Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
1.
Magn Reson Chem ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867454

RESUMO

Copper(II) chloride anionic coordination complexes with different imidazole-derived ligands due to the potential cytotoxic activity play the important role in protein. By investigating the experimental electron paramagnetic resonance (EPR) and ultraviolet-visible (UV-vis) spectra of [CuCl(C6H10N2)4]Cl, [CuCl(C6H10N2)4]Cl, [CuCl2(C4H6N2)4], and [Cu2Cl2(C5H8N2)6]Cl2·2H2O, the local structure of the corresponding Cu2+ centers and the role of different ligands are obtained. Based on the well-agreed EPR parameters and the d-d transitions (10Dq), the four Cu2+ centers show tetragonal and orthorhombic distortion, corresponding to the different anisotropies of EPR signals. In addition, the general rules of governing the impact of methanol in imidazolylalkyl derivatives are also discussed, especially the influence on the local environment (symmetry, distortion, covalency, and crystal field) of above four copper(II) chloride anionic coordination complexes. Therefore, the obtained results in this study will be beneficial to provide a theoretical basis for the experimental design of desired copper-containing imidazolyl alkyl derivatives.

2.
Chemistry ; : e202400985, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38932665

RESUMO

Bioreduction of spin labels and polarizing agents (generally stable radicals) has been an obstacle limiting the in-cell applications of pulsed electron paramagnetic resonance (EPR) spectroscopy and dynamic nuclear polarization (DNP). In this work, we have demonstrated that two semiquinone methide radicals (OXQM• and CTQM•) can be easily produced from the trityl-based quinone methides (OXQM and CTQM) via reduction by various reducing agents including biothiols and ascorbate under anaerobic conditions. Both radicals have relatively low pKa's and exhibit EPR single line signals at physiological pH. Moreover, the bioreduction of OXQM in three cell lysates enables quantitative generation of OXQM• which was most likely mediated by flavoenzymes. Importantly, the resulting OXQM• exhibited extremely high stability in the E.coli lysate under anaerobic conditions with 76- and 14.3-fold slower decay kinetics as compared to the trityl OX063 and a gem-diethyl pyrrolidine nitroxide. Intracellular delivery of OXQM into HeLa cells was also achieved by covalent conjugation with a cell-permeable peptide as evidenced by the stable intracellular EPR signal from the OXQM• moiety. Owing to extremely high resistance of OXQM• towards bioreduction, OXQM and its derivatives show great application potential in in-cell EPR and in-cell DNP studies for various cells which can endure short-term anoxic treatments.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38924358

RESUMO

Honey bees play a pivotal role in shaping ecosystems and sustaining human health as both pollinators and producers of health-promoting products. However, honey bee colony mortality is on the rise globally, driven by various factors, including parasites, pesticides, habitat loss, poor nutrition, and climate change. This has far-reaching consequences for the environment, economy, and human welfare. While efforts to address these issues are underway, the current progress in electron paramagnetic resonance (EPR) instrumentation affords using the immense potential of this magnetic resonance technique to study small samples such as honey bees. This paper presents the pioneering 2D in vivo EPR imaging experiment on a honey bee, revealing the ongoing redox-status of bees' intestines. This way, by monitoring the spatio-temporal changes of the redox-active spin-probes' EPR signal, it is possible to gain access to valuable information on the course of ongoing bees' pathologies and the prospect of following-up on the efficiency of applied therapies. Employing a selection of diverse spin-probes could further reveal pH levels and oxygen concentrations in bee tissues, allowing a noninvasive assessment of bee physiology. This approach offers promising strategies for safeguarding pollinators and understanding their biology, fostering their well-being and ecological harmony.

4.
J Biol Chem ; 300(6): 107396, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777142

RESUMO

Fatty acid binding proteins (FABPs) are a family of amphiphilic transport proteins with high diversity in terms of their amino acid sequences and binding preferences. Beyond their main biological role as cytosolic fatty acid transporters, many aspects regarding their binding mechanism and functional specializations in human cells remain unclear. In this work, the binding properties and thermodynamics of FABP3, FABP4, and FABP5 were analyzed under various physical conditions. For this purpose, the FABPs were loaded with fatty acids bearing fluorescence or spin probes as model ligands, comparing their binding affinities via microscale thermophoresis (MST) and continuous-wave electron paramagnetic resonance (CW EPR) spectroscopy. The CW EPR spectra of non-covalently bound 5- and 16-DOXYL stearic acid (5/16-DSA) deliver in-depth information about the dynamics and chemical environments of ligands inside the binding pockets of the FABPs. EPR spectral simulations allow the construction of binding curves, revealing two different binding states ('intermediately' and 'strongly' bound). The proportion of bound 5/16-DSA depends strongly on the FABP concentration and the temperature but with remarkable differences between the three isoforms. Additionally, the more dynamic state ('intermediately bound') seems to dominate at body temperature with thermodynamic preference. The ligand binding studies were supplemented by aggregation studies via dynamic light scattering and bioinformatic analyses. Beyond the remarkably fine-tuned binding properties exhibited by each FABP, which were discernible with our EPR-centered approach, the results of this work attest to the power of simple spectroscopic experiments to provide new insights into the ligand binding mechanisms of proteins in general on a molecular level.


Assuntos
Proteína 3 Ligante de Ácido Graxo , Proteínas de Ligação a Ácido Graxo , Ligação Proteica , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/química , Humanos , Proteína 3 Ligante de Ácido Graxo/metabolismo , Proteína 3 Ligante de Ácido Graxo/química , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Termodinâmica , Ácidos Graxos/metabolismo , Ácidos Graxos/química , Sítios de Ligação
5.
Magn Reson Chem ; 62(8): 610-618, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38666325

RESUMO

The spin Hamiltonian parameters and defect structures are theoretically studied for the substitutional Mn2+ at the core of CdSe nanocrystals and in the bulk materials from the perturbation calculations of spin Hamiltonian parameters for trigonal tetrahedral 3d5 clusters. Both the crystal-field and charge transfer contributions are taken into account in the calculations from the cluster approach. The impurity-ligand bond angles are found to be about 1.84° larger and 0.10° smaller in the CdSe:Mn2+ nanocrystals and bulk materials, respectively, than those (≈109.37°) of the host Cd2+ sites. The quantitative criterion of occupation (at the core or surface) for Mn2+ in CdX (X = S, Se, Te) nanocrystals is presented for the first time based on the inequations of hyperfine structure constants (HSCs). This criterion is well supported by the experimental HSCs data of Mn2+ in CdX nanocrystals. The previous assignments of signals SI as Mn2+ at the core of CdS nanocrystals are renewed as Mn2+ at the surface based on the above criterion. The present studies would be helpful to achieve convenient determination of occupation for Mn2+ impurities in CdX semiconductor nanocrystals by means of spectral (e.g., HSCs) analysis.

6.
J Biol Chem ; 300(6): 107292, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636659

RESUMO

[FeFe]-hydrogenases catalyze the reversible oxidation of H2 from electrons and protons at an organometallic active site cofactor named the H-cluster. In addition to the H-cluster, most [FeFe]-hydrogenases possess accessory FeS cluster (F-cluster) relays that function in mediating electron transfer with catalysis. There is significant variation in the structural properties of F-cluster relays among the [FeFe]-hydrogenases; however, it is unknown how this variation relates to the electronic and thermodynamic properties, and thus the electron transfer properties, of enzymes. Clostridium pasteurianum [FeFe]-hydrogenase II (CpII) exhibits a large catalytic bias for H2 oxidation (compared to H2 production), making it a notable system for examining if F-cluster properties contribute to the overall function and efficiency of the enzyme. By applying a combination of multifrequency and potentiometric electron paramagnetic resonance, we resolved two electron paramagnetic resonance signals with distinct power- and temperature-dependent properties at g = 2.058 1.931 1.891 (F2.058) and g = 2.061 1.920 1.887 (F2.061), with assigned midpoint potentials of -140 ± 18 mV and -406 ± 12 mV versus normal hydrogen electrode, respectively. Spectral analysis revealed features consistent with spin-spin coupling between the two [4Fe-4S] F-clusters, and possible functional models are discussed that account for the contribution of coupling to the electron transfer landscape. The results signify the interplay of electronic coupling and free energy properties and parameters of the FeS clusters to the electron transfer mechanism through the relay and provide new insight as to how relays functionally complement the catalytic directionality of active sites to achieve highly efficient catalysis.


Assuntos
Clostridium , Hidrogênio , Hidrogenase , Proteínas Ferro-Enxofre , Oxirredução , Hidrogenase/metabolismo , Hidrogenase/química , Clostridium/enzimologia , Hidrogênio/metabolismo , Hidrogênio/química , Transporte de Elétrons , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/química , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética
7.
J Funct Biomater ; 15(3)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38535260

RESUMO

The study and characterization of the biophysical properties of membranes and drug-membrane interactions represent a critical step in drug development, as biological membranes act as a barrier that the drug must overcome to reach its active site. Liposomes are widely used in drug delivery to circumvent the poor aqueous solubility of most drugs, improving systemic bioavailability and pharmacokinetics. Further, they can be targeted to deliver to specific disease sites, thus decreasing drug load, and reducing side effects and poor adherence to treatment. To improve drug solubility during liposome preparation, DMSO is the most widely used solvent. This raises concern about the potential effect of DMSO on membranes and leads us to investigate, using DSC and EPR, the influence of DMSO on the behavior of lipid model membranes of DMPC and DPPC. In addition, we tested the influence of DMSO on drug-membrane interaction, using compounds with different hydrophobicity and varying DMSO content, using the same experimental techniques. Overall, it was found that with up to 10% DMSO, changes in the bilayer fluidity or the thermotropic properties of the studied liposomes were not significant, within the experimental uncertainty. For higher concentrations of DMSO, there is a stabilization of both the gel and the rippled gel phases, and increased bilayer fluidity of DMPC and DPPC liposomes leading to an increase in membrane permeability.

8.
Proc Natl Acad Sci U S A ; 121(11): e2319374121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437550

RESUMO

Identifying the two substrate water sites of nature's water-splitting cofactor (Mn4CaO5 cluster) provides important information toward resolving the mechanism of O-O bond formation in Photosystem II (PSII). To this end, we have performed parallel substrate water exchange experiments in the S1 state of native Ca-PSII and biosynthetically substituted Sr-PSII employing Time-Resolved Membrane Inlet Mass Spectrometry (TR-MIMS) and a Time-Resolved 17O-Electron-electron Double resonance detected NMR (TR-17O-EDNMR) approach. TR-MIMS resolves the kinetics for incorporation of the oxygen-isotope label into the substrate sites after addition of H218O to the medium, while the magnetic resonance technique allows, in principle, the characterization of all exchangeable oxygen ligands of the Mn4CaO5 cofactor after mixing with H217O. This unique combination shows i) that the central oxygen bridge (O5) of Ca-PSII core complexes isolated from Thermosynechococcus vestitus has, within experimental conditions, the same rate of exchange as the slowly exchanging substrate water (WS) in the TR-MIMS experiments and ii) that the exchange rates of O5 and WS are both enhanced by Ca2+→Sr2+ substitution in a similar manner. In the context of previous TR-MIMS results, this shows that only O5 fulfills all criteria for being WS. This strongly restricts options for the mechanism of water oxidation.

9.
Bio Protoc ; 14(1): e4909, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38213322

RESUMO

Proteolysis is a critical biochemical process yet a challenging field to study experimentally due to the self-degradation of a protease and the complex, dynamic degradation steps of a substrate. Mass spectrometry (MS) is the traditional way for proteolytic studies, yet it is challenging when time-resolved, step-by-step details of the degradation process are needed. We recently found a way to resolve the cleavage site, preference/selectivity of cleavage regions, and proteolytic kinetics by combining site-directed spin labeling (SDSL) of protein substrate, time-resolved two-dimensional (2D) electron paramagnetic resonance (EPR) spectroscopy, protease immobilization via metal-organic materials (MOMs), and MS. The method has been demonstrated on a model substrate and protease, yet there is a lack of details on the practical operations to carry out our strategy. Thus, this protocol summarizes the key steps and considerations when carrying out the EPR/MS study on proteolytic processes, which can be generalized to study other protein/polypeptide substrates in proteolysis. Details for the experimental operation and cautions of each step are reported with figures illustrating the concepts. This protocol provides an effective approach to understanding the proteolytic process with the advantages of offering time-resolved, residue-level resolution of structural basis underlying the process. Such information is important for revealing the cleavage site and proteolytic mechanisms of unknown proteases. The advantage of EPR, probing the target substrate regardless of the complexities caused by the proteases and their self-degradation, offers a practically effective, rapid, and easy-to-operate approach to studying proteolysis. Key features • Combining protease immobilization, EPR, spin labeling, and MS experimental methods allows for the analysis of proteolysis process in real time. • Reveals cleavage site, kinetics of product generation, and preference of cleavage regions via time-resolved SDSL-EPR. • MS confirms EPR findings and helps depict the sequences and populations of the cleaved segments in real time. • The demonstrated method can be generalized to other proteins or polypeptide substrates upon proteolysis by other proteases.

10.
Mol Imaging Biol ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870648

RESUMO

PURPOSE: Progress toward developing a novel radiocontrast agent for determining pO2 in tumors in a clinical setting is described. The imaging agent is designed for use with electron paramagnetic resonance imaging (EPRI), in which the collision of a paramagnetic probe molecule with molecular oxygen causes a spectroscopic change which can be calibrated to give the real oxygen concentration in the tumor tissue. PROCEDURES: The imaging agent is based on a nanoscaffold of aluminum hydroxide (boehmite) with sizes from 100 to 200 nm, paramagnetic probe molecule, and encapsulation with a gas permeable, thin (10-20 nm) polymer layer to separate the imaging agent and body environment while still allowing O2 to interact with the paramagnetic probe. A specially designed deuterated Finland trityl (dFT) is covalently attached on the surface of the nanoparticle through 1,3-dipolar addition of the alkyne on the dFT with an azide on the surface of the nanoscaffold. This click-chemistry reaction affords 100% efficiency of the trityl attachment as followed by the complete disappearance of the azide peak in the infrared spectrum. The fully encapsulated, dFT-functionalized nanoparticle is referred to as RADI-Sense. RESULTS: Side-by-side in vivo imaging comparisons made in a mouse model made between RADI-Sense and free paramagnetic probe (OX-071) showed oxygen sensitivity is retained and RADI-Sense can create 3D pO2 maps of solid tumors CONCLUSIONS: A novel encapsulated nanoparticle EPR imaging agent has been described which could be used in the future to bring EPR imaging for guidance of radiotherapy into clinical reality.

11.
Adv Exp Med Biol ; 1438: 185-190, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37845459

RESUMO

Oxygen measurements are routinely made either in the vasculature or in the extracellular fluid surrounding the cells of tissues. Yet, metabolic oxygen availability depends on the pO2 within the cells, as does the enhancing effect of oxygen on radiotherapy outcomes. This article reports quantitative modeling work examining the effect of cellular plasma membrane composition on tissue permeability, as a window into tissue oxygen gradients. Previous application of the model indicates that lipid-mediated diffusion pathways accelerate oxygen transfer from capillaries to intracellular compartments and that the extent of acceleration is modulated by membrane lipid and protein composition. Here, the effects of broken intercellular junctions and increased gap size between cells in the model are addressed. The conclusion is reached that the pO2 gradient will likely be consistent among similar, healthy tissues but may increase with increased interstitial fluid fraction and broken intercellular junctions. Therefore, tissue structural changes in tumors and other diseased or damaged tissues may lead to aberrations in permeability that confound interpretation of extracellular oxygen measurements.


Assuntos
Oximetria , Oxigênio , Oxigênio/metabolismo , Gasometria , Consumo de Oxigênio , Veias , Espectroscopia de Ressonância de Spin Eletrônica
12.
ACS Chem Neurosci ; 14(21): 3905-3912, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37861459

RESUMO

The roles of α-synuclein in neurotransmitter release in brain neurons and in the Parkinson's disease condition have challenged comprehensive description. To gain insight into molecular mechanistic properties that actuate α-synuclein function and dysfunction, the coupled protein and solvent dynamics of oligomer and fibril forms of human α-synuclein are examined in a low-temperature system that allows control of confinement and localization of a motionally sensitive electron paramagnetic resonance spin probe in the coupled solvent-protein regions. The rotational mobility of the spin probe resolves two distinct α-synuclein-associated solvent components for oligomers and fibrils, as for globular proteins, but with dramatically higher fluidities at each temperature, that are comparable to low-confinement, aqueous-cryosolvent mesophases. In contrast to the temperature-independent volumes of the solvent phases that surround globular and condensate-forming proteins, the higher-fluidity mesophase volume of α-synuclein oligomers and fibrils decreases with decreasing temperature, signaling a compression of this phase. This unique property and thermal hysteresis in the mobilities and component weights, together with previous high-resolution structural characterizations, suggest a model in which the dynamically disordered C-terminal domain of α-synuclein creates a compressible phase that maintains high fluidity under confinement. Robust dynamics and compressibility are fundamental molecular mechanical properties of α-synuclein oligomers and fibrils, which may contribute to dysfunction and inform about function.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Neurônios/metabolismo , Solventes
13.
Plants (Basel) ; 12(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37765470

RESUMO

Salvia rosmarinus Spenn. is a native Mediterranean shrub belonging to the Lamiaceae family and is well-known as a flavoring and spicing agent. In addition to its classical use, it has drawn attention because its biological activities, due particularly to the presence of polyphenols, including carnosic acid and rosmarinic acid, and phenolic diterpenes as carnosol. In this study, the aerial part of rosemary was extracted with a hydroalcoholic solution through maceration, followed by ultrasound sonication, to obtain a terpenoids-rich Salvia rosmarinus extract (TRSrE) and a polyphenols-rich Salvia rosmarinus extract (PRSrE). After phytochemical characterization, both extracts were investigated for their antioxidant activity through a classical assay and with electron paramagnetic resonance (EPR) for their DPPH and hydroxyl radicals scavenging. Finally, their potential beneficial effects to reduce lipid accumulation in an in vitro model of NAFLD were evaluated.

14.
Micromachines (Basel) ; 14(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37630053

RESUMO

Silicon carbide (SiC) is a very promising platform for quantum information processing, as it can host room temperature solid state defect quantum bits. These room temperature quantum bits are realized by paramagnetic silicon vacancy and divacancy defects in SiC that are typically introduced by irradiation techniques. However, irradiation techniques often introduce unwanted defects near the target quantum bit defects that can be detrimental for the operation of quantum bits. Here, we demonstrate that by adding aluminum precursor to the silicon and carbon sources, quantum bit defects are created in the synthesis of SiC without any post treatments. We optimized the synthesis parameters to maximize the paramagnetic defect concentrations-including already established defect quantum bits-monitored by electron spin resonance spectroscopy.

15.
Heliyon ; 9(8): e18523, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37533983

RESUMO

Ceramics with nominal chemical composition CaCu3Ti4O12 (CCTO), CaCu3Ti3.96Al0.04O11.96F0.04 (CCTOAF), and Ca0.98Mg0.08Cu2.94Ti3.96Al0.04O11.96F0.04 (CCTOMAF) were prepared by the solid-state reactions technique. Using SEM, EDX, XPS, EPR, NMR, and complex impedance spectroscopy, the microstructure, elements distribution, chemical composition of grains and grain boundaries, and the dielectric response of ceramics were investigated. In the ССТО, CCTOAF, and CCTOMAF series, the average grain size increases, the degree of copper segregation at the grain boundaries is inversely related to grain size, and the dielectric loss decreases from 0.071 to 0.047 and 0.030, respectively, while dielectric permittivity ε' at 1 kHz is 5.6 × 104, 7.1 × 104, and 4.3 × 104, respectively. Additives of Al, Mg, F and milled particles (ZrO2, Al2O3, and SiO2) can either partially introduce into the perovskite structure or form low-melting eutectics at the grain boundaries, causing abnormal grain growth. The presence of copper ions in various oxidation states, as well as evidence of exchange spin interactions between them, was confirmed in all samples.

16.
Int J Mol Sci ; 24(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37569573

RESUMO

Many peptide-activated rhodopsin-like GPCRs share a ß-hairpin folding motif in the extracellular loop 2 (ECL2), which interacts with the peptide ligand while at the same time being connected to transmembrane helix 3 (TM3) via a highly conserved disulfide bond. Currently, it remains unknown whether the coupling of the specifically shaped ECL2 to TM3 influences the activation of peptide-activated GPCRs. We investigated this possibility in a selection of peptide GPCRs with known structures. Most of the receptors with cysteine to alanine mutations folded like the respective wild-type and resided in the cell membrane, challenging pure folding stabilization by the disulfide bridge. G-protein signaling of the disulfide mutants was retained to a greater extent in secretin-like GPCRs than in rhodopsin-like GPCRs, while recruitment of arrestin was completely abolished in both groups, which may be linked to alterations in ligand residence time. We found a correlation between receptor activity of the neuropeptide Y2 receptor and alterations in ECL2 dynamics using engineered disulfide bridges or site-directed spin labeling and EPR spectroscopy. These data highlight the functional importance of the TM3-ECL2 link for the activation of specific signaling pathways in peptide-activated GPCRs, which might have implications for future drug discovery.


Assuntos
Peptídeos , Rodopsina , Rodopsina/metabolismo , Ligantes , Mutação , Ligação Proteica , Peptídeos/metabolismo , Dissulfetos/química , Receptores Acoplados a Proteínas G/metabolismo
17.
ACS Appl Mater Interfaces ; 15(31): 38124-38131, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37494658

RESUMO

Aqueous-phase co-crystallization (also known as biomimetic mineralization or biomineralization) is a unique way to encapsulate large enzymes, enzyme clusters, and enzymes with large substrates in metal-organic frameworks (MOFs), broadening the application of MOFs as enzyme carriers. The crystallinity of resultant enzyme@MOF biocomposites, however, can be low, raising a concern about how MOF crystal packing quality affects enzyme performance upon encapsulation. The challenges to overcome this concern are (1) the limited database of enzyme performance upon biomineralization in different aqueous MOFs and (2) the difficulty in probing enzyme restriction and motion in the resultant MOF scaffolds, which are related to the local crystal packing quality/density, under the interference of the MOF backgrounds. We have discovered several new aqueous MOFs for enzyme biomineralization with varied crystallinity [Jordahl, D.; Armstrong, Z.; Li, Q.; Gao, R.; Liu, W.; Johnson, K.; Brown, W.; Scheiwiller, A.; Feng, L.; Ugrinov, A.; Mao, H.; Chen, B.; Quadir, M.; Pan, Y.; Li, H.; Yang, Z. Expanding the Library of Metal-Organic Frameworks (MOFs) for Enzyme Biomineralization. ACS Appl. Mater. Interfaces 2022, 14 (46), 51619-51629, DOI: 10.1021/acsami.2c12998]. Here, we address the second challenge by probing enzyme dynamics/restriction in these MOFs at the residue level via site-directed spin labeling (SDSL)-electron paramagnetic resonance (EPR) spectroscopy, a unique approach to determine protein backbone motions regardless of the background complexity. We encapsulated a model large-substrate enzyme, lysozyme, in eight newly discovered MOFs, which possess various degrees of crystallization, via aqueous-phase co-crystallization. Through the EPR study and simulations, we found rough connections between (a) enzyme mobility/dynamics and MOF crystal properties (packing quality and density) and (b) enzyme areas exposed above each MOF and their catalytic performance. This work suggests that protein SDSL and EPR can serve as an indicator of MOF crystal packing quality/density when biomineralized in MOFs. The method can be generalized to probing the dynamics of other enzymes on other solid surfaces/interfaces and guide the rational design of solid platforms (ca. MOFs) to customize enzyme immobilization.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Biomineralização , Enzimas Imobilizadas/química , Proteínas , Espectroscopia de Ressonância de Spin Eletrônica
18.
J Biol Chem ; 299(7): 104897, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37290533

RESUMO

Mammalian stearoyl-CoA desaturase-1 (SCD1) introduces a double-bond to a saturated long-chain fatty acid in a reaction catalyzed by a diiron center. The diiron center is well-coordinated by conserved histidine residues and is thought to remain with the enzyme. However, we find here that SCD1 progressively loses its activity during catalysis and becomes fully inactive after about nine turnovers. Further studies show that the inactivation of SCD1 is due to the loss of an iron (Fe) ion in the diiron center and that the addition of free ferrous ions (Fe2+) sustains the enzymatic activity. Using SCD1 labeled with Fe isotope, we further show that free Fe2+ is incorporated into the diiron center only during catalysis. We also discover that the diiron center in SCD1 has prominent electron paramagnetic resonance signals in its diferric state, indicative of distinct coupling between the two ferric ions. These results reveal that the diiron center in SCD1 is structurally dynamic during catalysis and that labile Fe2+ in cells could regulate SCD1 activity and hence lipid metabolism.


Assuntos
Biocatálise , Cátions Bivalentes , Ferro , Estearoil-CoA Dessaturase , Animais , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Ferro/química , Ferro/metabolismo , Mamíferos , Estearoil-CoA Dessaturase/metabolismo , Cátions Bivalentes/química , Cátions Bivalentes/metabolismo , Metabolismo dos Lipídeos
19.
Foods ; 12(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37297404

RESUMO

Corn silk (CS) extracts are reported to contain flavonoids (appx. 59.65 mg quercetin/g), polysaccharides (appx. 58.75 w.%), steroids (appx. 38.3 × 10-3 to 368.9 × 10-3 mg/mL), polyphenols (appx. 77.89 mg/GAE/g) and other functional biological substances. This study investigated the antioxidant activity of corn silk extracts related to their functional compounds. The radical scavenging effect of corn silk extracts was evaluated by the spin-trapping electron paramagnetic resonance (EPR) technique, 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonate) (ABTS•+) free radical measurement, ferric ion-reducing antioxidant power, and copper ion reductive capacity. It was found that the maturity stage of CS plant materials and the applied extraction procedure of their bioactive compounds have a profound effect on the radical scavenging capacity. Differences in the antioxidant activity of the studied corn silk samples based on their maturity were also confirmed. The strongest DPPH radical scavenging effect was observed for the corn silk mature stage (CS-M)stage (CS-MS) (65.20 ± 0.90)%, followed by the silky stage (CS-S) (59.33 ± 0.61)% and the milky stage (CS-M) (59.20 ± 0.92)%, respectively. In general, the final maturity stage (CS-MS) provided the most potent antioxidant effect, followed by the earliest maturity stage (CS-S) and the second maturity stage (CS-M).

20.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108409

RESUMO

The effect of nanosecond electromagnetic pulses on human health, and especially on forming free radicals in human cells, is the subject of continuous research and ongoing discussion. This work presents a preliminary study on the effect of a single high-energy electromagnetic pulse on morphology, viability, and free radical generation in human mesenchymal stem cells (hMSC). The cells were exposed to a single electromagnetic pulse with an electric field magnitude of ~1 MV/m and a pulse duration of ~120 ns generated from a 600 kV Marx generator. The cell viability and morphology at 2 h and 24 h after exposure were examined using confocal fluorescent microscopy and scanning electron microscopy (SEM), respectively. The number of free radicals was investigated with electron paramagnetic resonance (EPR). The microscopic observations and EPR measurements showed that the exposure to the high-energy electromagnetic pulse influenced neither the number of free radicals generated nor the morphology of hMSC in vitro compared to control samples.


Assuntos
Fenômenos Eletromagnéticos , Células-Tronco Mesenquimais , Humanos , Radicais Livres , Fatores Imunológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...