Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.348
Filtrar
1.
Rev. biol. trop ; 72(1): e52860, ene.-dic. 2024. tab, graf
Artigo em Inglês | LILACS, SaludCR | ID: biblio-1559315

RESUMO

Abstract Introduction: Aquatic birds (AB) are usually associated with wetlands, which provide refuge, food, and/or nesting sites for resident and migratory species. Despite their ecological importance, there is little knowledge on AB in some tropical environments, such as those found on the Colima coast. Objective: To investigate the spatial and temporal composition of the AB community in Juluapan Lagoon, Colima, Central Mexican Pacific. Methods: Monthly counts were conducted between June 2017 and May 2018 during low-tide conditions to record habitat use by AB. Species richness and bird counts were obtained to compare sampling areas; mean richness and number of individuals were compared between seasons. Results: We detected 53 species and 5 750 individuals. The highest species richness and relative abundance values were obtained in winter at the lagoon area farthest from the connection with the marine system, where anthropogenic activity is lower. Diversity was greater in zones 2 and 3 in spring, summer, and fall. Muddy flats were the most used environment, and the most frequent activity was resting. Nesting activity was only recorded in the middle of the lagoon at the mangrove during spring. "Shorebirds" and "waders" were the most dominant groups in the bird community of the Juluapan lagoon. Conclusions: This coastal wetland is a site of great biological importance for aquatic birds; thus, conservation measures should be implemented, and there should be a continuous study of the effects of anthropogenic pressure.


Resumen Introducción: Las aves acuáticas (AA) son usualmente relacionadas a los humedales debido a que éstos funcionan como sitios de refugio, alimentación y anidación de diferentes especies residentes y migratorias. Sin embargo, el conocimiento sobre las aves acuáticas en algunos humedales es nulo. Objetivo: Investigar la composición espacio-temporal de la comunidad de AA en la laguna Juluapan, Colima, en el Pacífico Central Mexicano. Métodos: Entre junio de 2017 y mayo de 2018 se llevaron a cabo conteos mensuales en condiciones de marea baja para registrar el uso de hábitat de las AA. Se obtuvieron valores de riqueza de especies y número de individuos para realizar comparaciones entre zonas de muestreo, así como el promedio del número de especies y número de individuos para comparaciones entre temporadas. Resultados: Se registraron un total de 53 especies y 5 750 individuos. Los valores de riqueza de especies y densidad de individuos fueron más altos durante invierno, en la zona más alejada al ambiente marino, donde la actividad antropogénica es menor. La diversidad tuvo valores más altos en la zona 2 y 3, durante primavera, verano y otoño. El ambiente más explotado por las aves fueron las planicies lodosas; y el descanso fue la actividad más frecuente. Asimismo, la actividad de anidación sólo se registró en el manglar de la zona media durante primavera. Las "aves playeras" y "aves zancudas" fueron los grupos más predominantes en la comunidad de aves de la laguna Juluapan. Conclusiones: Este humedal costero es un sitio de gran importancia biológica para aves acuáticas, por lo que resulta necesario la implementación de medidas de conservación, así como el estudio de los efectos por la presión antropogénica.


Assuntos
Animais , Aves/classificação , Fauna Aquática , Estudos de Amostragem , México
2.
J Environ Manage ; 365: 121645, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38959768

RESUMO

Priority ecological reserves (PER) aim to protect areas with significant ecological value and crucial ecological functions, optimizing resource allocation to maximize the benefits of ecological conservation. However, most previous studies have considered only ecosystem services (ESs) in delineating PER, neglecting eco-environmental quality (EEQ). This study used the Remote Sensing-based Ecological Index (RSEI) to represent EEQ and combined it with ESs to delineate PER at the county scale in the Yellow River Basin (YRB). Additionally, it employed Multiscale Geographically Weighted Regression to identify the driving factors influencing the ESs and EEQ of PER. The results showed that: (1) From 2000 to 2020, both RSEI and the Comprehensive ESs (CES) in the YRB exhibited a fluctuating upward trend; (2) Three types of PER were extracted, with ESs reserve mainly distributed in the upstream region, EEQ reserve primarily in the middle and lower reaches, and integrated ecological reserve mainly in the midstream region, all dominated by vegetation land-use types; (3) Within the extracted PER, RSEI was mainly influenced by soil, aspect, population (pop), PM2.5, temperature (tmp), and potential evapotranspiration (pet), while CES was affected by soil, pop, PM2.5, slope, tmp, precipitation, and pet. To enhance the EEQ and ESs of the YRB, it was recommended to incorporate at least 105,379 km2 into the existing protected areas in the YRB. These areas should be subdivided based on their ecological status, with specific management measures for different types of PER. This study provides recommendations for environmental protection and land planning in the YRB, actively responding to current policies on high-quality development and ecological environmental protection in the YRB.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Rios , Monitoramento Ambiental , Ecologia , China
3.
J Environ Manage ; 365: 121499, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38959777

RESUMO

Increasing energy vulnerability can cause environmental pollution by increasing fossil fuel consumption. If it leads to cost-cutting-oriented industry growth, financial development can lead to environmental regulations being ignored, compromising environmental quality. Political globalization and economic growth can increase short-term environmental pressures, straining long-term ecological balance and causing habitat loss and pollution. This study investigates the impact of energy vulnerability, financial development, and political globalization on environmental sustainability in Turkey for the 2000-2019 period using with wavelet quantile-based techniques. According to results, while the negative effect of energy vulnerability on environmental quality is lower in the short term, the size of the effect increases in the medium and long term. In addition, at low quantiles of environmental quality, the negative effect of financial development is low in the short and long term, while the effect becomes evident in the long term. Moreover, the effects of political globalization on environmental quality are positive in all quantiles. Additionally, the harmful effects of economic growth are more evident at lower quantiles of environmental quality. Turkey should increase its clean energy investments by using its geographically advantageous location. Policymakers should also prioritize environmental regulations and promote sustainable practices in industries. Incentives for cleaner production technologies and environmentally friendly initiatives can help steer the financial sector towards more responsible and environmentally friendly practices. Additionally, the study suggests that increasing institutional capacity and aligning national policies with international agreements can accelerate the positive effects of political globalization.


Assuntos
Desenvolvimento Econômico , Poluição Ambiental , Internacionalidade , Turquia , Conservação dos Recursos Naturais
4.
Sci Rep ; 14(1): 16221, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003385

RESUMO

In East Africa, community-based conservation models (CBCMs) have been established to support the conservation of wildlife in fragmented landscapes like the Tarangire Ecosystem, Tanzania. To assess how different management approaches maintained large herbivore populations, we conducted line distance surveys and estimated seasonal densities of elephant, giraffe, zebra, and wildebeest in six management units, including three CBCMs, two national parks (positive controls), and one area with little conservation interventions (negative control). Using a Monte-Carlo approach to propagate uncertainties from the density estimates and trend analysis, we analyzed the resulting time series (2011-2019). Densities of the target species were consistently low in the site with little conservation interventions. In contrast, densities of zebra and wildebeest in CBCMs were similar to national parks, providing evidence that CBCMs contributed to the stabilization of these migratory populations in the central part of the ecosystem. CBCMs also supported giraffe and elephant densities similar to those found in national parks. In contrast, the functional connectivity of Lake Manyara National Park has not been augmented by CBCMs. Our analysis suggests that CBCMs can effectively conserve large herbivores, and that maintaining connectivity through CBCMs should be prioritized.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Herbivoria , Animais , Conservação dos Recursos Naturais/métodos , Tanzânia , Elefantes/fisiologia , Dinâmica Populacional , Densidade Demográfica , Girafas/fisiologia , Equidae/fisiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-38965110

RESUMO

Phthalate esters (PAEs), widely recognized as synthetic organic compounds with extensive production and utilization, are known to disrupt physiological processes in both animals and humans, even at low environmental concentrations. This study investigated the occurrence, distribution, and potential ecological risk of five representative PAEs (DMP, Dimethyl phthalate; DEP, Diethyl phthalate; DBP, Dibutyl phthalate; DiBP, Diisobutyl phthalate; DEHP, Bis(2-ethylhexyl) phthalate) in a typical lake (Chaohu Lake, China). It was found that PAEs were detected in both the aqueous (1.09-6.402 µg/L) and solid phases (0.827-6.602 µg/g) of Chaohu Lake. Notably, DiBP and DBP were the predominant PAEs in the water, and DiBP and DEHP were the most prevalent in the sediments. The concentrations of PAEs exhibited significant seasonal variations in the aqueous phases, with total PAEs in summer being nearly twice those in winter. Toxicity assessments revealed that DEHP, DBP, and DiBP posed high risks to the survival of three indicator organisms (algae, Daphnia, and fish) in the aqueous phase. In the solid phase, the exceeding rate of DiBP was as high as 92.9%. On the other hand, DBP and DEHP generally presenting moderate risk, although some sites were identified as high-risk. This study's analysis of PAEs concentrations in Chaohu Lake reveals a discernible increasing trend when compared with historical data. These findings underscore the urgent need for interventions to mitigate the ecological threats posed by PAEs in Chaohu Lake.

6.
Anat Histol Embryol ; 53(4): e13085, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38965917

RESUMO

At the top of many ecosystems, raptors, also known as birds of prey, hold major influence. They shape their surroundings through their powerful hunting skills and complex interactions with their environment. This study investigates the beak morphology of four prominent raptor species, Golden eagle (Aquila chrysaetos), Common buzzard (Buteo buteo), Peregrine falcon (Falco peregrinus) and Common kestrel (Falco tinnunculus), found in Türkiye. By employing geometric morphometric methods, we investigate shape variations in the beaks of these species to unravel the adaptive significance of their cranial structures. This analysis reveals distinct beak morphologies among the studied raptors, reflecting adaptations to their feeding habits, hunting techniques and ecological niches. The results from Principal component analysis and Canonical variate analysis demonstrate significant differences in beak morphology between the Falconiformes and Accipitriformes clades, as well as among all three groups. The overall mean beak shapes of Golden Eagles are quite similar to Common Buzzards, with both species having longer beaks. In contrast, Falcons exhibit a distinctly different beak morphology, characterized by wider and shorter beaks. Changes in beak shape can lead to changes depending on the skull. It is thought that skull shape variations among predator families may have an impact on beak shape. These findings highlight the importance of integrating morphometric analyses with ecological insights to enhance our understanding of the evolutionary processes shaping raptor beak morphology.


Assuntos
Bico , Falconiformes , Animais , Bico/anatomia & histologia , Falconiformes/anatomia & histologia , Falconiformes/fisiologia , Aves Predatórias/anatomia & histologia , Crânio/anatomia & histologia , Análise de Componente Principal , Águias/anatomia & histologia , Águias/fisiologia , Comportamento Predatório/fisiologia , Especificidade da Espécie
7.
Mol Ecol ; : e17464, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994885

RESUMO

Adaptive evolution can facilitate species' range expansions across environmentally heterogeneous landscapes. However, serial founder effects can limit the efficacy of selection, and the evolution of increased dispersal during range expansions may result in gene flow swamping local adaptation. Here, we study how genetic drift, gene flow and selection interact during the cane toad's (Rhinella marina) invasion across the heterogeneous landscape of Australia. Following its introduction in 1935, the cane toad colonised eastern Australia and established several stable range edges. The ongoing, more rapid range expansion in north-central Australia has occurred concomitant with an evolved increase in dispersal capacity. Using reduced representation genomic data of Australian cane toads from the expansion front and from two areas of their established range, we test the hypothesis that high gene flow constrains local adaptation at the expansion front relative to established areas. Genetic analyses indicate the three study areas are genetically distinct but show similar levels of allelic richness, heterozygosity and inbreeding. Markedly higher gene flow or recency of colonisation at the expansion front have likely hindered local adaptation at the time of sampling, as indicated by reduced slopes of genetic-environment associations (GEAs) estimated using a novel application of geographically weighted regression that accounts for allele surfing; GEA slopes are significantly steeper in established parts of the range. Our work bolsters evidence supporting adaptation of invasive species post-introduction and adds novel evidence for differing strengths of evolutionary forces among geographic areas with different invasion histories.

8.
Glob Chang Biol ; 30(7): e17397, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38984852

RESUMO

Restoring biodiversity-based resilience and ecosystem multi-functionality needs to be informed by more accurate predictions of animal biodiversity responses to environmental change. Ecological models make a substantial contribution to this understanding, especially when they encode the biological mechanisms and processes that give rise to emergent patterns (population, community, ecosystem properties and dynamics). Here, a distinction between 'mechanistic' and 'process-based' ecological models is established to review existing approaches. Mechanistic and process-based ecological models have made key advances to understanding the structure, function and dynamics of animal biodiversity, but are typically designed to account for specific levels of biological organisation and spatiotemporal scales. Cross-scale ecological models, which predict emergent co-occurring biodiversity patterns at interacting scales of space, time and biological organisation, is a critical next step in predictive ecology. A way forward is to first capitalise on existing models to systematically evaluate the ability of scale-explicit mechanisms and processes to predict emergent patterns at alternative scales. Such model intercomparisons will reveal mechanism to process transitions across fine to broad scales, overcome approach-specific barriers to model realism or tractability and identify gaps which necessitate the development of new fundamental principles. Key challenges surrounding model complexity and uncertainty would need to be addressed, and while opportunities from big data can streamline the integration of multiple scale-explicit biodiversity patterns, ambitious cross-scale field studies are also needed. Crucially, overcoming cross-scale ecological modelling challenges would unite disparate fields of ecology with the common goal of improving the evidence-base to safeguard biodiversity and ecosystems under novel environmental change.


Assuntos
Biodiversidade , Animais , Modelos Biológicos , Ecossistema , Modelos Teóricos
9.
Pain Rep ; 9(4): e1172, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39015820

RESUMO

Introduction: Psychological, social, and lifestyle factors contribute to the knee osteoarthritis (OA) pain experience. These factors could be measured more accurately using smartphone ecological momentary assessment (EMA). Objectives: The objective of this study was to characterise the pain experiences of those with knee OA by a smartphone EMA survey and explain how momentary psychological and social states influence knee OA pain experiences. Methods: A smartphone EMA survey was designed and piloted. Eligible participants completed smartphone EMA assessing the knee OA pain experience 3 times daily for 2 weeks. Descriptive statistics were used to characterise factors involved in knee OA pain followed by the development of mixed-effects location scale models to explore heterogeneity and relationships between symptoms involved in the knee OA pain experience. Results: Eighty-six community-dwelling volunteers with knee OA were recruited. Pain, psychosocial, and lifestyle factors involved in knee OA pain experience were heterogeneous and variable. Those with greater variability in pain, fatigue, negative affect, and stress had worse levels of these symptoms overall. In addition, fatigue, negative affect, stress, anxiety, loneliness, and joint stiffness demonstrated within-person relationships with knee OA pain outcomes. Conclusions: Knee OA pain is a heterogeneous biopsychosocial condition. Momentary experiences of psychological, social, fatigue, and joint stiffness explain individual and between-individual differences in momentary knee OA pain experiences. Addressing these momentary factors could improve pain and functional outcomes in those with knee OA. Validation studies, including individuals with more severe knee OA presentations, are required to support findings and guide clinical interventions to improve outcomes for those with knee OA.

10.
J Environ Manage ; 366: 121813, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39018854

RESUMO

For many years, the Weihe River Basin (WRB) has struggled to achieve a balance between ecological protection and economic growth. Constructing an Ecological Security Pattern (ESP) is extremely important for ensuring ecological security (ES). This study employed a coupling of multi-objective programming (MOP) and the patch-generating land use simulation (PLUS) model to project land use change (LUCC) in 2040 across three scenarios. Leveraging circuit theory, we generated ecological corridors and identified key ecological nodes, enabling a comparative analysis of ESPs within the WRB. The main results showed that: (1) The Ecological Protection (EP) scenario showed the highest proportions of forestland, grassland, and water, indicating an optimal ecological environment. Conversely, the Economic Development (ED) scenario features the greatest proportion of construction land, particularly evident in the rapid urban expansion. The Natural Development (ND) scenario exhibits a more balanced change, aligning closely with historical trends. (2) The ecological source areas in the EP scenario is 13,856.70 km2, with the largest and most intact patch area. The ecological source patches that have been identified in the ED scenario exhibit fragmentation and dispersion, encompassing a total area of 8018.82 km2. The ecological source areas in the ND scenario is most similar to the actual situation in 2020, encompassing 8474.99 km2. (3) The EP scenario demonstrates minimal landscape fragmentation. The ED scenario presents a more intricate corridor pattern, hindering species and energy flow efficiency. The ND scenario is more similar to the actual distribution in 2020. Protecting and restoring key ecological nodes, and ensuring the integrity and connectivity of ecological sources are crucial for ESP optimization in various scenarios. Combining all results, we categorize the WRB's spatial pattern into "three zones, three belts, and one center" and offer strategic suggestions for ecological preservation, promoting sustainable local ecological and socioeconomic development.

11.
Curr Opin Psychol ; 58: 101845, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39018885

RESUMO

The peak-end rule, a memory heuristic in which the most emotionally salient part of an experience (i.e., peak) and conclusion of an experience (i.e., end) are weighted more heavily in summary evaluations, has been understudied in mental health contexts. The recent growth of intensive longitudinal methods has provided new opportunities for examining the peak-end rule in the retrospective recall of mental health symptoms, including measures often used in measurement-based care initiatives. Additionally, principles of the peak-end rule have significant potential to be applied to exposure-based therapy procedures. Additional research is needed to better understand the contexts in which, and persons for whom, the peak-end rule presents a greater risk of bias, to ultimately improve assessment strategies and clinical care.

12.
Huan Jing Ke Xue ; 45(7): 4112-4121, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022959

RESUMO

Clarifying the spatio-temporal evolution of the ecological environment quality of a watershed and its response to the natural environment and human factors are crucial for policy implementation in the ecological environment of the watershed. Using the Google earth engine(GEE) to establish a remote sensing ecological index (RSEI), the spatio-temporal changes in the ecological environment quality of the Huaihe River Basin from 2002 to 2022 were evaluated combined with trend analysis, variation coefficient, and Hurst index. The main driving factors of spatial differentiation of RSEI were explored using the geographic detector. The results showed that: ① In the past 21 years, RSEI of the Huaihe River Basin had generally improved, but it showed a gradual upward-downward trend. Overall, the area of poor and less poor grades decreased, the area of medium grades increased, and the area of good and excellent grades increased. The improved area accounted for 55.93%, and the degraded area accounted for 22.01%. ② In terms of spatial distribution, RSEI gradually deteriorated from east to west (except in the northwest and southwest marginal mountainous areas). The stability was better in the east and worse in the western and central areas. In the future, the ecological quality change in the basin was prone to be anti-sustainable and mainly improved. ③ Factor detection results showed that the spatial differentiation of RSEI in the basin was mainly driven by vegetation factors, followed by altitude. The interaction between two factors enhanced the driving force for RSEI spatial differentiation, in which the interaction between vegetation factor and elevation had the strongest driving force for RSEI spatial differentiation, reaching 86.3%.

13.
Huan Jing Ke Xue ; 45(7): 4122-4136, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022960

RESUMO

Assessment and monitoring of the quality of the ecological environment in the area is a very important fundamental task in the development of ecological civilization in the Xiaojiang River Basin in Yunnan Province, which serves as a demonstration area for ecological restoration in the upper reaches of the Yangtze River. The Landsat remote sensing images from 1990, 1995, 2000, 2005, 2010, 2014, 2018, and 2022 were chosen, and the four indexes of greenness (NDMVI), humidity (WET), dryness (NDBSI), and heat (LST) were extracted. The remote sensing ecological index (RSEI) was created using the principal component analysis method, then the spatial and temporal patterns and trends of ecological quality in the Xiaojiang River Basin between 1990 and 2022 were examined using the GEE platform, ArcGIS 10.7 platform, and Python platform, combining the analysis methods of geographic information mapping, coefficient of variation, Mann-Kendall trend test, Sen's slope estimation, and Hurst's index. The findings demonstrated that: ① the ecological quality of the study area had more obvious geographic differentiation spatially, and by 2022, the areas with excellent and good ecological quality grades were primarily distributed in the areas with better alpine vegetation cover, and those with poor ecological quality were primarily distributed in the areas of the mudslide ravines with relatively low terrain. On a time scale, the study area's RSEI index increased from 0.41 in 1990 to 0.55 in 2022, with a fluctuating overall trend of ecological quality improvement and an average increase of 0.048(10 a) -1; this progress was directly related to a number of ecological construction initiatives that have been energetically carried out, such as converting farms to forests, preventing mudslides, saving soil and water, managing heavy metal contamination, etc. ② The RSEI was more appropriate for the evaluation of ecological quality in alpine ravine areas because, in comparison to the NDVI index, the NDVMI adopted in this study was more sensitive to vegetation information in topographic undulation areas, especially in shaded areas, and could more accurately and quantitatively describe the vegetation information. ③ The RSEI in the Xiaojiang River Basin had a mean coefficient of variation of 0.202. Overall, its volatility was low, and its high volatility was mostly concentrated in the mudslide gully area along both sides of the Xiaojiang River fracture zone, where the surface was made up of bare rocks and sediment that was easily impacted by the changing of the seasons, the climate, and human activity. ④ The quality of the ecological environment in the region was significantly improving, with the rising area reaching 85.72% of the total area and the declining area accounting for approximately 10.15% of the total area. The future trend of change will be dominated by ongoing improvement and future degradation, accounting for 44.75% and 39.97%, respectively. It is important to pay close attention to areas that could potentially degrade. The findings of this study can serve as a theoretical foundation for additional ecological environmental conservation, management, and sustainable development in the Xiaojiang River Basin.

14.
Huan Jing Ke Xue ; 45(7): 4266-4278, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022972

RESUMO

Antimony (Sb) is a major pollutant that poses a serious threat to the environment in the mining and processing of nonferrous metals, coexisting with sulfide and oxide of arsenic (As). Microorganisms play an important role in the migration, transformation, and repair of metals in soil. The ecological effects of bioavailable Sb and As on the microbial community in antimony mining areas(mining and smelting areas)are still poorly understood. The Wenzel method and high-throughput 16S rDNA amplicon were used to characterize soil pollution characteristics in different functional areas, and the relationship between the bacterial community and bioavailable concentrations have been investigated comprehensively. The results showed that: Chemical speciation of Sb and As were amorphous, and poorly crystalline hydrous oxides of Fe and Al (F3) > well-crystallized hydrous oxides of Fe and Al (F4) > residual phases (F5) > specifically adsorbed (F2) > non-specifically adsorbed (F1). According to the estimation of the potential ecological risk index (RI) and geo-accumulation index (Igeo), the Sb pollution degree was: smelting area > mining area > contrast area, in which the smelting area showed serious pollution, and the mining area showed moderate to severe pollution. The As pollution degree was: mining area > smelting area > contrast area, in which the mining area and smelting area showed moderate to severe pollution. High-throughput 16S rDNA amplicon showed that Proteobacteria was the most abundant phylum in mining and smelting areas; Kaistobacter, Pseudomonas, Sphingomonas, and Lysobacter were the most abundant microbial genera; Geobacter and Luteolibacter had a high LDA score in mining areas; and Thiobacillus had a high LDA score in antimony-contaminated areas. Spearman correlation analysis, variation partitioning analysis (VPA), and random forest (RF) analysis showed that Sb, As, bioavailable antimony [Sb (Bio)], and bioavailable arsenic [As (Bio)]were the main factors affecting the microbial community structure in different functional areas of antimony ore. Redundancy analysis (RDA) indicated that Sb and its bioavailable concentrations showed uniformly negative associations with the relative abundance of bacteria Nitrospirae and showed a significant positive correlation with Thiobacillus (P<0.05). The in-depth research on the ecological effects of bioavailable Sb and As on the bacterial community provides references and new perspectives for environmental monitoring and management.


Assuntos
Antimônio , Arsênio , Monitoramento Ambiental , Mineração , Microbiologia do Solo , Poluentes do Solo , China , Poluentes do Solo/análise , Bactérias/classificação , Bactérias/genética
15.
Environ Res ; 260: 119593, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002634

RESUMO

Both autotrophic and heterotrophic denitrification are known as important bioprocesses of microbe-mediated nitrogen cycle in natural ecosystems. Actually, mixotrophic denitrification co-driven by organic matter and reduced sulfur substances are also common, especially in hypoxic environments such as estuarine sediments. However, carbon, nitrogen and sulfur co-metabolism during mixotrophic denitrification in natural water ecosystems has rarely been reported in detail. Therefore, this study investigated the co-metabolism of carbon, nitrogen and sulfur using samples collected from four distinct natural water ecosystems. Results demonstrated that samples from various sources all exhibited the ability for co-metabolism of carbon, nitrogen and sulfur. Microbial community analysis showed that Pseudomonas and Paracoccus were dominant bacteria ranging from 65.6% to 75.5% in mixotrophic environment. Enterobacter sp. HIT-SHJ4, a mixotrophic denitrifying strain which owned the capacity for co-metabolism of carbon, nitrogen and sulfur, was isolated and reported here for the first time. The strain preferred methanol as its carbon source and demonstrated remarkable efficiency for removing sulfide and nitrate with below 100 mg/L sulfide. Under weak acid conditions (pH 6.5-7.0), it exhibited enhanced capability in converting sulfide to elemental sulfur. Its bioactivity was evident within a temperature from 25 °C to 40 °C and C/N ratios from 0.75 to 3. This study confirmed the widespread presence of microbial-mediated synergistic carbon, nitrogen and sulfur metabolism in natural aquatic ecosystems. HIT-SHJ4 emerges as a novel strain, shedding light on carbon, nitrogen and sulfur co-metabolism in natural water bodies. Furthermore, it also serves as a promising candidate microorganism for in-situ ecological remediation, particularly in dealing with contamination posed by nitrate, sulfide, and organic matter.

16.
Environ Pollut ; 359: 124553, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39009300

RESUMO

The long-term study of the chemical composition of river sediments within urban areas and the establishment of baseline values of major and trace elements is an important task. Therefore, this study aims to provide a geochemical characterization of the sediments, establish a local geochemical baseline, unveil geochemical associations of elements, study the trend of changes in element pollution levels and the associated ecological risks. The results indicate that the change of the local physical characteristics across the river flow (canyon-flat relief surrounded by buildings-reservoir-flat relief under the influence of contamination sources) and locations of contamination sources conditioned the formation of positive extreme values detected for the majority of the studied elements. An analogous variation pattern of major and trace elements median values (2019-2023) was observed for Cr, V, Cu, Fe, Co, Zr Mn, Zn, K, Ba over 5 years representing the geochemical signature of the local geological composition (basalt, andesibasalts, andesite, tuff, K-feldspar). The pollution level and the ecological risk assessment showed that during the study period moderately and highly hazardous levels of multi-element pollution were detected in the southwestern part of the river located near the industrial enterprises. In the meantime, moderate (in 2020) and considerable (in 2021) ecological risk levels were observed at the site near the artificial reservoir. A hierarchical clustering combined with the geochemical ratio analysis reveals three groups of geochemical associations that have a natural (Fe, Mn, Co, V, Ti, Zr, K, Rb, Ba); anthropogenic (Cu, Zn, Pb, Mo) and mixed (Ca, Sr, Cr) origin. Moreover, the anthropogenic association shows affinity to Ca hence denominating the dominant role of carbonates in the fixation and coprecipitation of Cu2+, Pb2+, Mo2+, Zn2+ ions. The comparison of the baseline values of the studied elements with the upper continental crust values confirmed their applicability for differentiation of their origin.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38973333

RESUMO

The introduction of invasive species has become an increasing environmental problem in freshwater ecosystems due to the high economic and ecological impacts it has generated. This systematic review covers publications from 2010 to 2020, focusing on non-native invasive freshwater bivalves, a particularly relevant and widespread introduced taxonomic group in fresh waters. We collected information on the most studied species, the main objectives of the studies, their geographical location, study duration, and type of research. Furthermore, we focused on assessing the levels of ecological evidence presented, the type of interactions of non-native bivalves with other organisms and the classification of their impacts. A total of 397 publications were retrieved. The studies addressed a total of 17 species of non-native freshwater bivalves; however, most publications focused on the species Corbicula fluminea and Dreissena polymorpha, which are recognised for their widespread distribution and extensive negative impacts. Many other non-native invasive bivalve species have been poorly studied. A high geographical bias was also present, with a considerable lack of studies in developing countries. The most frequent studies had shorter temporal periods, smaller spatial extents, and more observational data, were field-based, and usually evaluated possible ecological impacts at the individual and population levels. There were 94 publications documenting discernible impacts according to the Environmental Impact Classification for Alien Taxa (EICAT). However, 41 of these publications did not provide sufficient data to determine an impact. The most common effects of invasive bivalves on ecosystems were structural alterations, and chemical and physical changes, which are anticipated due to their role as ecosystem engineers. Despite a considerable number of studies in the field and advances in our understanding of some species over the past decade, long-term data and large-scale studies are still needed to understand better the impacts, particularly at the community and ecosystem levels and in less-studied geographic regions. The widespread distribution of several non-native freshwater bivalves, their ongoing introductions, and high ecological and economic impacts demand continued research. Systematic reviews such as this are essential for identifying knowledge gaps and guiding future research to enable a more complete understanding of the ecological implications of invasive bivalves, and the development of effective management strategies.

18.
Sci Total Environ ; 947: 174506, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971251

RESUMO

Long-term coal mining activities in abandoned coal mining areas have resulted in the migration of large quantities of heavy metals into the surrounding soil environment, posing a threat to the regional ecological environment. This study focuses on the surface soil collected from a typical abandoned coal mining area. Methods such as the pollution index (PI) and potential ecological risk index (RI) were used to comprehensively evaluate the pollution levels and ecological risks of soil heavy metals. Geostatistical analysis and the APCS-MLR model were used to quantify the sources of soil heavy metals, and Nemerow integrated ecological risk (NIRI) model was coupled to apportion the ecological risks from different pollution sources. The results indicate that the average concentrations of Cd, As, and Zn are 4.58, 2.44, and 1.67 times the soil background values, respectively, while the concentrations of other heavy metals are below the soil background values. The soil of study area is strongly polluted by heavy metals, with the pollution level and ecological risk of Cd being significantly higher than those of other heavy metals. The NIRI calculation results show that the overall comprehensive ecological risk level is considerable, with sample points classified as relatively considerable, moderate, and low at 60.53 %, 36.84 %, and 2.63 %, respectively. The sources of soil heavy metals can be categorized into four types: traffic activities, natural sources, coal gangue accumulation, and a combined source of coal mining and agricultural activities, with contribution rates of 35.3 %, 36.1 %, 19.5 %, and 9.1 %, respectively. The specific source ecological risk assessment results indicate that coal gangue accumulation contributes the most to ecological risk (36.4 %) and should be prioritized for pollution control, with Cd being the priority control element for ecological risk. The findings provide theoretical support for the refined management of soil heavy metal pollution in abandoned coal mining areas.

19.
Ecol Evol ; 14(7): e11325, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39005882

RESUMO

Hemp (Cannabis sativa L.) has historically played a vital role in agriculture across the globe. Feral and wild populations have served as genetic resources for breeding, conservation, and adaptation to changing environmental conditions. However, feral populations of Cannabis, specifically in the Midwestern United States, remain poorly understood. This study aims to characterize the abiotic tolerances of these populations, estimate suitable areas, identify regions at risk of abiotic suitability change, and highlight the utility of ecological niche models (ENMs) in germplasm conservation. The Maxent algorithm was used to construct a series of ENMs. Validation metrics and MOP (Mobility-oriented Parity) analysis were used to assess extrapolation risk and model performance. We also projected the final projected under current and future climate scenarios (2021-2040 and 2061-2080) to assess how abiotic suitability changes with time. Climate change scenarios indicated an expansion of suitable habitat, with priority areas for germplasm collection in Indiana, Illinois, Kansas, Missouri, and Nebraska. This study demonstrates the application of ENMs for characterizing feral Cannabis populations and highlights their value in germplasm conservation and breeding efforts. Populations of feral C. sativa in the Midwest are of high interest, and future research should focus on utilizing tools to aid the collection of materials for the characterization of genetic diversity and adaptation to a changing climate.

20.
Am Nat ; 204(2): E28-E41, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39008841

RESUMO

AbstractIndividual variability in mortality is widespread in nature. The general rule is that larger organisms have a greater chance of survival than smaller conspecifics. There is growing evidence that differential mortality between developmental stages has important consequences for the ecology and evolution of populations and communities. However, we know little about how it can influence diversification. Using an eco-evolutionary model of diversification that considers individual variability in mortality, I show that commonly observed differences in mortality between juveniles and adults can facilitate adaptive diversification. In particular, diversification is expected to be less restricted when mortality is more biased toward juveniles. Additionally, I find stage-specific differences in metabolic cost and foraging capacity to further facilitate diversification when adults are slightly superior competitors, due to either a lower metabolic cost or a higher foraging capacity, than juveniles. This is because by altering the population composition, differential stage-specific mortality and competitive ability can modulate the strength of intraspecific competition, which in turn determines the outcome of diversification. These results demonstrate the strong influence that ecological differences between developmental stages have on diversification and highlight the need for integrating developmental processes into diversification theory.


Assuntos
Evolução Biológica , Modelos Biológicos , Animais , Mortalidade , Biodiversidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA