h, and 18:00-5:00 h. The total number of nesting turtles was recorded, and their eggs were collected and transported to the hatchery, where clutch and hatchling performance were tabulated. Results: A total of 1 065 L. olivacea turtles were recorded, 95 051 eggs collected, 1 065 nests marked on three beaches that were relocated in artificial hatcheries and a successful hatching of 62 747 hatchlings. Las Doradas beach was the site with the highest number of nesting turtles, followed by Los Delgaditos and lastly Cedeño. The average nesting frequency was 96 nests. From 2011 to 2021 the nest collection effort increased by 91.6 %, from 84 to 161 nests. The number of people patrolling was associated with the number of nests detected on the beaches. Conclusion: Monitoring and conservation efforts for L. olivacea in the Campamento Tortuguero Cedeño show a positive trend in nesting with a greater increase in Playa Las Doradas. This scenario proves the functionality of the closed season in this area.


Assuntos
Animais , Implantação do Embrião , Tartarugas/embriologia , Honduras
7.
Insects ; 14(11)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37999092

RESUMO

The model organism Drosophila melanogaster, as a species of Holometabola, undergoes a series of transformations during metamorphosis. To deeply understand its development, it is crucial to study its anatomy during the key developmental stages. We describe the anatomical systems of the thorax, including the endoskeleton, musculature, nervous ganglion, and digestive system, from the late pupal stage to the adult stage, based on micro-CT and 3D visualizations. The development of the endoskeleton causes original and insertional changes in muscles. Several muscles change their shape during development in a non-uniform manner with respect to both absolute and relative size; some become longer and broader, while others shorten and become narrower. Muscular shape may vary during development. The number of muscular bundles also increases or decreases. Growing muscles are probably anchored by the tissues in the stroma. Some muscles and tendons are absent in the adult stage, possibly due to the hardened sclerites. Nearly all flight muscles are present by the third day of the pupal stage, which may be due to the presence of more myofibers with enough mitochondria to support flight power. There are sexual differences in the same developmental period. In contrast to the endodermal digestive system, the functions of most thoracic muscles change in the development from the larva to the adult in order to support more complex locomotion under the control of a more structured ventral nerve cord based on the serial homology proposed herein.

8.
J Therm Biol ; 118: 103721, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38016229

RESUMO

Global warming has been identified as one of the main drivers of population decline in insect pollinators. One aspect of the insect life cycle that would be particularly sensitive to elevated temperatures is the developmental transition from larva to adult. Temperature-induced modifications to the development of body parts and sensory organs likely have functional consequences for adult behaviour. To date, we have little knowledge about the effect of sub-optimal temperature on the development and functional morphology of different body parts, particularly sensory organs, in ectothermic solitary pollinators such as butterflies. To address this knowledge gap, we exposed the pupae of the butterfly Pieris napi to either 23 °C or 32 °C and measured the subsequent effects on eclosion, body size and the development of the wings, proboscis, eyes and antennae. In comparison to individuals that developed at 23 °C, we found that exposure to 32 °C during the pupal stage increased mortality and decreased time to eclose. Furthermore, both female and male butterflies that developed at 32 °C were smaller and had shorter proboscides, while males had shorter antennae. In contrast, we found no significant effect of rearing temperature on wing and eye size or wing deformity. Our findings suggest that increasing global temperatures and its corresponding co-stressors, such as humidity, will impact the survival of butterflies by impairing eclosion and the proper development of body and sensory organs.


Assuntos
Borboletas , Humanos , Masculino , Animais , Feminino , Borboletas/anatomia & histologia , Temperatura , Larva , Pupa , Umidade
9.
Insect Sci ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37751529

RESUMO

During the pupal-adult eclosion process of holometabolous insects, the old cuticle is shed and replaced by a completely different new cuticle that requires tanning and expansion, along with extensive extracellular matrix (ECM) remodeling. In vertebrates, matrix metalloproteinases (MMPs), a class of zinc-dependent endopeptidases, play key roles in regulating the ECM that surrounds cells. However, little is known about these extracellular proteinases available in insects. The small hive beetle (SHB), Aethina tumida, is a widespread invasive parasite of honey bees. In this study, 6 MMP homologs were identified in the SHB genome. RNA interference experiments showed that all 6 AtMmps are not required for the larval-pupal transition, only AtMmp2 was essential for pupal-adult eclosion in SHB. Knockdown of AtMmp2 resulted in eclosion defects and wing expansion failure, as well as mortality within 3 d of adult eclosion. Transcriptomic analysis revealed that knockdown of AtMmp2 significantly increased expression of the Toll and Imd pathways, chitin metabolism, and cross-linking (such as the pro-phenoloxidase activating cascade pathway and the tyrosine-mediated cuticle sclerotization and pigmentation pathway). These data revealed evolutionarily conserved functions of Mmp2 in controlling adult eclosion and wing expansion, also provided a preliminary exploration of the novel function of regulating Toll and Imd pathways, as well as new insights into how MMPs regulate insect development and defense barriers.

10.
Ann Pharm Fr ; 81(6): 925-934, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37442293

RESUMO

Litchi (Litchi chinensis) is a widely consumed fruit that has been used in many food and health-promoting products worldwide. Litchi is a good source of nutrients including vitamin and minerals, dietary fibers, proteins, and carbohydrates. Of note, several studies have reported that the constituents of litchi fruits elicit antioxidant properties and help to maintain blood pressure, and reduce the risk of stroke and heart attack. An unclearly explained outbreak occurred in June 2019 in Muzaffarpur (Bihar), India resulted in the death of more than 150 children in a week, followed by a total of 872 cases and 176 deaths. This outbreak was associated with the consumption of Litchi fruits and the occurrence of acute encephalitis syndrome. In this high Litchi production region, a huge number of acute encephalitis syndrome cases have been registered in children in the past two decades with high mortality due to these neurological disorders linked to the consumption of litchi. While finding out the causes for this recurrent outbreak, whether or not it is caused by a virus or the phytotoxins of litchi is to be considered critical. Amongst the probable causes were observed to be methylene cyclopropyl acetic acid and hypoglycin-A found in unripe Litchi fruits which can cause hypoglycemia and as a plausible cause of AES outbreaks. This review addresses this recurrent outbreak in-depth exploring the possible causes and discusses the possible mechanisms by which phytotoxins of litchi such as hypoglycin A and methylene cyclopropylglycine which may elicit such toxic effects.

11.
Pest Manag Sci ; 79(10): 4100-4112, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37314193

RESUMO

BACKGROUND: Light stimulation at a specific wavelength triggers various responses in insects and can be used for pest control. To develop efficient and ecofriendly photophysical pest control methods, the effects of green light on locomotion, growth (molting and eclosion) and reproduction in Nilaparvata lugens (Stål) (BPH), a major rice pest, were studied. Transcriptomics and transmission electron microscopy (TEM) were used to investigate the mechanisms involved. RESULTS: BPH adults showed disrupted daily locomotion patterns following green light treatment at night and exhibited abnormal locomotion peaks. Total 6-day locomotion of brachypterous adults was significantly greater than in the control group. The durations of growth stages 1-4 were all shorter under green light treatment than in the control, whereas the time from fourth molting to eclosion (stage 5) was significantly longer. When BPH adults under green light treatment began laying eggs, the egg hatching ratio (36.69%) was significantly lower than in the control (47.49%). Moreover, in contrast to the control, BPH molting and eclosion events tended to happen more at night. Transcriptome analysis proved that green light significantly affected the expression of genes involved in cuticular proteins, chitin deacetylase and chitinase, which are related to cuticular development. TEM observations confirmed abnormal cuticular development in nymph and adult BPHs (endocuticle, exocuticle and pore canals) under green light treatment. CONCLUSION: Green light treatment at night notably affected locomotion, growth and reproduction in BPH, thus providing a novel idea for controlling this pest. © 2023 Society of Chemical Industry.


Assuntos
Hemípteros , Oryza , Animais , Hemípteros/fisiologia , Ninfa , Reprodução
12.
J Pest Sci (2004) ; 96(3): 1077-1089, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168103

RESUMO

Plant structural defenses such as trichomes exert a significant selection pressure on insect herbivores. However, whether variation in structural defense traits affects common herbivores in related plant species is less understood. Here, we examined the role of trichomes in plant-herbivore interactions in two commonly cultivated members in Cucurbitaceae: bottle gourd (Lagenaria siceraria) and cucumber (Cucumis sativa). In common garden experiments when the two species were grown together, we observed that they differed in their attractiveness to four major herbivore species (Trichoplusia ni, Acalymma vittatum, Diaphania indica, and Anasa tristis) and, consequently, their feeding behavior. We found that L. siceraria consistently harbored less herbivores, and the two lepidopteran herbivores (T. ni and D. indica) were found to take significantly longer time to commence feeding on them, a primary mode of pre-ingestive defense function of trichomes. To tease apart structural and chemical modes of defenses, we first used scanning electron microscopy to identify, quantify, and measure trichome traits including their morphology and density. We found that C. sativa has significantly lower number of trichomes compared to L. siceraria, regardless of trichome type and leaf surface. We then used artificial diet enriched with trichomes as caterpillar food and found that trichomes from these two species differentially affected growth and development of T. ni showing cascading effects of trichomes. Taken together, we show that trichomes, independent of chemical defenses, are an effective pre- and post-ingestive defense strategy against herbivores with negative consequences for their feeding, growth, and development. Supplementary Information: The online version contains supplementary material available at 10.1007/s10340-023-01611-x.

13.
J Fungi (Basel) ; 9(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37108857

RESUMO

Aspergillus fumigatus is a ubiquitous opportunistic pathogen. We have previously reported that volatile organic compounds (VOCs) produced by A. fumigatus cause delays in metamorphosis, morphological abnormalities, and death in a Drosophila melanogaster eclosion model. Here, we developed A. fumigatus deletion mutants with blocked oxylipin biosynthesis pathways (∆ppoABC) and then exposed the third instar larvae of D. melanogaster to a shared atmosphere with either A. fumigatus wild-type or oxylipin mutant cultures for 15 days. Fly larvae exposed to VOCs from wild-type A. fumigatus strains exhibited delays in metamorphosis and toxicity, while larvae exposed to VOCs from the ∆ppoABC mutant displayed fewer morphogenic delays and higher eclosion rates than the controls. In general, when fungi were pre-grown at 37 °C, the effects of the VOCs they produced were more pronounced than when they were pre-grown at 25 °C. GC-MS analysis revealed that the wild-type A. fumigatus Af293 produced more abundant VOCs at higher concentrations than the oxylipin-deficient strain Af293∆ppoABC did. The major VOCs detected from wild-type Af293 and its triple mutant included isopentyl alcohol, isobutyl alcohol, 2-methylbutanal, acetoin, and 1-octen-3-ol. Unexpectedly, compared to wild-type flies, the eclosion tests yielded far fewer differences in metamorphosis or viability when flies with immune-deficient genotypes were exposed to VOCs from either wild-type or ∆ppoABC oxylipin mutants. In particular, the toxigenic effects of Aspergillus VOCs were not observed in mutant flies deficient in the Toll (spz6) pathway. These data indicate that the innate immune system of Drosophila mediates the toxicity of fungal volatiles, especially via the Toll pathway.

14.
Environ Entomol ; 52(3): 455-464, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37029999

RESUMO

The apple maggot fly, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae), was introduced from eastern North America into western North America via infested apples (Malus domestica Borkhausen) about 44 yr ago, where it subsequently adapted to 2 hawthorn species, Crataegus douglasii Lindley and C. monogyna Jacquin. Here, we test whether R. pomonella has also adapted to large-thorn hawthorn, Crataegus macracantha Loddiges ex Loudon, in Okanogan County, Washington State, USA. In 2020, 2021, and 2022, fruit of C. macracantha were shown to ripen in late September and were infested at rates from 0.7% to 3.0%. In laboratory rearing studies, large-thorn hawthorn flies from C. macracantha eclosed on average 9-19 days later than apple flies from earlier ripening apple (August-early September), consistent with large-thorn hawthorn flies having adapted to the later fruiting phenology of its host. In a laboratory no-choice test, significantly fewer (64.8%) large-thorn hawthorn than apple flies visited apples. In choice tests, greater percentages of large-thorn hawthorn than apple flies resided on and oviposited into C. macracantha versus apple fruit. Large-thorn hawthorn flies were also smaller in size than apple flies. Our results provide further support for the recursive adaptation hypothesis that R. pomonella has rapidly and independently specialized phenologically and behaviorally to different novel hawthorn hosts since its introduction into the Pacific Northwest of the USA, potentially leading to host race formation.


Assuntos
Crataegus , Dípteros , Malus , Tephritidae , Animais , Washington , Larva , Aclimatação
15.
Cells ; 12(4)2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36831275

RESUMO

C-type lectin X (CTL-X) plays critical roles in immune defense, cell adhesion, and developmental regulation. Here, a transmembrane CTL-X of Tribolium castaneum, TcCTL15, with multiple domains was characterized. It was highly expressed in the early and late pupae and early adults and was distributed in all examined tissues. In addition, its expression levels were significantly induced after being challenged with pathogen-associated molecular patterns (PAMPs) and bacteria. In vitro, the recombinant TcCTL15 could recognize bacteria through binding PAMPs and exhibit agglutinating activity against a narrow range of bacteria in the presence of Ca2+. RNAi-mediated TcCTL15-knockdown-larvae infected with Escherichia coli and Staphylococcus aureus showed less survival, had activated immune signaling pathways, and induced the expression of antimicrobial peptide genes. Moreover, silencing TcCTL15 caused eclosion defects by impairing ecdysone and crustacean cardioactive peptide receptors (CCAPRs). Suppression of TcCTL15 in female adults led to defects in ovary development and fecundity, accompanied by concomitant reductions in the mRNA levels of vitellogenin (TcVg) and farnesol dehydrogenase (TcFDH). These findings imply that TcCTL15 has extensive functions in developmental regulation and antibacterial immunity. Uncovering the function of TcCTL15 will enrich the understanding of CTL-X in invertebrates. Its multiple biological functions endow the potential to be an attractive target for pest control.


Assuntos
Tribolium , Animais , Feminino , Tribolium/genética , Tribolium/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Reprodução , Fertilidade/genética , Bactérias , Imunidade Inata , Lectinas Tipo C/metabolismo
16.
Conserv Biol ; 37(3): e14056, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36661061

RESUMO

Climate warming can substantially impact embryonic development and juvenile growth in oviparous species. Estimating the overall impacts of climate warming on oviparous reproduction is difficult because egg-laying events happen throughout the reproductive season. Successful egg laying requires the completion of embryonic development as well as hatching timing conducive to offspring survival and energy accumulation. We propose a new metric-egg-laying opportunity (EO)-to estimate the annual hours during which a clutch of freshly laid eggs yields surviving offspring that store sufficient energy for overwintering. We estimated the EO within the distribution of a model species, Sceloporus undulatus, under recent climate condition and a climate-warming scenario by combining microclimate data, developmental functions, and biophysical models. We predicted that EO will decline as the climate warms at 74.8% of 11,407 sites. Decreasing hatching success and offspring energy accounted for more lost EO hours (72.6% and 72.9%) than the occurrence of offspring heat stress (59.9%). Nesting deeper (at a depth of 12 cm) may be a more effective behavioral adjustment for retaining EO than using shadier (50% shade) nests because the former fully mitigated the decline of EO under the considered warming scenario at more sites (66.1%) than the latter (28.3%). We advocate for the use of EO in predicting the impacts of climate warming on oviparous animals because it encapsulates the integrative impacts of climate warming on all stages of reproductive life history.


Efectos divergentes del cambio climático sobre la oportunidad de desove de las especies en regiones cálidas y frías Resumen El calentamiento global puede tener un impacto considerable sobre el desarrollo embrionario y el crecimiento juvenil de las especies ovíparas. Es complicado estimar el impacto general que tiene el calentamiento global sobre la reproducción ovípara ya que los eventos de desove suceden durante la época reproductiva. El desove exitoso requiere que se complete el desarrollo embrionario y que el momento de eclosión sea favorable para la supervivencia de las crías y la acumulación de energía. Proponemos una nueva medida-oportunidad de desove (OD)-para estimar las horas anuales durante las cuales una puesta de huevos recién desovados produce crías que sobreviven y almacenan suficiente energía para invernar. Estimamos la OD dentro de un modelo de distribución de la especie Sceloporus undulatus bajo las recientes condiciones climáticas y bajo un escenario de calentamiento global mediante la combinación de datos microclimáticos, funciones del desarrollo y modelos biofísicos. Pronosticamos que la OD declinará conforme la temperatura aumente en 74.8% de los 11407 sitios. La disminución del éxito de eclosión y de la energía de las crías explicó más horas perdidas de OD (72.6% y 72.9%) que la presencia de estrés por calor en las crías (59.9%). Una anidación más profunda (a una profundidad de 12 cm) puede ser un ajuste conductual más efectivo para la retención de la OD que los nidos con mayor sombreado (50% de sombra) porque el primero mitigó por completo la declinación de la OD bajo el escenario de calentamiento en más sitios (66.1%) que el segundo ajuste (28.3%). Defendemos el uso de la OD en el pronóstico del impacto del calentamiento global sobre los animales ovíparos porque encapsula los impactos integrales que tiene el calentamiento global sobre todas las etapas de la vida reproductiva. 气候变化在寒冷和温暖地区对物种产卵机会造成不同影响.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Animais , Reprodução , Estações do Ano
17.
Front Physiol ; 13: 954731, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910567

RESUMO

Circadian clocks are considered an evolutionary adaptation to environmental cycles, helping organisms to adapt to daily and seasonal changes. However, most studies on the evolution of circadian rhythms have been carried out in controlled laboratory conditions; hence evolution of circadian clocks and rhythms in organisms reared under the influence of naturally varying time cues is not well understood. To address this, we reared large outbred fly populations in an outdoor enclosure on our institutional grounds in Bengaluru, southern India for about 150 generations, at the same time maintaining their ancestral control populations under standard laboratory conditions. Studying their rhythms in eclosion, a vital behavior for Drosophila, in the laboratory and semi-natural environments revealed that flies reared under semi-natural conditions differed in the timing of eclosion under semi-natural conditions in a season-dependent manner from their laboratory-reared counterparts. These differences were manifested under harsh semi-natural environments but not under mild ones or in standard laboratory conditions. Further analysis revealed that this phenotype might be responsive to seasonal changes in temperature cycles which was confirmed in the laboratory with simulated light and temperature cycles that approximated semi-natural conditions. Our results highlight key intricacies on the relative impact of intensity and timing of environmental cues for predicting the timing of Drosophila eclosion under tropical naturalistic conditions. Overall, our research uncovers previously unexplored aspects of adaptive circadian timekeeping in complex natural conditions, offering valuable insight into the evolution of clocks.

18.
J Exp Biol ; 225(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35929492

RESUMO

In ecdysozoan animals, moulting entails the production of a new exoskeleton and shedding of the old one during ecdysis. It is induced by a pulse of ecdysone that regulates the expression of different hormonal receptors and activates a peptide-mediated signalling cascade. In Holometabola, the peptidergic cascade regulating ecdysis has been well described. However, very little functional information regarding the neuroendocrine regulation of ecdysis is available for Hemimetabola, which display an incomplete metamorphosis. We use Rhodnius prolixus as a convenient experimental model to test two hypotheses: (1) the role of neuropeptides that regulate ecdysis in Holometabola is conserved in hemimetabolous insects; and (2) the neuropeptides regulating ecdysis play a role in the regulation of female reproduction during the adult stage. The RNA interference-mediated reduction of ecdysis triggering hormone (ETH) mRNA levels in fourth-instar nymphs resulted in lethality at the expected time of ecdysis. Unlike in holometabolous insects, knockdown of eth and orcokinin isoform A (oka) did not affect oviposition in adult females, pointing to a different endocrine regulation of ovary maturation. However, eth knockdown prevented egg hatching. The blockage of egg hatching appears to be a consequence of embryonic ecdysis failure. Most of the first-instar nymphs hatched from the eggs laid by females injected with dsRNA for eclosion hormone (dsEH), crustacean cardioactive peptide (dsCCAP) and dsOKA died at the expected time of ecdysis, indicating the crucial involvement of these genes in post-embryonic development. No phenotypes were observed upon corazonin (cz) knockdown in nymphs or adult females. The results are relevant for evolutionary entomology and could reveal targets for neuropeptide-based pest control tools.


Assuntos
Neuropeptídeos , Rhodnius , Animais , Feminino , Metamorfose Biológica , Muda/fisiologia , Neuropeptídeos/metabolismo , Reprodução , Rhodnius/genética
19.
Environ Sci Pollut Res Int ; 29(44): 67430-67441, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36029446

RESUMO

Azole fungicides have been essential pillars of global food security since the commercialization of triadimefon. However, the potential for fungicides to induce sublethal effects on larval development and emergence from overwintering is underresearched. We hypothesized that contact exposure to field-realistic concentrations of a broad spectrum of triazole fungicides alters the pupation and metamorphosis of crabronid wasps. Therefore, triazole fungicides shape the hymenopteran communities in agrocenoses. We applied field-realistic concentrations of three triazole fungicides, difenoconazole, penconazole, and tebuconazole, to the defecated prepupae of Pemphredon fabricii (Hymenoptera: Crabronidae). We monitored their survival, pupation, and metamorphosis into adults, including the timing of these events. All three tested triazole fungicides altered the time to the metamorphosis into adults of P. fabricii prepupae compared to the vehicle-treated controls. This effect was concentration-independent within the recommended concentration ranges for foliar applications. However, the three triazole fungicides were not associated with any significant declines in overall survival. Thus, the commonly used triazole fungicides affect the synchronization of the metamorphosis into adults with the availability of food and nesting resources of the study species. The study compounds did not affect the survival, which agrees with previous studies of other azole fungicides, which revealed effects on survival only when used in combination with other compounds. Further research should address the multiplicative effects of the triazole fungicides with other agrochemicals on the timing of the metamorphosis of bees and wasps.


Assuntos
Fungicidas Industriais , Himenópteros , Vespas , Animais , Azóis/farmacologia , Abelhas , Fungicidas Industriais/química , Metamorfose Biológica , Triazóis/química , Triazóis/toxicidade
20.
J Insect Physiol ; 142: 104429, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35964679

RESUMO

Eclosion hormone (EH) is a neurohormone that plays a key role in the regulation of insect pre-ecdysis behavior at the end of each molt. Previous research has reported more than one EH gene was found in certain insects, with their functions and mechanisms still unclear. Here, aside from the classical EH gene orthologous group, we characterized another novel orthologous cluster of eclosion hormone-like (EHL) genes in Arthropoda and investigated the roles of EHL during development in Tribolium castaneum. T. castaneum EHL (TcEHL) shows high expression levels during pupal - adult development, which also positively responded to 20-hydroxyecdysone (20E) treatment as well as RNA interference (RNAi) of ECR (20E nuclear receptor). Knockdown of TcEHL prevented the tanning of the adult cuticle and caused lethal phenotypes. Further analysis indicated that knockdown of TcEHL could upregulate expression levels of the classical TcEH, and downregulate the ecdysis behavior cascade genes, as well as tanning pathway enzymes. This suggests a critical role for TcEHL in adult eclosion and cuticle tanning. In addition, our data indicated that TcEHL is responsible for the female reproduction process. Taken together, these results suggest that TcEHL has specific roles in adult cuticle tanning during the post-eclosion process and female reproduction. They also suggest that EHL gene is the ancestral copy for the EH family and it is functionally shuffled by synfunctionalization.


Assuntos
Besouros , Hormônios de Inseto , Tribolium , Animais , Besouros/genética , Besouros/metabolismo , Ecdisterona/metabolismo , Feminino , Hormônios de Inseto/metabolismo , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA