Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 28(33): 45009-45018, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33856629

RESUMO

Sewage treatment and water reuse are, undoubtedly, one of the main points on scientific agenda of the 21st century. Many technologies for sewage treatment are available; however, it is still as an open issue that deserves much attention in order to facilitate their application, develop more effective methods and propose alternative treatment for unusual situations. Developing high performance materials for sewage treatment fits the idea of the development of efficient and alternative methods for microorganism removal and the high organic load of wastewater and is of fundamental importance. In this paper, a heterojunction with perovskite-type strontium stannate (SrSnO3) and graphitic carbon nitride (g-C3N4) - SrSnO3/g-C3N4 - was synthesized and used for photocatalytic treatment of domestic sewage using only sunlight. Results were accompanied by assessing the total organic carbon decrease and removal of pathogenic microorganisms. X-ray diffraction and X-ray excited photoelectron spectroscopy demonstrated that a heterostructure was successfully formed and photocatalytic tests showed an important activity in the visible range, i.e., under sunlight. Exposing raw sewage to 240 min (from 11 a.m. until 3 p.m.) in the presence of SrSnO3/g-C3N4, led to a 56.1% mineralization. This process was 2.5 more efficient than photolysis under sunlight. Moreover, the treated sewage showed no coliform growth (either fecal or total) or heterotrophic bacteria. This simple treatment makes sewage suitable and safe for reuse, for example, for agriculture purposes according to Brazilian regulations criteria and could be an alternative for isolated areas in which sewage treatment plants are not available.


Assuntos
Desinfecção , Esgotos , Catálise , Luz , Luz Solar
2.
Environ Sci Pollut Res Int ; 28(42): 59430-59438, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33479872

RESUMO

The importance of studying the atmospheric pollution due to its effects on human health and other ecosystems, the inexistence of national production of equipment for air sample collection, and the high cost of the imported equipment (especially in developing countries) led the authors of the present work to construct a low-cost Gent type sampler. The construction of the sampler was carried out by combining low-cost materials with good mechanical strength (such as nylon 6.0), hydraulic piping PVC, and the use of a 3D printer. The innovation of the present work is the employment of a 3D printer using ABS polymer to create the grids that cannot be machined. In addition to the sampler, the system is composed of a vacuum pump, a gas meter, and a rotameter. The total cost of the sampling system amounted at about 1200 USD, and the cost of the manufactured Gent type sampler did not reach 100 USD. The results obtained while using this set for sampling atmospheric aerosol for a period of 11 months were compared with the mass concentration of PM10 obtained from the official environmental company, CETESB of São Paulo State, Brazil, showing good correlation with those from CETESB - which confirmed its effectiveness and suitability for use. The low cost, easy operation, and versatility of the built Gent type sampler enable its use for scientific and academic purposes. The equipment can be useful in environmental monitoring networks, in low-income regions, and as an instrument for environmental education used in universities.


Assuntos
Aerossóis , Monitoramento Ambiental , Aerossóis/análise , Brasil , Monitoramento Ambiental/instrumentação , Tamanho da Partícula
3.
Heliyon ; 6(9): e05034, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33005812

RESUMO

Uncontrolled urbanization growth contributes to the pollution of aquatic environments. Heavy metals released by domestic and industrial effluents can negatively affect aquatic organisms. This study aimed to evaluate the effect of environmental pollutants, such as metals, on fish DNA damage, in stretches of an urban stream. Specimens of the Neotropical fish, Astyanax lacustris, were exposed in situ for 96 h along the Antas stream, a Brazilian aquatic system deteriorated by anthropogenic factors. Water and sediment samples were collected simultaneously for physicochemical and heavy metal analyses. The comet assay was performed as a biomarker of genotoxicity. Fish located downstream had a higher frequency of DNA damage than in the reference site. We found concentrations of Cr and Ni above acceptable levels in sediment samples. Generally, Ba, Mn, Mg, Zn, Cr, and Ni were the elements most associated with genotoxic damage. Water and sediment of the Antas stream showed genotoxic potential in A. lacustris according to the urbanization gradient, demonstrating the importance to prevent the release of environmental pollutants, especially heavy metals in urban areas.

4.
Heliyon ; 6(9): e04846, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32954032

RESUMO

The present study aimed to determine the toxic effect of malathion pesticide on root growth, cell division and the chromosomal abnormalities frequency using the L. culinaris test. Initially, the lentil seeds were subjected to different doses of malathion (0.0 0.5, 1, 2.5, 5, 10, 15, 20, 25 and 30 mgL-1) and during 24, 48, and 72 h, the root length was measured. Subsequently, at 72h, the mitotic index, mitotic inhibition, and cellular abnormalities were calculated for all treatments. According to the obtained results, it was visualized that the root growth was inversely proportional to the concentration of malathion at all times of exposure. After 72h of exposure, the lowest values of the mitotic index and inhibition were presented at malathion concentrations 20, 25 and 30 mgL-1. Additionally, micronuclei cell abnormalities, metaphase sticky chromosomes, split chromosomes, nuclear lesions, irregular anaphase, anaphase bridges, binucleated cells, absence of nucleus and telophase bridge were observed. Finally, Malathion induced mitodepressive and cytotoxic effects in the meristematic cells of the L. culinaris root tip. A high frequency of abnormality was found in the micronuclei, which represented an indicator of a high degree of toxicity at the cellular level.

5.
Heliyon ; 6(5): e03970, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32514480

RESUMO

Groundwater represents almost half of the drinking water worldwide and more than one third of water used for irrigation. Agro-industrial activities affect water resources in several manners; one of the most important is leaching of agrochemical residues. This research identifies the major contributors of changes in groundwater quality comparing two contrasting land uses in a karstic area of the Yucatan peninsula as case study. Using a multiple approach, we assess the impact of land use with physicochemical data, multivariate analyses, hydrogeochemistry and nitrate isotopic composition. We confirmed that agricultural land use has a greater impact on groundwater quality, observed in higher concentration of nitrates, ammonium, potassium and electrical conductivity. Seasonality has an influence on phosphates and the chemical composition of the groundwater, increasing the concentration of dissolved substances in the rainy season. There was a clear effect of manure application in the agricultural zone and the nitrate isotopic composition of groundwater points toward recharge in certain areas. We consider that seasonality and land use effects are intertwined and sometimes difficult to separate, likely because of land use intensity and hydrogeochemical process at a local scale. Finally, we observed poor groundwater quality in the agricultural area during the wet season; thus, it is desirable to maintain non-agricultural areas that provide groundwater of appropriate quality.

6.
Heliyon ; 6(2): e03394, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32072068

RESUMO

Several studies have been conducted worldwide to develop effective and affordable methods to degrade pharmaceuticals and their metabolites/intermediates/oxidation products found in surface water, wastewater and drinking water. In this work, acetaminophen and its transformation products were successfully degraded in surface water by electrochemical oxidation using stainless steel electrodes. The effect of pH and current density on the oxidation process was assessed and the oxidation kinetics and mechanisms involved were described. Additionally, the results were compared with those obtained in acetaminophen synthetic solutions. It was found that conducting the electrochemical oxidation at 16.3 mA/cm2 and pH 5, good performance of the process was achieved and not only acetaminophen, but also its transformation products were totally degraded in only 7.5 min; furthermore, small number of transformation products were generated. On the other hand, degradation rates of acetaminophen and its transformation products in surface water were much faster (more than 2.5 times) and the reaction times much shorter (more than 4.0 times) than in synthetic solutions at all current densities and pH values evaluated. At pH 3 and pH 5, greater soluble chlorine formation due to the higher HCl amount used to acidify the surface water solutions could enhance the degradation rates of acetaminophen and its transformation products. However, constituents of surface water (ions and solids) could also have an important role on the oxidation process because at pH 9 (non-acidified solutions) the degradation rates were also much greater and the reaction times were much shorter in surface water than in acetaminophen synthetic solutions.

7.
Heliyon ; 6(1): e03093, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31956706

RESUMO

The purpose of this study was to analyze the impact of procymidone application in periurban horticultural greenhouses, especially on workers (applicators and assistants) and soil and plastic mulching, when mechanically pressurized application systems were employed. The mean Potential Dermal Exposure (PDE) was measured using the Whole Body Dosimetry technique. The PDE for the applicators was 188 mL h-1 ± 103 mL h-1, and 14.7 mL h-1 ± 6.3 mL h-1 for the assistants. In the first case, the most exposed body sections were the upper right and left (46.8 mL h-1 ± 23.4 mL h-1; 47.0 mL h-1 ± 23.5 mL h-1) and lower (20.8 mL h-1 ± 10.4 mL h-1; 17.3 mL h-1 ± 8.7 mL h-1) legs, while in the case of assistants, hands and legs were the most impacted limbs. Regarding the Margin of Safety (MOS) during the mix and load stage, two of three pesticide preparations resulted unsafe, while for the applicators, six of six spraying operations were unsafe. For the assistants, five of five operations were safe, but three of them were close to the safety limit. Procymidone distribution between drift (0.03% ± 0.07 %), applicator (0.20% ± 0.15 %), polyethylene mulching (8.5% ± 4.5 %) and soil (3.0% ± 1.1 %) was determined with respect to the total pesticide applied. Procymidone soil impact was also evaluated using Eisenia andrei behavioral tests, finding positive correlations between procymidone application and avoidance and reproduction tests.

8.
Environ Pollut ; 255(Pt 1): 113140, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31541833

RESUMO

This review aims to gather and summarize information about the occurrence of emerging contaminants and antibiotic resistance genes in environmental matrices in Latin America. We aim to contribute to future research by compiling a list of priority pollutants adjusted to the needs and characteristics of Latin America, according to the data presented in this study. In order to perform a comprehensive research and secure a representative and unbiased amount of quality data concerning emerging contaminants in Latin America, the research was performed within the Scopus® database in a time frame from 2000 to July 2019. The countries with higher numbers of published articles were Brazil and México, while most studies were performed in the surroundings of Mexico City and in Southern and Southeastern Brazil. The main investigated environmental matrices were drinking water and surface water. The presence of antibiotic resistance was frequently reported, mainly in Brazil. Monitoring efforts should be performed in other countries in Latin America, as well as in other regions of Brazil and México. The suggested priority list for monitoring of emerging contaminants in Latin America covers: di(2-ethylhexyl) phthalate (DEHP), bisphenol-A (BP-A), 4-nonylphenol (4-NP), triclosan (TCS), estrone (E1), estradiol (E2), ethinylestradiol (EE2), tetracycline (TC), amoxicillin (AMOX), norfloxacin (NOR), ampicillin (AMP) and imipenem (IMP). We hope this list serves as a basis for the orientation of the future research and monitoring projects to better understand the distribution and concentration of the listed emerging substances.


Assuntos
Antibacterianos/análise , Farmacorresistência Bacteriana/efeitos dos fármacos , Estrogênios/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Compostos Benzidrílicos/análise , Brasil , Cidades , Dietilexilftalato/análise , Poluentes Ambientais , Estradiol/análise , Estrona/análise , Etinilestradiol/análise , América Latina , Linestrenol/análise , México , Fenóis/análise , Triclosan/análise
9.
Heliyon ; 5(6): e01892, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31294096

RESUMO

The optimization of the Catalytic Wet Peroxide Oxidation (CWPO) assisted by an Al/Fe-pillared clay (Al/Fe-PILC) was assessed in the inactivation of the MS2 coliphage in the presence of a synthetic surrogate of natural organic matter (NOM). The simultaneous effect of two experimental factors (i) H2O2 dose - (H2O2)d (3.00-25.50 % of the H2O2 theoretically required for full mineralization) and (ii) catalyst concentration (0.33-2.60 g/L), and four non-controllable variables (covariates) (a) circumneutral pH (6.00-9.00), (b) temperature (5.00-25.0 °C), (c) synthetic NOM concentration (2.0-20.0 mg C/L) and (d) MS2 titer (104, 105 and 106 PFU/mL) was investigated by Response Surface Methodology (RSM). Every response was modeled and maximized: (1) MS2 inactivation, (2) fraction of reacted H2O2, (3) decolourization and (4) NOM mineralization. Multi-response optimization via desirability function based on responses (1) to (3) achieved excellent fitting (0.94 out of 1.0) and following set of optimal experimental conditions: 0.33 g Al/Fe-PILC/L, 3.36 % (H2O2)d â€‹(Feactive/H2O2) = 0.46, giving rise to 92.9 % of MS2 inactivation and 100 % of reacted H2O2 at pH 7.07, 25.0 +/- 0.1 °C, 16.06 mg C/L as starting NOM concentration, and MS2 titer of 106 PFU/mL after just 70 min â€‹of reaction.

10.
Sci Total Environ ; 681: 379-391, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31108358

RESUMO

In Latin America, the high proportion of arsenic (As) in many groundwaters and phreatic aquifers is related to the volcanism of the Andean Range. Nevertheless, there is still very little published research on As and other elements occurrence, and/or transference to biota in Southern regions such as Argentinean Patagonia and the South Shetland Islands in Antarctica, where there are active volcanoes and geothermal processes. Therefore, this study was aimed to describe water quality from the main rivers of Argentinean Northern Patagonia through physicochemical analysis. The Patagonian and Antarctic biota (including samples of animal, plants, algae and bacteria) was characterized through the analysis of their As and other elemental concentrations (P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Se, Br, Rb and Sr), by synchrotron radiation x-ray fluorescence spectroscopy (SRXRF). Finally, the analysis of metal and As-proteins associations in As-accumulating organisms was performed by SRXRF after sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). A wide range of metal concentration including As (up to 950 µg/L As) was found in water samples from Patagonian rivers. A hierarchical cluster analysis revealed that the elemental concentration of analysed biological samples was related to volcanic environments and their place in the trophic chain. Moreover, the results suggest that Se, Co, Cu, Br, and Cl are strong predictors of As in biota. On the other hand, As was not detected in proteins from the studied samples, suggesting biotransformation into soluble As-organic compounds. This is the first study to describe environmental pollution as a consequence of active volcanism, and its influence on water quality and elemental composition of biota in Argentinean Northern Patagonia and Antarctica.


Assuntos
Arsênio/análise , Monitoramento Ambiental , Poluentes Ambientais/análise , Oligoelementos/análise , Regiões Antárticas , Argentina , Erupções Vulcânicas
11.
Toxics ; 5(1)2016 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-29051434

RESUMO

This study aimed to analyze the ecotoxicity of nitrogen-, phosphorus-, and potassium-based compounds to organisms of two different trophic levels in order to compare the toxic effect between high-purity substances and these substances as components of fertilizers. Dilutions were made with the fertilizers' potassium chloride, potassium nitrate, superphosphate, urea, and their equivalent reagents, to conduct assays to establish the acute lethal concentration for half of the population (LC50). Ten individuals of the benthic snail Biomphalaria glabrata and the fish Danio rerio were exposed to each concentration of tested compounds. As a result, the toxicity levels of potassium chloride, potassium nitrate, and urea were obtained for B. glabrata and D. rerio, with the fish being more susceptible to potassium chloride in the fertilizer and the snail to potassium nitrate and urea, in both commercial and reagent forms. Regarding superphosphate, no significant toxicity was found. This study concluded that among the tested substances, KNO3 and KCl were the most toxic substances and urea the least toxic. It was not possible to establish the most sensitive species since, for KCl, the fish were more susceptible to the fertilizer and the snail to the reagent, while for KNO3 the opposite was observed.

12.
Talanta ; 147: 335-41, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26592616

RESUMO

This report describes the development of an analytical methodology on microchip electrophoresis (ME) devices coupled with capacitively coupled contactless conductivity detection (C(4)D) to monitor inorganic anions in environmental samples. The buffer composition as well as detection operating parameters were optimized to achieve the best separation selectivity and detector sensitivity, respectively. Electrophoretic separations of Cl(-), NO3(-), SO4(2-) and NO2(-) were successfully performed within 60s using a running buffer composed of 30mmol L(-1) latic acid and 15mmol L(-1)l-histidine (His). The best detectability levels were found applying a sinusoidal wave with 1100-kHz-frequency and 60-Vpp amplitude. Quantitative analyzes of inorganic anions were carried out in the presence of Cr2O7(2-) ion as internal standard (IS), which ensured great repeatability in terms of migration times (<1%) and peak areas (6.2-7.6%) for thirty consecutive injections. The analytical performance revealed a linear behavior for concentration ranges between 0-120µmol L(-1) (Cl(-), NO2(-) and NO3(-)) and 0-60µmol L(-1) (SO4(2-)) and limits of detection (LODs) varying from 2.0 to 4.9µmol L(-1). The concentration levels of anionic species were determined in aquarium, river and biofertilizer samples with recovery values between 91% and 105%. The nitrification steps associated with conversion of ammonium to nitrite followed by the conversion of nitrite to nitrate were successfully monitored in a simulated environment without fishes during a period of twelve weeks. Lastly, the monitoring of anionic species was carried out during eight weeks in an aquarium environment containing ten fishes from Danio rerio (Ciprynidae). The recorded data revealed the absence of nitrite and a gradual increase on the ammonium and nitrate concentration levels during eight weeks, thus suggesting the direct conversion of ammonium to nitrate. Based on the data herein reported, the proposed analytical methodology can be used for routine environmental analysis.

13.
Environ Sci Pollut Res Int ; 22(19): 14755-66, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25989857

RESUMO

Data regarding trace element concentrations and fluxes in suspended sediments and bedload are scarce. To fill this gap and meet the international need to include polluted rivers in future world estimation of trace element fluxes, this study aimed to determine the trace element fluxes in suspended sediment and bedload of an environmentally impacted river in Brazil. Water, suspended sediment, and bedload from both the upstream and the downstream cross sections were collected. To collect both the suspended sediment and water samples, we used the US DH-48. Bedload measurements were carried out using the US BLH 84 sampler. Concentrations of Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were determined by inductively coupled plasma (ICP-OES). As and Hg were determined by an atomic absorption spectrophotometer (AA-FIAS). The suspended sediments contributed more than 99 % of the trace element flux. By far Pb and to a less extent Zn at the downstream site represents major concerns. The yields of Pb and Zn in suspended sediments were 4.20 and 2.93 kg km(2) year(-1), respectively. These yields were higher than the values reported for Pb and Zn for Tuul River (highly impacted by mining activities), 1.60 and 1.30 kg km(2) year(-1), respectively, as well as the Pb yield (suspended + dissolved) to the sea of some Mediterranean rivers equal to 3.4 kg km(2) year(-1). Therefore, the highest flux and yield of Pb and Zn in Ipojuca River highlighted the importance to include medium and small rivers-often overlooked in global and regional studies-in the future estimation of world trace element fluxes in order to protect estuaries and coastal zones.


Assuntos
Sedimentos Geológicos/análise , Rios , Oligoelementos/análise , Poluentes Químicos da Água/análise , Brasil , Estuários , Qualidade da Água
14.
Braz. arch. biol. technol ; Braz. arch. biol. technol;54(5): 973-982, Sept.-Oct. 2011. ilus, tab
Artigo em Inglês | LILACS | ID: lil-604258

RESUMO

The present work aimed at studying the operational parameters of an Anaerobic Hybrid Reactor (AHR) removing organic matter of coffee wastewater with low concentration. The AHR was built similar to an UASB reactor, however the interior was filled with mini-filters composed by two types of support materials: expanded clay and rolled pebble. Three start-ups were accomplished in order to achieve the stationary state (steady-state). Three hydraulic retention times were appraised: 28.5; 24.0 and 18.0 h, obtaining a volumetric loading rate (VLR) of 0.70; 0.56; 0.54 kg COD m-3 d-1 and a biological organic loading rate (BOLR) of 0.0156; 0.0103 and 0.01213 kg BOD5 kg TVS-1 d-1. Due to the decrease in the concentration of organic matter in the influent, the endogen process started to occur on the biomass lowering the methanogenic process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA