Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Biopharm Drug Dispos ; 45(3): 138-148, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38823029

RESUMO

Bumetanide is used widely as a tool and off-label treatment to inhibit the Na-K-2Cl cotransporter NKCC1 in the brain and thereby to normalize intra-neuronal chloride levels in several brain disorders. However, following systemic administration, bumetanide only poorly penetrates into the brain parenchyma and does not reach levels sufficient to inhibit NKCC1. The low brain penetration is a consequence of both the high ionization rate and plasma protein binding, which restrict brain entry by passive diffusion, and of brain efflux transport. In previous studies, bumetanide was determined in the whole brain or a few brain regions, such as the hippocampus. However, the blood-brain barrier and its efflux transporters are heterogeneous across brain regions, so it cannot be excluded that bumetanide reaches sufficiently high brain levels for NKCC1 inhibition in some discrete brain areas. Here, bumetanide was determined in 14 brain regions following i.v. administration of 10 mg/kg in rats. Because bumetanide is much more rapidly eliminated by rats than humans, its metabolism was reduced by pretreatment with piperonyl butoxide. Significant, up to 5-fold differences in regional bumetanide levels were determined with the highest levels in the midbrain and olfactory bulb and the lowest levels in the striatum and amygdala. Brain:plasma ratios ranged between 0.004 (amygdala) and 0.022 (olfactory bulb). Regional brain levels were significantly correlated with local cerebral blood flow. However, regional bumetanide levels were far below the IC50 (2.4 µM) determined previously for rat NKCC1. Thus, these data further substantiate that the reported effects of bumetanide in rodent models of brain disorders are not related to NKCC1 inhibition in the brain.


Assuntos
Encéfalo , Bumetanida , Animais , Bumetanida/farmacologia , Bumetanida/farmacocinética , Bumetanida/administração & dosagem , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Masculino , Ratos , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacocinética , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Inibidores de Simportadores de Cloreto de Sódio e Potássio/administração & dosagem , Ratos Sprague-Dawley , Distribuição Tecidual , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos
2.
Pharm Res ; 40(5): 1259-1270, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36977814

RESUMO

OBJECTIVE: In previous studies, we established and validated three Madin Darby Canine Kidney MDCKII cell lines, recombinantly modified with zinc finger nuclease (ZFN) technology. Here, we investigated the applicability of seeding these three canine P-gp deficient MDCK_ZFN cell lines, directly from frozen cryopreserved stocks without previous cultivation for efflux transporter and permeability studies. This technique is referred to as "assay-ready" and allows for highly standardized conduction of cell-based assays and shorter cultivation cycles. METHODS: To obtain a rapid fitness of the cells for that purpose, a very gentle freezing and thawing protocol was applied. Assay-ready MDCK_ZFN cells were tested in bi-directional transport studies and compared to their traditionally cultured counterparts. Long-term performance robustness, human effective intestinal permeability (Peff) predictability and batch to batch variability were assessed. RESULTS: Efflux ratios (ER) and apparent permeability (Papp) results were highly comparable between assay-ready and standard cultured cell lines with R2 values of 0.96 or higher. Papp to Peff correlations obtained from passive permeability with non-transfected cells were comparable independent of the cultivation regime. Long-term evaluation revealed robust performance of assay-ready cells and reduced data variability of reference compounds in 75% of cases compared to standard cultured MDCK_ZFN cells. CONCLUSION: Assay-ready methodology for handling MDCK_ZFN cells allows more flexibility in assay planning and reduces performance fluctuations in assays caused by cell aging. Therefore, the assay-ready principle has proven superior over conventional cultivation for MDCK_ZFN cells and is considered as a key technology to optimize processes with other cellular systems.


Assuntos
Células Madin Darby de Rim Canino , Humanos , Animais , Cães , Fluxo de Trabalho , Reprodutibilidade dos Testes , Células CACO-2 , Transporte Biológico
3.
Pharmaceutics ; 15(1)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36678911

RESUMO

P-glycoprotein (P-gp) limits the oral absorption of drug substances. Potent small molecule P-gp inhibitors (e.g., zosuquidar) and nonionic surfactants (e.g., polysorbate 20) inhibit P-gp by proposedly different mechanisms. Therefore, it was hypothesised that a combination of zosuquidar and polysorbate 20 may potentiate inhibition of P-gp-mediated efflux. P-gp inhibition by zosuquidar and polysorbate 20 in combination was assessed in a calcein-AM assay and in a transcellular etoposide permeability study in MDCKII-MDR1 and Caco-2 cells. Furthermore, solutions of etoposide, zosuquidar, and polysorbate 20 were orally administered to Sprague Dawley rats. Zosuquidar elicited a high level of nonspecific adsorption to various labware, which significantly affected the outcomes of the in vitro studies. Still, at certain zosuquidar and polysorbate 20 concentrations, additive P-gp inhibition was observed in vitro. In vivo, however, oral etoposide bioavailability decreased by coadministration of both zosuquidar and polysorbate 20 when compared to coadministration of etoposide with zosuquidar alone. For future formulation development, the present study provided important and novel knowledge about nonspecific zosuquidar adsorption, as well as insights into combinational P-gp inhibition by a third-generation P-gp inhibitor and a P-gp-inhibiting nonionic surfactant.

4.
Artigo em Inglês | MEDLINE | ID: mdl-36554670

RESUMO

Aflatoxins are natural toxicants produced mainly by species of the Aspergillus genus, which contaminate virtually all feeds and foods. Apart from their deleterious health effects on humans and animals, they can be secreted unmodified or carried over into the milk of lactating females, thereby posing health risks to suckling babies. Aflatoxin M1 (AFM1) is the major and most toxic aflatoxin type after aflatoxin B1 (AFB1). It contaminates human breast milk upon direct ingestion from dairy products or by carry-over from the parent molecule (AFB1), which is hydroxylated in the liver and possibly in the mammary glands by cytochrome oxidase enzymes and then excreted into breast milk as AFM1 during lactation via the mammary alveolar epithelial cells. This puts suckling infants and children fed on this milk at a high risk, especially that their detoxifying activities are still weak at this age essentially due to immature liver as the main organ responsible for the detoxification of xenobiotics. The occurrence of AFM1 at toxic levels in human breast milk and associated health conditions in nursing children is well documented, with developing countries being the most affected. Different studies have demonstrated that contamination of human breast milk with AFM1 represents a real public health issue, which should be promptly and properly addressed to reduce its incidence. To this end, different actions have been suggested, including a wider and proper implementation of regulatory measures, not only for breast milk but also for foods and feeds as the upstream sources for breast milk contamination with AFM1. The promotion of awareness of lactating mothers through the organization of training sessions and mass media disclosures before and after parturition is of a paramount importance for the success of any action. This is especially relevant that there are no possible control measures to ensure compliance of lactating mothers to specific regulatory measures, which can yet be appropriate for the expansion of breast milk banks in industrialized countries and emergence of breast milk sellers. This review attempted to revisit the public health issues raised by mother milk contamination with AFM1, which remains undermined despite the numerous relevant publications highlighting the needs to tackle its incidence as a protective measure for the children physical and mental health.


Assuntos
Aflatoxinas , Feminino , Lactente , Animais , Criança , Humanos , Aflatoxinas/análise , Leite Humano/química , Lactação , Saúde da Criança , Contaminação de Alimentos/análise , Leite/química , Aflatoxina M1/análise , Aflatoxina B1/toxicidade , Aflatoxina B1/análise
5.
Bio Protoc ; 12(18)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36311346

RESUMO

Weeds compete with crops for growth resources, causing tremendous yield losses. Paraquat is one of the three most common non-selective herbicides. To study the mechanisms of paraquat resistance, we need to trace the movement of paraquat in plants and within the cell. 14 C is a radioactive carbon isotope widely used to trace substances of interest in various biological studies, especially in transport analyses. Here, we describe a detailed protocol using 14 C-paraquat to demonstrate paraquat efflux in Arabidopsis protoplasts.

6.
Methods Mol Biol ; 2492: 251-263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733049

RESUMO

Organ-on-a-chip enables human cell-based 3D tissue culture, which recapitulates the physiological structure and function of the tissue. In terms of the blood-brain barrier (BBB) modeling, the 3D structure of the vessel is essential for studying the cellular interactions among BBB composing cells and investigating the barrier function. Here, we describe a BBB-on-a-chip model with 3D perfusable human vasculature tri-cultured with pericytes and astrocytes. The culture method is based on mimicking angiogenic sprouting since the barrier formation is parallel with angiogenesis during the developmental process. This microfluidic-based 3D tri-culture system enables the comparative study on how surrounding BBB-related cells affect brain angiogenic sprouting. Moreover, the engineered perfusable vasculature is eligible for quantitative analysis on barrier function such as efflux transport system. We expect the BBB-on-a-chip could be used to enhance understanding BBB-related pathologies as well as the drug modulating barrier function of BBB.


Assuntos
Barreira Hematoencefálica , Microfluídica , Encéfalo , Humanos , Dispositivos Lab-On-A-Chip , Neovascularização Patológica/patologia , Pericitos
7.
Mol Plant Microbe Interact ; 35(5): 416-427, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35175146

RESUMO

Taking tenuazonic acid (TeA) synthetase 1 (TAS1) in Pyricularia oryzae as a reference, the homolog AaTAS1 was first anchored in Alternaria alternata via de novo sequencing. Subsequently, AaMFS1, as a major facilitator superfamily (MFS) protein-encoding gene in the adjacent upstream region, was followed with interest. As hypothesized, AaTAS1 is required for TeA biosynthesis, while AaMFS1 is an efflux pump for the transmembrane transport of TeA. Comparatively, the TeA yield of ΔAaTAS1 and ΔAaMFS1 dropped significantly compared with that of the wild-type strain. Specifically, the A domain of AaTAS1 catalyzed the start of TeA biosynthesis in vitro. Simultaneously, the pathogenicity of ΔAaTAS1 was also significantly decreased. Transcriptome analysis confirmed the abovementioned consistency between the TeA-producing phenotypes and related gene expression. Moreover, the proteins AaTAS1 and AaMFS1 were found present in the cytoplasm, plasma membrane, and intracellular membrane system, respectively, by fluorescence localization. Namely, AaTAS1 was responsible for the biosynthesis of TeA, and AaMFS1 was responsible for the efflux transport of TeA. Certainly, AaTAS1 indirectly regulated the expression of AaMFS1 through the level of synthetic TeA. Overall, data on the novel AaTAS1 and AaMFS1 genes mainly contribute to theoretical advances in mycotoxin biosynthesis and the pathogenicity of phytopathogens to agricultural foods.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Micotoxinas , Ácido Tenuazônico , Alternaria/genética , Micotoxinas/metabolismo , Ácido Tenuazônico/metabolismo , Virulência/genética
8.
Pharmaceutics ; 13(7)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34371727

RESUMO

The oral route of drug administration is the most convenient method of drug delivery, but it is associated with variable bioavailability. Food is one of the major factors that affect oral drug absorption by influencing drug properties (e.g., solubility and dissolution rate) and physiological factors (e.g., metabolism and transport across the gastrointestinal tract). The aim of this work was to investigate the effect of food on the high-affinity intestinal efflux transporter substrate drugs. We hypothesized that transport efficiency is higher in the fed state as compared to the fasted state because of the lower intestinal lumen drug concentration due to prolonged gastric emptying time. A systematic analysis of reported clinical food-effect (FE) studies on 311 drugs was performed and the association of the efflux transport efficiency was investigated on the FE magnitude, i.e., changes in maximal plasma concentration and area under the plasma concentration-time profile curve for both solubility and permeability-limited drugs. In total, 124 and 88 drugs showed positive and negative FE, respectively, whereas 99 showed no FE. As expected, the solubility-limited drugs showed positive FE, but interestingly, drugs with a high potential for efflux transport, were associated with negative FE. Moreover, a high-fat diet was associated with a higher magnitude of negative FE for high-affinity efflux transporter substrates as compared to a low-fat diet. To account for changes in drug absorption after food intake, the prolonged gastric emptying time should be considered in the physiologically based pharmacokinetic (PBPK) modeling of orally absorbed efflux transporter substrate drugs.

9.
Int J Pharm X ; 3: 100089, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34977557

RESUMO

P-glycoprotein inhibitors, like zosuquidar, have widely been used to study the role of P-glycoprotein in oral absorption. Still, systematic studies on the inhibitor dose-response relationship on intestinal drug permeation are lacking. In the present study, we investigated the effect of 0.79 nM-2.5 µM zosuquidar on etoposide permeability across Caco-2 cell monolayers. We also investigated etoposide pharmacokinetics after oral or IV administration to Sprague Dawley rats with co-administration of 0.063-63 mg/kg zosuquidar, as well as the pharmacokinetics of zosuquidar itself. Oral zosuquidar bioavailability was 2.6-4.2%, while oral etoposide bioavailability was 5.5 ± 0.9%, which increased with increasing zosuquidar doses to 35 ± 5%. The intestinal zosuquidar concentration required to induce a half-maximal increase in bioavailability was estimated to 180 µM. In contrast, the IC50 of zosuquidar on etoposide permeability in vitro was only 5-10 nM, and a substantial in vitro-in vivo discrepancy of at least four orders of magnitude was thereby identified. Overall, the present study provides valuable insights for future formulation development that applies fixed dose combinations of P-glycoprotein inhibitors to increase the absorption of poorly permeable P-glycoprotein substrate drugs.

10.
Bioact Mater ; 6(6): 1750-1764, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33313452

RESUMO

Brain barrier is both a protective permeability hurdle and a limitation site where therapeutic agents are excluded to enter the target region. Designing drug vehicle to overcome this notorious barrier bottle is challenging. Herein, we construct a stimuli-responsive self-assembled nanovesicle that delivers water-soluble drugs to prevent the efflux transport of brain barriers by responding to the endogenously occurring signals in Alzheimer's disease (AD) brain microenvironment. Once stimuli-responsive vesicles are accumulated in intracerebrally, the intrinsically occurring legumain endopeptidase cleaves the Ac-Ala-Ala-Asn-Cys-Asp (AK) short peptide on the drug vesicles to expose the 1,2 thiol amino group to cyclize with the cyano groups on 2-cyano-6-aminobenzothiazole (CABT) of the chaperone vesicles, thus triggering the formation of cross-linked micrometre-scale vesicles. Such a structural alteration completely prevents further brain barriers efflux. The superior neuroprotective capacity of cross-linked vesicles is validated in senescence accelerated mouse prone 8 (SAMP8). This smart multi-drug delivery vesicle is promising to serve as a powerful system for AD treatment and can be adapted for the therapy of other central nervous system (CNS) disorders.

11.
Neuron ; 108(5): 937-952.e7, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-32979312

RESUMO

The blood vessels in the central nervous system (CNS) have a series of unique properties, termed the blood-brain barrier (BBB), which stringently regulate the entry of molecules into the brain, thus maintaining proper brain homeostasis. We sought to understand whether neuronal activity could regulate BBB properties. Using both chemogenetics and a volitional behavior paradigm, we identified a core set of brain endothelial genes whose expression is regulated by neuronal activity. In particular, neuronal activity regulates BBB efflux transporter expression and function, which is critical for excluding many small lipophilic molecules from the brain parenchyma. Furthermore, we found that neuronal activity regulates the expression of circadian clock genes within brain endothelial cells, which in turn mediate the activity-dependent control of BBB efflux transport. These results have important clinical implications for CNS drug delivery and clearance of CNS waste products, including Aß, and for understanding how neuronal activity can modulate diurnal processes.


Assuntos
Barreira Hematoencefálica/fisiologia , Relógios Circadianos/genética , Ritmo Circadiano/genética , Células Endoteliais/fisiologia , Neurônios/fisiologia , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Barreira Hematoencefálica/efeitos dos fármacos , Relógios Circadianos/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Drogas Desenhadas/administração & dosagem , Células Endoteliais/efeitos dos fármacos , Feminino , Homeostase/efeitos dos fármacos , Homeostase/genética , Locomoção/efeitos dos fármacos , Locomoção/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos
12.
Pharmaceutics ; 12(7)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32708885

RESUMO

The efflux pump P-glycoprotein (P-gp) affects drug distribution after absorption in humans and animals. P-gp is encoded by the multidrug resistance gene (MDR1) gene in humans, while rodents (the most common preclinical animal model) express the two isoforms Mdr1a and Mdr1b. Differences in substrate selectivity has also been reported. Our aim was to generate an in vitro cell model with tight barrier properties, expressing functional rat Mdr1a P-gp, as an in vitro tool for investigating species differences. The IPEC-J2 cell line forms extremely tight monolayers and was transfected with a plasmid carrying the rat Mdr1a gene sequence. Expression and P-gp localization at the apical membrane was demonstrated with Western blots and immunocytochemistry. Function of P-gp was shown through digoxin transport experiments in the presence and absence of the P-gp inhibitor zosuquidar. Bidirectional transport experiments across monolayers of the IPEC-J2 rMDR1a cell line and the IPEC-J2 MDR1 cell line, expressing human P-gp, showed comparable magnitude of transport in both the absorptive and efflux direction. We conclude that the newly established IPEC-J2 rMdr1a cell line, in combination with our previously established cell line IPEC-J2 MDR1, has the potential to be a strong in vitro tool to compare P-gp substrate profiles of rat and human P-gp.

13.
Fluids Barriers CNS ; 16(1): 26, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31434575

RESUMO

Bacterial meningitis is a serious life threatening infection of the CNS. To cause meningitis, blood-borne bacteria need to interact with and penetrate brain endothelial cells (BECs) that comprise the blood-brain barrier. BECs help maintain brain homeostasis and they possess an array of efflux transporters, such as P-glycoprotein (P-gp), that function to efflux potentially harmful compounds from the CNS back into the circulation. Oftentimes, efflux also serves to limit the brain uptake of therapeutic drugs, representing a major hurdle for CNS drug delivery. During meningitis, BEC barrier integrity is compromised; however, little is known about efflux transport perturbations during infection. Thus, understanding the impact of bacterial infection on P-gp function would be important for potential routes of therapeutic intervention. To this end, the meningeal bacterial pathogen, Streptococcus agalactiae, was found to inhibit P-gp activity in human induced pluripotent stem cell-derived BECs, and live bacteria were required for the observed inhibition. This observation was correlated to decreased P-gp expression both in vitro and during infection in vivo using a mouse model of bacterial meningitis. Given the impact of bacterial interactions on P-gp function, it will be important to incorporate these findings into analyses of drug delivery paradigms for bacterial infections of the CNS.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Encéfalo/metabolismo , Encéfalo/microbiologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/microbiologia , Infecções Estreptocócicas/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Streptococcus agalactiae
14.
Methods Mol Biol ; 1981: 75-85, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31016648

RESUMO

Drug-induced liver injury is an important reason for drug candidate failure. Alterations in the hepatobiliary disposition of bile acids are a proposed mechanism of cholestatic hepatotoxicity. Bile acids are synthesized in the hepatocyte, and excreted into the bile primarily by the bile salt export pump. Therefore, inhibition of the bile salt export pump by drugs has been postulated as a risk factor in the development of cholestatic hepatotoxicity. However, recent publications have shown a lack of correlation between bile salt export pump inhibition potency and drug-induced liver injury incidence. Following inhibition of the bile salt export pump mediated efflux of bile acids, the liver compensates through various mechanisms (adaptive response) including upregulation of basolateral bile acid efflux mediated by the farnesoid X receptor, the master regulator of bile acid homeostasis. The C-DILI™ assay integrates the effects of bile salt export pump inhibition, farnesoid X receptor antagonism, and basolateral efflux inhibition of bile acids to more accurately predict a drug's potential to cause cholestatic hepatotoxicity and drug-induced liver injury.


Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Bioensaio/métodos , Colestase/metabolismo , Hepatócitos/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Humanos , Receptores Citoplasmáticos e Nucleares/metabolismo
15.
Xenobiotica ; 49(3): 276-283, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29436891

RESUMO

Alpinetin is a natural flavonoid showing a variety of pharmacological effects such as anti-inflammatory, anti-tumor and hypolipidemic activities. Here, we aim to determine the roles of UDP-glucuronosyltransferases (UGTs) and breast cancer resistance protein (BCRP) in disposition of alpinetin. Glucuronidation potential of alpinetin was evaluated using pooled human liver microsomes (pHLM), pooled human intestine microsomes (pHIM) and expressed UGT enzymes supplemented with the cofactor UDPGA. Activity correlation analyses with a bank of individual HLMs were performed to identify the main contributing UGT isozymes in hepatic glucuronidation of alpinetin. The effect of BCRP on alpinetin disposition was assessed using HeLa cells overexpressing UGT1A1 (HeLa1A1) cells. Alpinetin underwent extensive glucuronidation in pHLM and pHIM, generating one glucuronide metabolite. Of 12 test UGT enzymes, UGT1A3 was the most active one toward alpinetin with an intrinsic clearance (CLint = Vmax/Km) value of 66.5 µl/min/nmol, followed by UGT1A1 (CLint = 48.6 µl/min/nmol), UGT1A9 (CLint = 21.0 µl/min/nmol), UGT2B15 (CLint = 16.7 µl/min/nmol) and UGT1A10 (CLint = 1.60 µl/min/nmol). Glucuronidation of alpinetin was significantly correlated with glucuronidation of estradiol (an activity marker of UGT1A1), chenodeoxycholic acid (an activity marker of UGT1A3), propofol (an activity marker of UGT1A9) and 5-hydroxyrofecoxib (an activity marker of UGT2B15), confirming the important roles of UGT1A1, UGT1A3, UGT1A9 and UGT2B15 in alpinetin glucuronidation. Inhibition of BCRP by its specific inhibitor Ko143 significantly reduced excretion of alpinetin glucuronide, leading to a significant decrease in cellular glucuronidation of alpinetin. Our data suggest UGTs and BCRP as two important determinants of alpinetin pharmacokinetics.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Flavanonas/farmacocinética , Glucuronosiltransferase/metabolismo , Proteínas de Neoplasias/metabolismo , Flavanonas/química , Flavanonas/metabolismo , Glucuronídeos/metabolismo , Células HeLa , Humanos , Intestinos , Cinética , Microssomos/metabolismo , Microssomos Hepáticos/metabolismo
16.
AAPS J ; 20(5): 87, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30051196

RESUMO

Drug-transporter interactions could impact renal drug clearance and should ideally be detected in early stages of drug development to avoid toxicity-related withdrawals in later stages. This requires reliable and robust assays for which current high-throughput screenings have, however, poor predictability. Kidney-on-a-chip platforms have the potential to improve predictability, but often lack compatibility with high-content detection platforms. Here, we combined conditionally immortalized proximal tubule epithelial cells overexpressing organic anion transporter 1 (ciPTEC-OAT1) with the microfluidic titer plate OrganoPlate to develop a screenings assay for renal drug-transporter interactions. In this platform, apical localization of F-actin and intracellular tight-junction protein zonula occludens-1 (ZO-1) indicated appropriate cell polarization. Gene expression levels of the drug transporters organic anion transporter 1 (OAT1; SLC22A6), organic cation transporter 2 (OCT2; SLC22A2), P-glycoprotein (P-gp; ABCB1), and multidrug resistance-associated protein 2 and 4 (MRP2/4; ABCC2/4) were similar levels to 2D static cultures. Functionality of the efflux transporters P-gp and MRP2/4 was studied as proof-of-concept for 3D assays using calcein-AM and 5-chloromethylfluorescein-diacetate (CMFDA), respectively. Confocal imaging demonstrated a 4.4 ± 0.2-fold increase in calcein accumulation upon P-gp inhibition using PSC833. For MRP2/4, a 3.0 ± 0.2-fold increased accumulation of glutathione-methylfluorescein (GS-MF) was observed upon inhibition with a combination of PSC833, MK571, and KO143. Semi-quantitative image processing methods for P-gp and MRP2/4 was demonstrated with corresponding Z'-factors of 0.1 ± 0.3 and 0.4 ± 0.1, respectively. In conclusion, we demonstrate a 3D microfluidic PTEC model valuable for screening of drug-transporter interactions that further allows multiplexing of endpoint read-outs for drug-transporter interactions and toxicity.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Células Epiteliais/efeitos dos fármacos , Túbulos Renais Proximais/efeitos dos fármacos , Dispositivos Lab-On-A-Chip , Moduladores de Transporte de Membrana/toxicidade , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Técnicas Analíticas Microfluídicas/instrumentação , Actinas/metabolismo , Transporte Biológico , Linhagem Celular Transformada , Polaridade Celular , Células Epiteliais/metabolismo , Humanos , Túbulos Renais Proximais/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Microscopia Confocal , Proteína 2 Associada à Farmacorresistência Múltipla , Medição de Risco , Proteína da Zônula de Oclusão-1/metabolismo
17.
Biochem Pharmacol ; 150: 141-149, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29412166

RESUMO

Osteosarcoma is the most common bone tumor that affects children and young adults. Despite advances in the use of combination chemotherapy regimens, response to neoadjuvant chemotherapy in osteosarcoma remains a key determinant of patient outcome. Recently, highly potent small molecule inhibitors of canonical Wnt signaling through the poly(ADP-ribose) polymerase (PARP)-family enzymes, tankyrases 1 & 2 (Tnks1/2), have been considered as possible chemotherapy sensitizing agents. The goal of this study was to determine the ability of the highly specific Tnks1/2 inhibitor IWR-1-endo to sensitize chemotherapy-resistant osteosarcoma to doxorubicin. We found that IWR-1-endo significantly inhibited cellular efflux, as measured by cellular retention of Calcein AM and doxorubicin. In a model of doxorubicin resistant osteosarcoma, pre-treatment with IWR-1-endo strongly sensitized to doxorubicin. This sensitization reduced the doxorubicin IC50 in doxorubicin-resistant cells, but not in chemotherapy naïve cells and caused doxorubicin-treated cells to accumulate at the G2/M checkpoint. Further, we found that sensitization with IWR-1-endo produced increased γH2AX foci formation, indicating increased DNA damage by doxorubicin. Taken together, our findings show that IWR-1-endo increases cellular responses to doxorubicin, by blocking efflux transport in a drug-resistant model of osteosarcoma.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Ósseas/metabolismo , Doxorrubicina/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Imidas/administração & dosagem , Osteossarcoma/metabolismo , Quinolinas/administração & dosagem , Antibióticos Antineoplásicos/administração & dosagem , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/fisiologia , Sinergismo Farmacológico , Humanos , Osteossarcoma/tratamento farmacológico , Tanquirases/antagonistas & inibidores , Tanquirases/metabolismo
18.
J Alzheimers Dis ; 61(2): 463-485, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29171999

RESUMO

Human ATP-binding cassette (ABC) transporters mediate a critical function in the cell, namely the transport of molecules across lipid membranes. Associated to their ubiquitous tissue distribution, they are key players in cellular homeostasis but also potential causative or contributing factors for many pathologies, including Alzheimer's disease (AD). In the central nervous system (CNS), numerous ABC transporters are present throughout the brain parenchyma and especially at the blood-brain barrier (BBB). AD is a neurodegenerative disorder mainly characterized by extracellular deposition of amyloid-ß (Aß) peptides and intracellular accumulation of hyperphosphorylated forms of tau protein. Besides being degraded via proteolytic and phagocytic processes mediated by brain parenchymal cells, a major mechanism for eliminating cerebral Aß is through its transport across the BBB into the peripheral blood. In fact, many AD cases are associated with impaired Aß clearance. Consistently, several studies have recently uncovered important roles for ABC transporters in AD pathophysiology. Hence, this review focuses on the relevance of ABC transporters in CNS homeostasis by highlighting AD as a strong example of the deleterious consequences that might result from the former's altered expression and/or activity in the brain. The potentiality of human ABC transporters as novel pharmacological targets for both the diagnosis and therapeutics of AD is emphasized.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Barreira Hematoencefálica/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Barreira Hematoencefálica/patologia , Humanos
19.
Int J Pharm ; 537(1-2): 84-93, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29102702

RESUMO

The solubility-permeability interplay deals with the question: what is the concomitant effect on the drug's apparent permeability when increasing the apparent solubility with a solubility-enabling formulation? The solubility and the permeability are closely related, exhibit certain interplay between them, and ongoing research throughout the past decade shows that treating the one irrespectively of the other may be insufficient. The aim of this article is to provide an overview of the current knowledge on the solubility-permeability interplay when using solubility-enabling formulations for oral lipophilic drugs, highlighting active permeability aspects. A solubility-enabling formulation may affect the permeability in opposite directions; the passive permeability may decrease as a result of the apparent solubility increase, according to the solubility-permeability tradeoff, but at the same time, certain components of the formulation may inhibit/saturate efflux transporters (when relevant), resulting in significant apparent permeability increase. In these cases, excipients with both solubilizing and e.g. P-gp inhibitory properties may lead to concomitant increase of both the solubility and the permeability. Intelligent development of such formulation will account for the simultaneous effects of the excipients' nature/concentrations on the two arms composing the overall permeability: the passive and the active arms. Overall, thorough mechanistic understanding of the various factors involved in the solubility-permeability interplay may allow developing better solubility-enabling formulations, thereby exploiting the advantages analyzed in this article, offering oral delivery solution even for BCS class IV drugs.


Assuntos
Absorção Intestinal/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Preparações Farmacêuticas/química , Solubilidade/efeitos dos fármacos , Administração Oral , Animais , Química Farmacêutica/métodos , Excipientes/química , Humanos , Mucosa Intestinal/metabolismo
20.
Mol Pharm ; 14(10): 3436-3447, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28880093

RESUMO

Transporters at the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) play a pivotal role as gatekeepers for efflux or uptake of endogenous and exogenous molecules. The protein expression of a number of them has already been determined in the brains of rodents, nonhuman primates, and humans using quantitative targeted absolute proteomics (QTAP). The dog is an important animal model for drug discovery and development, especially for safety evaluations. The purpose of the present study was to clarify the relevance of the transporter protein expression for drug distribution in the dog brain and CSF. We used QTAP to examine the protein expression of 17 selected transporters and receptors at the dog BBB and BCSFB. For the first time, we directly linked the expression of two efflux transporters, P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), to regional brain and CSF distribution using specific substrates. Two cocktails, each containing one P-gp substrate (quinidine or apafant) and one BCRP substrate (dantrolene or daidzein) were infused intravenously prior to collection of the brain. Transporter expression varied only slightly between the capillaries of different brain regions and did not result in region-specific distribution of the investigated substrates. There were, however, distinct differences between brain capillaries and choroid plexus. Largest differences were observed for BCRP and P-gp: both were highly expressed in brain capillaries, but no BCRP and only low amounts of P-gp were detected in the choroid plexus. Kp,uu,brain and Kp,uu,CSF of both P-gp substrates were indicative of drug efflux. Also, Kp,uu,brain for the BCRP substrates was low. In contrast, Kp,uu,CSF for both BCRP substrates was close to unity, resulting in Kp,uu,CSF/Kp,uu,brain ratios of 7 and 8, respectively. We conclude that the drug transporter expression profiles differ between the BBB and BCSFB in dogs, that there are species differences in the expression profiles, and that CSF is not a suitable surrogate for unbound brain concentrations of BCRP substrates in dogs.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Encéfalo/irrigação sanguínea , Capilares/metabolismo , Plexo Corióideo/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/sangue , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/líquido cefalorraquidiano , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/sangue , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/líquido cefalorraquidiano , Animais , Azepinas/farmacocinética , Transporte Biológico , Barreira Hematoencefálica , Encéfalo/metabolismo , Dantroleno/farmacocinética , Cães , Feminino , Perfilação da Expressão Gênica , Isoflavonas/farmacocinética , Masculino , Proteômica/métodos , Quinidina/farmacocinética , Distribuição Tecidual , Triazóis/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA