Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biochem Cell Biol ; 101: 12-18, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29778526

RESUMO

The objective of this study was to identify a normalizer or combination of normalizers for quantitative evaluation of the expression of a target gene of interest during melanoma progression. Adult melanocytes, uveal primary melanoma cells and cutaneous primary and metastatic melanoma cells were used to construct a panel of 14 experimental models reflecting cancer promotion and progression. Hypoxanthine phosphoribosyltransferase 1 (HPRT1), glucuronidase beta (GUSB), ribosomal protein S23 (RPS23), phosphoglycerate kinase 1 (PGK1) and small nuclear ribonucleoprotein progression. Adult melanocytes, uveal primary melanoma cells and cutaneous primary and metastatic melanoma cells were used to construct a panel of 14 experimental models reflecting cancer promotion and progression. Hypoxanthine phosphoribosyltransferase 1 (HPRT1), glucuronidase beta (GUSB), ribosomal protein S23 (RPS23), phosphoglycerate kinase 1 (PGK1) and small nuclear ribonucleoprotein polypeptide A (SRNPA) were chosen as candidate housekeeping genes. NormFinder software was used to identify the best reference gene or pair of reference genes from five candidate housekeeping genes, on the basis of expression stability in a given experimental model. The suitability of references was validated by normalizing the transcriptional activities of E-cadherin (CDH1), N-cadherin (CDH2) and endoplasmic reticulum aminopeptidase 1 (ERAP1) target genes. It has been shown that the relative expression of CDH2 and ERAP1 target genes in a given cell line may vary between experimental models, leading to biological misinterpretation. In view of this, we devised a strategy for improved selection of the best stable reference and for obtaining biologically consistent results. This strategy avoided experimental model- and normalizer-dependent conclusions concerning the relative expression of target gene, in the examined cell lines.


Assuntos
Regulação Neoplásica da Expressão Gênica , Genes Essenciais , Melanoma/genética , Proteínas de Neoplasias/genética , Reação em Cadeia da Polimerase em Tempo Real/normas , Neoplasias Uveais/genética , Aminopeptidases/genética , Aminopeptidases/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular , Progressão da Doença , Perfilação da Expressão Gênica , Glucuronidase/genética , Glucuronidase/metabolismo , Humanos , Hipoxantina Fosforribosiltransferase/genética , Hipoxantina Fosforribosiltransferase/metabolismo , Melanócitos/citologia , Melanócitos/metabolismo , Melanoma/diagnóstico , Melanoma/metabolismo , Melanoma/patologia , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas de Neoplasias/metabolismo , Fosfoglicerato Quinase/genética , Fosfoglicerato Quinase/metabolismo , Cultura Primária de Células , Padrões de Referência , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Neoplasias Uveais/diagnóstico , Neoplasias Uveais/metabolismo , Neoplasias Uveais/patologia
2.
Oncoimmunology ; 6(7): e1336594, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28811980

RESUMO

Immune evasion of tumors poses a major challenge for immunotherapy. For human papillomavirus (HPV)-induced malignancies, multiple immune evasion mechanisms have been described, including altered expression of antigen processing machinery (APM) components. These changes can directly influence epitope presentation and thus T-cell responses against tumor cells. To date, the APM had not been studied systematically in a large array of HPV+ tumor samples. Therefore in this study, systematic expression analysis of the APM was performed on the mRNA and protein level in a comprehensive collection of HPV16+ cell lines. Subsequently, HPV+ cervical tissue samples were examined by immunohistochemistry. ERAP1 (endoplasmic reticulum aminopeptidase 1) was the only APM component consistently altered - namely overexpressed - in HPV16+ tumor cell lines. ERAP1 was also found to be overexpressed in cervical intraepithelial neoplasia and cervical cancer samples; expression levels were increasing with disease stage. On the functional level, the influence of ERAP1 expression levels on HPV16 E7-derived epitope presentation was investigated by mass spectrometry and in cytotoxicity assays with HPV16-specific T-cell lines. ERAP1 overexpression did not cause a complete destruction of any of the HPV epitopes analyzed, however, an influence of ERAP1 overexpression on the presentation levels of certain HPV epitopes could be demonstrated by HPV16-specific CD8+ T-cells. These showed enhanced killing toward HPV16+ CaSki cells whose ERAP1 expression had been attenuated to normal levels. ERAP1 overexpression may thus represent a novel immune evasion mechanism in HPV-induced malignancies, in cases when presentation of clinically relevant epitopes is reduced by overactivity of this peptidase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA