Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1412821, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015564

RESUMO

Introduction: Plant-based nutritional programming is the concept of exposing fish at very early life stages to a plant-based diet for a short duration to improve physiological responses when exposed to a similar plant-rich diet at a later developmental stage. The mechanisms of action underlying nutritional programming have not been fully deciphered, and the responses may be controlled at multiple levels. Methods: This 22-week study examines gut transcriptional changes after nutritional programming. Triplicate groups of Atlantic salmon were fed with a plant (V) vs. a marine-rich (M, control) diet for 2 weeks (stimulus phase) at the first exogenous feeding. Both stimulus fish groups (M and V fish) were then fed the M diet for 12 weeks (intermediate phase) and lastly fed the V diet (challenge phase) for 6 weeks, generating two dietary regimes (MMV and VMV) across phases. This study used a whole-transcriptome approach to analyse the effects of the V diet at the end of stimulus (short-term effects) and 22 weeks post-first feeding (long-term effects). After the stimulus, due to its developmental stage, the whole intestine was used, whereas, after the challenge, pyloric caeca and middle and distal intestines were examined. Results and discussion: At the stimulus end, genes with increased expression in V fish enriched pathways including regulatory epigenetic responses and lipid metabolism, and genes involved in innate immune response were downregulated. In the middle intestine at the end of the challenge, expression levels of genes of lipid, carbohydrate, and energy metabolism were increased in V fish, while M fish revealed increased expression of genes associated with autoimmune and acute adaptive immune response. The distal intestine of V fish showed increased expression of genes associated with immune response and potential immune tolerance. Conversely, the distal intestine of M fish at challenge revealed upregulation of lipid and carbohydrate metabolic pathways, tissue degeneration, and apoptotic responses. The present study demonstrated nutritional programming-associated changes in the intestinal transcriptome, with altered expression of genes involved in both immune responses and different metabolic processes. While there were limited changes in growth between the groups, the results show that there were transcriptional differences, suggesting a programming response, although the mechanism of this response still requires to be fully elucidated.


Assuntos
Ração Animal , Salmo salar , Transcriptoma , Animais , Salmo salar/imunologia , Salmo salar/genética , Dieta Vegetariana , Fenômenos Fisiológicos da Nutrição Animal , Perfilação da Expressão Gênica , Dieta Baseada em Plantas
3.
Front Immunol ; 14: 1252554, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868995

RESUMO

The preventive situation of parasitosis, a global public health burden especially for developing countries, is not looking that good. Similar to other infections, vaccines would be the best choice for preventing and controlling parasitic infection. However, ideal antigenic molecules for vaccine development have not been identified so far, resulting from the complicated life history and enormous genomes of the parasites. Furthermore, the suppression or down-regulation of anti-infectious immunity mediated by the parasites or their derived molecules can compromise the effect of parasitic vaccines. Comparing the early immune profiles of several parasites in the permissive and non-permissive hosts, a robust innate immune response is proposed to be a critical event to eliminate the parasites. Therefore, enhancing innate immunity may be essential for designing novel and effective parasitic vaccines. The newly emerging trained immunity (also termed innate immune memory) has been increasingly recognized to provide a novel perspective for vaccine development targeting innate immunity. This article reviews the current status of parasitic vaccines and anti-infectious immunity, as well as the conception, characteristics, and mechanisms of trained immunity and its research progress in Parasitology, highlighting the possible consideration of trained immunity in designing novel vaccines against parasitic diseases.


Assuntos
Parasitos , Doenças Parasitárias , Vacinas , Animais , Imunidade Treinada , Doenças Parasitárias/prevenção & controle , Imunidade Inata
4.
Redox Biol ; 68: 102920, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839954

RESUMO

During our whole lifespan, from conception to death, the epigenomes of all tissues and cell types of our body integrate signals from the environment. This includes signals derived from our diet and the uptake of macro- and micronutrients. In most cases, this leads only to transient changes, but some effects of this epigenome programming process are persistent and can even be transferred to the next generation. Both epigenetic programming and redox processes are affected by the individual choice of diet and other lifestyle decisions like physical activity. The nutrient-gene communication pathways have adapted during human evolution and are essential for maintaining health. However, when they are maladaptive, such as in long-term obesity, they significantly contribute to diseases like type 2 diabetes and cancer. The field of nutrigenomics investigates nutrition-related signal transduction pathways and their effect on gene expression involving interactions both with the genome and the epigenomes. Several of these diet-(epi)genome interactions and the involved signal transduction cascades are redox-regulated. Examples include the effects of the NAD+/NADH ratio, vitamin C levels and secondary metabolites of dietary molecules from plants on the acetylation and methylation state of the epigenome as well as on gene expression through redox-sensitive pathways via the transcription factors NFE2L2 and FOXO. In this review, we summarize and extend on these topics as well as those discussed in the articles of this Special Issue and take them into the context of redox biology.


Assuntos
Diabetes Mellitus Tipo 2 , Nutrigenômica , Humanos , Dieta , Obesidade , Oxirredução
5.
Clin Epigenetics ; 15(1): 162, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845746

RESUMO

BACKGROUND: Adverse childhood experiences (ACEs) increase the risk of poor health outcomes later in life. Psychosocial stressors may also have intergenerational health effects by which parental ACEs are associated with mental and physical health of children. Epigenetic programming may be one mechanism linking parental ACEs to child health. This study aimed to investigate epigenome-wide associations of maternal preconception ACEs with DNA methylation patterns of children. In the Center for the Health Assessment of Mothers and Children of Salinas study, cord blood DNA methylation was measured using the Illumina HumanMethylation450 BeadChip. Preconception ACEs, which occurred during the mothers' childhoods, were collected using a standard ACE questionnaire including 10 ACE indicators. Maternal ACE exposures were defined in this study as (1) the total number of ACEs; (2) the total number of ACEs categorized as 0, 1-3, and > 4; and (3) individual ACEs. Associations of ACE exposures with differential methylated positions, regions, and CpG modules determined using weighted gene co-expression network analysis were evaluated adjusting for covariates. RESULTS: Data on maternal ACEs and cord blood DNA methylation were available for 196 mother/newborn pairs. One differential methylated position was associated with maternal experience of emotional abuse (cg05486260/FAM135B gene; q value < 0.05). Five differential methylated regions were significantly associated with the total number of ACEs, and 36 unique differential methylated regions were associated with individual ACEs (Sidák p value < 0.05). Fifteen CpG modules were significantly correlated with the total number of ACEs or individual ACEs, of which 8 remained significant in fully adjusted models (p value < 0.05). Significant modules were enriched for pathways related to neurological and immune development and function. CONCLUSIONS: Maternal ACEs prior to conception were associated with cord blood DNA methylation of offspring at birth. Although there was limited overlap between differential methylated regions and CpGs in modules associated with ACE exposures, statistically significant regions and networks were related to genes involved in neurological and immune function. Findings may provide insights to pathways linking psychosocial stressors to health. Further research is needed to understand the relationship between changes in DNA methylation and child health.


Assuntos
Experiências Adversas da Infância , Metilação de DNA , Criança , Feminino , Humanos , Recém-Nascido , Sangue Fetal/metabolismo , Mães , Exposição Materna
6.
Bioessays ; 45(10): e2300069, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37417392

RESUMO

The ovarian reserve defines female reproductive lifespan, which in humans spans decades. The ovarian reserve consists of oocytes residing in primordial follicles arrested in meiotic prophase I and is maintained independent of DNA replication and cell proliferation, thereby lacking stem cell-based maintenance. Largely unknown is how cellular states of the ovarian reserve are established and maintained for decades. Our recent study revealed that a distinct chromatin state is established during ovarian reserve formation in mice, uncovering a novel window of epigenetic programming in female germline development. We showed that an epigenetic regulator, Polycomb Repressive Complex 1 (PRC1), establishes a repressive chromatin state in perinatal mouse oocytes that is essential for prophase I-arrested oocytes to form the ovarian reserve. Here we discuss the biological roles and mechanisms underlying epigenetic programming in ovarian reserve formation, highlighting current knowledge gaps and emerging research areas in female reproductive biology.


Assuntos
Meiose , Reserva Ovariana , Humanos , Gravidez , Feminino , Camundongos , Animais , Reserva Ovariana/genética , Oócitos , Cromatina/genética , Epigênese Genética
7.
Clin Epigenetics ; 15(1): 62, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37046280

RESUMO

BACKGROUND: Epigenetic age acceleration (EAA) and epigenetic gestational age acceleration (EGAA) are biomarkers of physiological development and may be affected by the perinatal environment. The aim of this study was to evaluate performance of epigenetic clocks and to identify biological and sociodemographic correlates of EGAA and EAA at birth and in childhood. In the Project Viva pre-birth cohort, DNA methylation was measured in nucleated cells in cord blood (leukocytes and nucleated red blood cells, N = 485) and leukocytes in early (N = 120, median age = 3.2 years) and mid-childhood (N = 460, median age = 7.7 years). We calculated epigenetic gestational age (EGA; Bohlin and Knight clocks) and epigenetic age (EA; Horvath and skin & blood clocks), and respective measures of EGAA and EAA. We evaluated the performance of clocks relative to chronological age using correlations and median absolute error. We tested for associations of maternal-child characteristics with EGAA and EAA using mutually adjusted linear models controlling for estimated cell type proportions. We also tested associations of Horvath EA at birth with childhood EAA. RESULTS: Bohlin EGA was strongly correlated with chronological gestational age (Bohlin EGA r = 0.82, p < 0.001). Horvath and skin & blood EA were weakly correlated with gestational age, but moderately correlated with chronological age in childhood (r = 0.45-0.65). Maternal smoking during pregnancy was associated with higher skin & blood EAA at birth [B (95% CI) = 1.17 weeks (- 0.09, 2.42)] and in early childhood [0.34 years (0.03, 0.64)]. Female newborns and children had lower Bohlin EGAA [- 0.17 weeks (- 0.30, - 0.04)] and Horvath EAA at birth [B (95% CI) = - 2.88 weeks (- 4.41, - 1.35)] and in childhood [early childhood: - 0.3 years (- 0.60, 0.01); mid-childhood: - 0.48 years (- 0.77, - 0.18)] than males. When comparing self-reported Asian, Black, Hispanic, and more than one race or other racial/ethnic groups to White, we identified significant differences in EGAA and EAA at birth and in mid-childhood, but associations varied across clocks. Horvath EA at birth was positively associated with childhood Horvath and skin & blood EAA. CONCLUSIONS: Maternal smoking during pregnancy and child sex were associated with EGAA and EAA at multiple timepoints. Further research may provide insight into the relationship between perinatal factors, pediatric epigenetic aging, and health and development across the lifespan.


Assuntos
Metilação de DNA , Epigênese Genética , Masculino , Gravidez , Humanos , Recém-Nascido , Pré-Escolar , Criança , Feminino , Envelhecimento/genética , Longevidade/genética , Idade Gestacional
8.
Front Cell Dev Biol ; 10: 930375, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36036017

RESUMO

Hormesis refers to graded adaptive responses to harmful environmental stimuli where low-level toxicant exposures stimulate tissue growth and responsiveness while, in contrast, higher-level exposures induce toxicity. Although the intergenerational inheritance of programmed hormetic growth responses is described in plants and insects, researchers have yet to observe this phenomenon in mammals. Using a physiologically relevant mouse model, we demonstrate that chronic preconception paternal alcohol exposures program nonlinear, dose-dependent changes in offspring fetoplacental growth. Our studies identify an inverse j-shaped curve with a threshold of 2.4 g/Kg per day; below this threshold, paternal ethanol exposures induce programmed increases in placental growth, while doses exceeding this point yield comparative decreases in placental growth. In male offspring, higher paternal exposures induce dose-dependent increases in the placental labyrinth layer but do not impact fetal growth. In contrast, the placental hypertrophy induced by low-level paternal ethanol exposures associate with increased offspring crown-rump length, particularly in male offspring. Finally, alterations in placental physiology correlate with disruptions in both mitochondrial-encoded and imprinted gene expression. Understanding the influence of ethanol on the paternally-inherited epigenetic program and downstream hormetic responses in offspring growth may help explain the enormous variation observed in fetal alcohol spectrum disorder (FASD) phenotypes and incidence.

9.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35269617

RESUMO

Periodontal disease (PD) is one of the most common oral conditions affecting both youths and adults. There are some research works suggesting a high incidence of PD in pregnant women. As an inflammatory disease of bacterial origin, PD may result in the activation of the pathways affecting the course and the pregnancy outcome. The authors, based on the literature review, try to answer the PICO question: Does maternal periodontitis (exposure) influence the incidence of complications rates in pregnancy and the development of systemic diseases in childhood and adult offspring (outcome) in the humans of any race (population) compared to the offspring of mothers with healthy periodontium (comparison)? The authors try to describe the molecular pathways and mechanisms of these interdependencies. There is some evidence that maternal periodontitis may affect the pregnancy course and outcome, resulting in preeclampsia, preterm delivery, vulvovaginitis and low birth weight. It can be suggested that maternal periodontitis may affect offspring epigenome and result in some health consequences in their adult life.


Assuntos
Doenças Periodontais , Periodontite , Nascimento Prematuro , Adolescente , Adulto , Feminino , Humanos , Recém-Nascido de Baixo Peso , Recém-Nascido , Doenças Periodontais/complicações , Periodontite/complicações , Periodontite/epidemiologia , Gravidez , Resultado da Gravidez , Nascimento Prematuro/etiologia
10.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163133

RESUMO

The maternal diet during pregnancy is a key determinant of offspring health. Early studies have linked poor maternal nutrition during gestation with a propensity for the development of chronic conditions in offspring. These conditions include cardiovascular disease, type 2 diabetes and even compromised mental health. While multiple factors may contribute to these outcomes, disturbed epigenetic programming during early development is one potential biological mechanism. The epigenome is programmed primarily in utero, and during this time, the developing fetus is highly susceptible to environmental factors such as nutritional insults. During neurodevelopment, epigenetic programming coordinates the formation of primitive central nervous system structures, neurogenesis, and neuroplasticity. Dysregulated epigenetic programming has been implicated in the aetiology of several neurodevelopmental disorders such as Tatton-Brown-Rahman syndrome. Accordingly, there is great interest in determining how maternal nutrient availability in pregnancy might affect the epigenetic status of offspring, and how such influences may present phenotypically. In recent years, a number of epigenetic enzymes that are active during embryonic development have been found to require vitamin C as a cofactor. These enzymes include the ten-eleven translocation methylcytosine dioxygenases (TETs) and the Jumonji C domain-containing histone lysine demethylases that catalyse the oxidative removal of methyl groups on cytosines and histone lysine residues, respectively. These enzymes are integral to epigenetic regulation and have fundamental roles in cellular differentiation, the maintenance of pluripotency and development. The dependence of these enzymes on vitamin C for optimal catalytic activity illustrates a potentially critical contribution of the nutrient during mammalian development. These insights also highlight a potential risk associated with vitamin C insufficiency during pregnancy. The link between vitamin C insufficiency and development is particularly apparent in the context of neurodevelopment and high vitamin C concentrations in the brain are indicative of important functional requirements in this organ. Accordingly, this review considers the evidence for the potential impact of maternal vitamin C status on neurodevelopmental epigenetics.


Assuntos
Deficiência de Ácido Ascórbico/complicações , Ácido Ascórbico/farmacologia , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Fenômenos Fisiológicos da Nutrição Materna , Transtornos do Neurodesenvolvimento/prevenção & controle , Neurogênese , Animais , Antioxidantes/farmacologia , Deficiência de Ácido Ascórbico/genética , Deficiência de Ácido Ascórbico/patologia , Feminino , Humanos , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/patologia , Gravidez
11.
J Clin Endocrinol Metab ; 107(5): 1303-1316, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35021220

RESUMO

CONTEXT: Anemia during early pregnancy (EP) is common in developing countries and is associated with adverse health consequences for both mothers and children. Offspring of women with EP anemia often have low birth weight, which increases risk for cardiometabolic diseases, including type 2 diabetes (T2D), later in life. OBJECTIVE: We aimed to elucidate mechanisms underlying developmental programming of adult cardiometabolic disease, including epigenetic and transcriptional alterations potentially detectable in umbilical cord blood (UCB) at time of birth. METHODS: We leveraged global transcriptome- and accompanying epigenome-wide changes in 48 UCB from newborns of EP anemic Tanzanian mothers and 50 controls to identify differentially expressed genes (DEGs) in UCB exposed to maternal EP anemia. DEGs were assessed for association with neonatal anthropometry and cord insulin levels. These genes were further studied in expression data from human fetal pancreas and adult islets to understand their role in beta-cell development and/or function. RESULTS: The expression of 137 genes was altered in UCB of newborns exposed to maternal EP anemia. These putative signatures of fetal programming, which included the birth weight locus LCORL, were potentially mediated by epigenetic changes in 27 genes and associated with neonatal anthropometry. Among the DEGs were P2RX7, PIK3C2B, and NUMBL, which potentially influence beta-cell development. Insulin levels were lower in EP anemia-exposed UCB, supporting the notion of developmental programming of pancreatic beta-cell dysfunction and subsequently increased risk of T2D in offspring of mothers with EP anemia. CONCLUSIONS: Our data provide proof-of-concept on distinct transcriptional and epigenetic changes detectable in UCB from newborns exposed to maternal EP anemia.


Assuntos
Anemia , Diabetes Mellitus Tipo 2 , Adulto , Anemia/genética , Criança , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Sangue Fetal/metabolismo , Desenvolvimento Fetal/genética , Humanos , Recém-Nascido , Insulina/metabolismo , Gravidez , Transcriptoma
12.
Artigo em Inglês | MEDLINE | ID: mdl-36935840

RESUMO

Maternal consumption of a high-fat, Western-style diet (WD) disrupts the maternal/infant microbiome and contributes to developmental programming of the immune system and nonalcoholic fatty liver disease (NAFLD) in the offspring. Epigenetic changes, including non-coding miRNAs in the fetus and/or placenta may also underlie this risk. We previously showed that obese nonhuman primates fed a WD during pregnancy results in the loss of beneficial maternal gut microbes and dysregulation of cellular metabolism and mitochondrial dysfunction in the fetal liver, leading to a perturbed postnatal immune response with accelerated NAFLD in juvenile offspring. Here, we investigated associations between WD-induced maternal metabolic and microbiome changes, in the absence of obesity, and miRNA and gene expression changes in the placenta and fetal liver. After ~8-11 months of WD feeding, dams were similar in body weight but exhibited mild, systemic inflammation (elevated CRP and neutrophil count) and dyslipidemia (increased triglycerides and cholesterol) compared with dams fed a control diet. The maternal gut microbiome was mainly comprised of Lactobacillales and Clostridiales, with significantly decreased alpha diversity (P = 0.0163) in WD-fed dams but no community-wide differences (P = 0.26). At 0.9 gestation, mRNA expression of IL6 and TNF in maternal WD (mWD) exposed placentas trended higher, while increased triglycerides, expression of pro-inflammatory CCR2, and histological evidence for fibrosis were found in mWD-exposed fetal livers. In the mWD-exposed fetus, hepatic expression levels of miR-204-5p and miR-145-3p were significantly downregulated, whereas in mWD-exposed placentas, miR-182-5p and miR-183-5p were significantly decreased. Notably, miR-1285-3p expression in the liver and miR-183-5p in the placenta were significantly associated with inflammation and lipid synthesis pathway genes, respectively. Blautia and Ruminococcus were significantly associated with miR-122-5p in liver, while Coriobacteriaceae and Prevotellaceae were strongly associated with miR-1285-3p in the placenta; both miRNAs are implicated in pathways mediating postnatal growth and obesity. Our findings demonstrate that mWD shifts the maternal microbiome, lipid metabolism, and inflammation prior to obesity and are associated with epigenetic changes in the placenta and fetal liver. These changes may underlie inflammation, oxidative stress, and fibrosis patterns that drive NAFLD and metabolic disease risk in the next generation.

13.
Sci Total Environ ; 797: 149084, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34303245

RESUMO

Adverse environments during pregnancy can increase susceptibility to chronic diseases in adult offspring. The occurrence and development of fetal-originated diseases were associated with adrenal developmental programming and homeostasis alteration in offspring. Dexamethasone is widely used for preterm delivery-related pregnancy diseases, but the intrauterine programming alteration and its occurrence mechanism of prenatal dexamethasone exposure (PDE) on adrenal development in offspring have not been clarified. In this study, prenatal dexamethasone therapy could inhibit neonatal development and cause a low exposure of maternally derived glucocorticoid in clinic. Then, we established a rat model of PDE and observed a similar phenomenon. Further, the adrenal steroidogenic function was continuously inhibited in the PDE male offspring rats, accompanied by the decreased H3K27ac level of adrenal insulin-like growth factor 1 (IGF1) and its expression. Moreover, chronic stress in PDE adult offspring rats could reverse the changes of the above indicators through the high level of glucocorticoid. In combination with in vivo, in vitro and a series of interference experiments, we confirmed that the low level of endogenous glucocorticoids inhibited the adrenal IGF1 expression and steroidogenic function through the GRα/miR-370-3p/Sirt3 pathway. In summary, PDE could continuously inhibit the adrenal steroidogenic function in the male offspring, which is associated with the maternally derived low glucocorticoid-mediated the adrenal developmental programming alteration in offspring. This study provides a theoretical and experimental basis for explaining the adrenal development origin of PDE-induced adult chronic diseases.


Assuntos
Glucocorticoides , Efeitos Tardios da Exposição Pré-Natal , Animais , Dexametasona/toxicidade , Feminino , Glucocorticoides/toxicidade , Masculino , Gravidez , Ratos , Ratos Wistar
14.
Epigenetics Chromatin ; 14(1): 27, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34130715

RESUMO

BACKGROUND: A critical question emerging in the field of developmental toxicology is whether alterations in chromatin structure induced by toxicant exposure control patterns of gene expression or, instead, are structural changes that are part of a nuclear stress response. Previously, we used a mouse model to conduct a three-way comparison between control offspring, alcohol-exposed but phenotypically normal animals, and alcohol-exposed offspring exhibiting craniofacial and central nervous system structural defects. In the cerebral cortex of animals exhibiting alcohol-induced dysgenesis, we identified a dramatic increase in the enrichment of dimethylated histone H3, lysine 9 (H3K9me2) within the regulatory regions of key developmental factors driving histogenesis in the brain. However, whether this change in chromatin structure is causally involved in the development of structural defects remains unknown. RESULTS: Deep-sequencing analysis of the cortex transcriptome reveals that the emergence of alcohol-induced structural defects correlates with disruptions in the genetic pathways controlling oxidative phosphorylation and mitochondrial function. The majority of the affected pathways are downstream targets of the mammalian target of rapamycin complex 2 (mTORC2), indicating that this stress-responsive complex plays a role in propagating the epigenetic memory of alcohol exposure through gestation. Importantly, transcriptional disruptions of the pathways regulating oxidative homeostasis correlate with the emergence of increased H3K9me2 across genic, repetitive, and non-transcribed regions of the genome. However, although associated with gene silencing, none of the candidate genes displaying increased H3K9me2 become transcriptionally repressed, nor do they exhibit increased markers of canonical heterochromatin. Similar to studies in C. elegans, disruptions in oxidative homeostasis induce the chromatin looping factor SATB2, but in mammals, this protein does not appear to drive increased H3K9me2 or altered patterns of gene expression. CONCLUSIONS: Our studies demonstrate that changes in H3K9me2 associate with alcohol-induced congenital defects, but that this epigenetic change does not correlate with transcriptional suppression. We speculate that the mobilization of SATB2 and increased enrichment of H3K9me2 may be components of a nuclear stress response that preserve chromatin integrity and interactions under prolonged oxidative stress. Further, we postulate that while this response may stabilize chromatin structure, it compromises the nuclear plasticity required for normal differentiation.


Assuntos
Etanol/toxicidade , Histonas , Fosforilação Oxidativa , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Histonas/metabolismo , Camundongos , Mitocôndrias/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Transcriptoma
15.
Front Neurosci ; 15: 678258, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33927595

RESUMO

[This corrects the article DOI: 10.3389/fnins.2016.00142.].

16.
Antioxidants (Basel) ; 11(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35052507

RESUMO

Sepsis and septic shock are the leading causes of death among hospitalized patients in the US. The immune response in sepsis transitions from a pro-inflammatory and pro-oxidant hyper-inflammation to an anti-inflammatory and cytoprotective hypo-inflammatory phase. While 1/3rd sepsis-related deaths occur during hyper-, a vast majority of sepsis-mortality occurs during the hypo-inflammation. Hyper-inflammation is cytotoxic for the immune cells and cannot be sustained. As a compensatory mechanism, the immune cells transition from cytotoxic hyper-inflammation to a cytoprotective hypo-inflammation with anti-inflammatory/immunosuppressive phase. However, the hypo-inflammation is associated with an inability to clear invading pathogens, leaving the host susceptible to secondary infections. Thus, the maladaptive immune response leads to a marked departure from homeostasis during sepsis-phases. The transition from hyper- to hypo-inflammation occurs via epigenetic programming. Sirtuins, a highly conserved family of histone deacetylators and guardians of homeostasis, are integral to the epigenetic programming in sepsis. Through their anti-inflammatory and anti-oxidant properties, the sirtuins modulate the immune response in sepsis. We review the role of sirtuins in orchestrating the interplay between the oxidative stress and epigenetic programming during sepsis.

17.
Curr Dev Nutr ; 4(11): nzaa166, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33294766

RESUMO

Congenital heart disease (CHD) is one of the major debilitating birth defects resulting in significant impact on neonatal and child mortality globally. The etiology of CHD is complex and multifactorial. Many causative genes responsible for CHDs have been identified from the familial forms previously. Still, the non-Mendelian inheritance and predominant sporadic cases have stimulated research to understand the epigenetic basis and environmental impact on the incidence of CHD. The fetal epigenetic programming affecting cardiac development is susceptible to the availability of key dietary factors during the crucial periconceptional period. This article highlights the need and importance of in-depth research in the new emerging area of maternal nutritional epigenetics and CHD. It summarizes the current research and underlines the limitations in these types of studies. This review will benefit the future research on nutrition as a modifiable environmental factor to decrease the incidence of CHD.

18.
Environ Epigenet ; 6(1): dvaa011, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33214907

RESUMO

It is now clear that parental histories of drug use, toxicant exposure, and social stress all have a significant influence on the health and development of the next generation. However, the ability of epigenetic parental life memories to interact with subsequent gestational exposures and cumulatively modify the developmental trajectory of the offspring remains an unexplored perspective in toxicology. Studies from our laboratory have identified male-specific postnatal growth restriction in a mouse model of chronic, preconception paternal alcohol exposure. The goal of the current study was to determine if paternal alcohol use, before conception, could modify the susceptibility of the offspring to a completely separate exposure encountered by the mother during pregnancy. In independent experiments, we previously identified altered developmental programming and increased markers of severe asthma induced by gestational exposure to particulate air pollution. In this study, male mice were exposed to either the control or alcohol preconception treatments, then mated to naive females, which we subsequently exposed to an ultrafine mixture of particulate matter via inhalation. Individually, neither preconception paternal drinking nor gestational exposures to particulate air pollution impacted the postnatal growth of female offspring. However, when both exposures were combined, females displayed a 30% reduction in weight gain. Unexpectedly, this exposure paradigm resulted in a dramatic postnatal increase in litter loss due to maternal cannibalism, which prevented additional measures of offspring health. These preliminary studies provide evidence of a complex interplay between preconception life history and intrauterine environmental factors in the control of postnatal growth.

19.
Nutrients ; 12(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32933073

RESUMO

Gestational diabetes mellitus (GDM) is the most common pregnancy complication worldwide and may result in short-term and long-term consequences for offspring. The present review highlights evidence of epigenetic programming, mostly from human studies, which occurs in offspring exposed to maternal GDM during different stages of development, paying special attention to the differences in sensitivity of offspring to maternal hyperglycemia as a result of sex-related factors. We also aim to answer the following question: If these epigenetic changes are constant throughout the lifetime of the offspring, how do they present phenotypically?


Assuntos
Diabetes Gestacional/genética , Epigenoma/genética , Efeitos Tardios da Exposição Pré-Natal/genética , Diabetes Gestacional/fisiopatologia , Feminino , Humanos , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Fatores Sexuais
20.
Artigo em Inglês | MEDLINE | ID: mdl-31849831

RESUMO

Fetal metabolic programming caused by the adverse intrauterine environment can induce metabolic syndrome in adult offspring. Adverse intrauterine environment introduces fetal long-term relatively irreversible changes in organs and metabolism, and thus causes fetal metabolic programming leading metabolic syndrome in adult offspring. Fetal metabolic programming of obesity and insulin resistance plays a key role in this process. The mechanism of fetal metabolic programming is still not very clear. It is suggested that epigenetic programming, also induced by the adverse intrauterine environment, is a critical underlying mechanism of fetal metabolic programming. Fetal epigenetic programming affects gene expression changes and cellular function through epigenetic modifications without DNA nucleotide sequence changes. Epigenetic modifications can be relatively stably retained and transmitted through mitosis and generations, and thereby induce the development of metabolic syndrome in adult offspring. This manuscript provides an overview of the critical role of epigenetic programming in fetal metabolic programming.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA