Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.942
Filtrar
1.
Sci Total Environ ; : 173656, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830414

RESUMO

Coastal and estuarine environments are under endogenic and exogenic pressures jeopardizing survival and diversity of inhabiting biota. Information of possible synergistic effects of multiple (a)biotic stressors and holobiont interaction are largely missing in estuaries like the Elbe but are of importance to estimate unforeseen effects on animals' physiology. Here, we seek to leverage host-transcriptional RNA-seq and gill mucus microbial 16S rRNA metabarcoding data coupled with physiological and abiotic measurements in a network analysis approach to decipher the impact of multiple stressors on the health of juvenile Sander lucioperca along one of the largest European estuaries. We find mesohaline areas characterized by gill tissue specific transcriptional responses matching osmosensing and tissue remodeling. Liver transcriptomes instead emphasized that zander from highly turbid areas were undergoing starvation which was supported by compromised body condition. Potential pathogenic bacteria, including Shewanella, Acinetobacter, Aeromonas and Chryseobacterium, dominated the gill microbiome along the freshwater transition and oxygen minimum zone. Their occurrence coincided with a strong adaptive and innate transcriptional immune response in host gill and enhanced energy demand in liver tissue supporting their potential pathogenicity. Taken together, we show physiological responses of a fish species and its microbiome to abiotic factors whose impact is expected to increase with consequences of climate change. We further present a method for the close-meshed detection of the main stressors and bacterial species with disease potential in a highly productive ecosystem.

2.
Chemosphere ; : 142423, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830461

RESUMO

This study investigates the effects of glyphosate-based herbicide (GLY) and pure emamectin benzoate (EB) insecticide on the brackish copepod Pseudodiaptomus annandalei. The 96h median lethal concentration (96 h LC50) was higher in the GLY exposure (male: 3420.96 ± 394.67 µg/L; female: 3093.46 ± 240.67 µg/L) than in the EB (male: 79.10 ± 7.30 µg/L; female: 6.38 ± 0.72 µg/L). Based on the result of 96h LC50, we further examined the effects of GLY and EB exposures at sub-lethal concentrations on the naupliar production of P. annandalei. Subsequently, a multigenerational experiment was conducted to assess the long-term impact of GLY and EB at concentrations 375 µg/L, and 0.025 µg/L respectively determined by sub-lethal exposure testing. During four consecutive generations, population growth, clutch size, prosome length and width, and sex ratio were measured. The copepods exposed to GLY and EB showed lower population growth but higher clutch size than the control and control group in most generations. Gene expression analysis indicated that GLY and EB exposures resulted in the downregulation of reproduction-related (vitellogenin) and growth-related (myosin heavy chain) genes, whereas a stress-related gene (heat shock protein 70) was upregulated after multigenerational exposure. The results of the toxicity test after post-multigenerational exposure indicated that the long-term GLY-exposed P. annandalei displayed greater vulnerability towards GLY toxicity compared to newly-exposed individuals. Whereas, the tolerance of EB was significantly higher in the long-term exposed copepod than in newly-exposed individuals. This suggests that P. annandalei might have greater adaptability towards EB toxicity than towards GLY toxicity. This study reports for the first time the impacts of common pesticides on the copepod P. annandalei, which have implications for environmental risk assessment and contributes to a better understanding of copepod physiological responses towards pesticide contaminations.

3.
J Hazard Mater ; 472: 134529, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38723482

RESUMO

Halogenated flame retardants (HFRs) have attracted global attention owing to their adverse effects on ecosystems and humans. The Shandong Peninsula is the largest manufacturing base for HFRs in East Asia, yet its impacts on marine ecosystems are unclear. Seventeen HFRs were analyzed in organisms captured from the Xiaoqing River estuary, Bohai Sea (BS), Yellow Sea and Northern East China Sea to investigate the distribution and bioaccumulation of HFRs on a broad scale. The results showed a downward trend in ΣHFR concentrations from the estuary (37.7 ng/g lw on average) to Laizhou Bay (192 ng/g lw) and to coastal seas (3.13 ng/g lw). The concentrations of ΣHFRs were significantly higher in demersal fish (0.71-198 ng/g lw) and benthic invertebrates (0.81-3340 ng/g lw) than in pelagic fish (0.30-27.6 ng/g lw), reflecting a habitat dependence. The concentrations of higher-brominated homologs were greater in benthic invertebrates, whereas a greater level of lower-brominated PBDE congeners was observed in fish, suggesting different profiles between species. Furthermore, the analogue composition of HFRs in fish was similar to that in the dissolved phase of seawater, whereas the HFR pattern in benthic invertebrates was consistent with the profile in sediment. The concentrations of HFRs in organisms vary widely depending on emissions from anthropogenic activities, whereas bioaccumulation patterns are strongly influenced by species and habitat.


Assuntos
Organismos Aquáticos , Ecossistema , Estuários , Retardadores de Chama , Poluentes Químicos da Água , Retardadores de Chama/metabolismo , Retardadores de Chama/análise , Animais , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Organismos Aquáticos/metabolismo , Oceanos e Mares , Peixes/metabolismo , Bioacumulação , Especificidade da Espécie , Monitoramento Ambiental , China , Invertebrados/metabolismo
4.
Mar Pollut Bull ; 203: 116380, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38733889

RESUMO

Microplastics (MPs) have been widely documented in marine biota, with a notable presence in bivalve species. This study examines microplastic (MP) contamination in oysters across a subtropical estuarine system, revealing widespread and highly variable levels of contamination. Our results indicate a general trend of higher contamination in areas with greater anthropogenic impact, and unexpectedly high values in remote Marine Protected Areas, suggesting alternative sources of MPs. We observed a 94.31 % frequency of occurrence and an average contamination level of 8.16 ± 6.39 MP.ind-1, 1.06 ± 1.28 MP.g-1ww, and 7.54 ± 6.55 MP.g-1dw. Transparent fibers, predominantly composed of polyester and polyethylene from likely textile origins, were the most common. The findings underscore the significance of MP pollution in marine environments, even in protected zones. For enhanced spatial assessment and consistent data comparison, we recommend that future studies include MP quantities in terms of dry weight (MP.g-1dw) and biometric data such as size and weight.


Assuntos
Monitoramento Ambiental , Estuários , Microplásticos , Poluentes Químicos da Água , Animais , Microplásticos/análise , Poluentes Químicos da Água/análise , Ostreidae/química
5.
Environ Res ; 252(Pt 3): 119040, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38692424

RESUMO

Floods in global large rivers modulate the transport of dissolved organic carbon (DOC) and estuarine hydrological characteristics significantly. This study investigated the impact of a severe flood on the sources and age of DOC in the Yangtze River Estuary (YRE) in 2020. Comparing the flood period in 2020 to the non-flood period in 2017, we found that the flood enhanced the transport of young DOC to the East China Sea (ECS), resulting in significantly enriched Δ14C-DOC values. During the flood period, the proportion of modern terrestrial organic carbon (OC) was significantly higher compared to the non-flood period. Conversely, the proportion of pre-aged sediment OC was significantly lower during the flood period. The high turbidity associated with the flood facilitated rapid transformation and mineralization of sedimentary and fresh terrestrial OC, modifying the sources of DOC. The flux of modern terrestrial OC transported to the ECS during the flood period was 1.58 times higher than that of the non-flood period. These findings suggest that floods can modulate the sources and decrease the age of DOC, potentially leading to increased greenhouse gas emissions. Further research is needed to understand the long-term impacts of floods on DOC dynamics in global estuaries.

6.
Front Microbiol ; 15: 1365546, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706965

RESUMO

Microorganisms, especially rare microbial species, are crucial in estuarine ecosystems for driving biogeochemical processes and preserving biodiversity. However, the understanding of the links between ecosystem multifunctionality (EMF) and the diversity of rare bacterial taxa in estuary ecosystems remains limited. Employing high-throughput sequencing and a variety of statistical methods, we assessed the diversities and assembly process of abundant and rare bacterioplankton and their contributions to EMF in a subtropical estuary. Taxonomic analysis revealed Proteobacteria as the predominant phylum among both abundant and rare bacterial taxa. Notably, rare taxa demonstrated significantly higher taxonomic diversity and a larger species pool than abundant taxa. Additionally, our findings highlighted that deterministic assembly processes predominantly shape microbial communities, with heterogeneous selection exerting a stronger influence on rare taxa. Further analysis reveals that rare bacterial beta-diversity significantly impacts to EMF, whereas alpha diversity did not. The partial least squares path modeling (PLS-PM) analysis demonstrated that the beta diversity of abundant and rare taxa, as the main biotic factor, directly affected EMF, while temperature and total organic carbon (TOC) were additional key factors to determine the relationship between beta diversity and EMF. These findings advance our understanding of the distribution features and ecological knowledge of the abundant and rare taxa in EMF in subtropical estuaries, and provide a reference for exploring the multifunctionality of different biospheres in aquatic environments.

7.
Mar Environ Res ; 198: 106544, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38795574

RESUMO

Carbon-fixing bacterial communities are essential drivers of carbon fixation in estuarine ecosystems that critically affect the global carbon cycle. This study compared the abundances of the Calvin cycle functional genes cbbL and cbbM and Reductive tricarboxylic acid cycle gene aclB, as well as compared carbon-fixing bacterial community features in the two estuaries, predicted potential ecological functions of carbon-fixation bacteria, and analyzed their symbiosis strategies in two estuaries having different geographical distributions. Gammaproteobacteria was the dominant carbon-fixing bacterial community in the two estuaries. However, a higher number of Alphaproteobacteria were noted in the Liaohe Estuary, and a higher number of Betaproteobacteria were found in the Yalujiang Estuary. The carbon-fixing functional gene levels exhibited the order of aclB > cbbL > cbbM, and significant effects of Cu, Pb, and petroleum were observed (p < 0.05). Nitrogen-associated nutrient levels are major environmental factors that affect carbon-fixing bacterial community distribution patterns. Spatial factors significantly affected cbbL carbon-fixing functional bacterial community structure more than environmental factors. With the increase in offshore distance, the microbial-led processes of methylotrophy and nitrogen fixation gradually weakened, but a gradual strengthening of methanotrophy and nitrification was observed. Symbiotic network analysis of the microorganisms mediating these ecological processes revealed that the carbon-fixing bacterial community in these two estuaries had a non-random symbiotic pattern, and microbial communities from the same module were strongly linked among the carbon, nitrogen, and sulfur cycle. These findings could advance the understanding of carbon fixation in estuarine ecosystems.

8.
J Invertebr Pathol ; : 108144, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38810835

RESUMO

Temperature fluctuations, particularly elevated temperatures, can significantly affect immune responses. These fluctuations can influence the immune system and alter its response to infection signals, such as lipopolysaccharide (LPS). Therefore, this study was designed to investigate how high temperatures and LPS injections collectively influence the immune system of the crab Neohelice granulata. Two groups were exposed to 20 °C (control) or 33 °C for four days. Subsequently, half were injected with 10 µL of physiological crustacean (PS), while the rest received 10 µL of LPS [0.1 mg.kg-1]. After 30 min, the hemolymph samples were collected. Hemocytes were then isolated and assessed for various parameters using flow cytometry, including cell integrity, DNA fragmentation, total hemocyte count (THC), differential hemocyte count (DHC), reactive oxygen species (ROS) level, lipid peroxidation (LPO), and phagocytosis. Results showed lower cell viability at 20 °C, with more DNA damage in the same LPS-injected animals. There was no significant difference in THC, but DHC indicated a decrease in hyaline cells (HC) at 20 °C following LPS administration. In granular cells (GC), an increase was observed after both PS and LPS were injected at the same temperature. In semi-granular cells (SGC), there was a decrease at 20 °C with the injection of LPS, while at a temperature of 33 °C, the SGC there was a decrease only in SGC injected with LPS. Crabs injected with PS and LPS at 20 °C exhibited higher levels of ROS in GC and SGC, while at 33 °C, the increase was observed only in GC and SGC cells injected with LPS. A significant increase in LPO was observed only in SGC cells injected with PS and LPS at 20 °C and 33 °C. Phagocytosis decreased in animals at 20 °C with both injections and exposed to 33 °C only in those injected with LPS. These results suggest that elevated temperatures induce changes in immune system parameters and attenuate the immune responses triggered by LPS.

9.
Sci Total Environ ; 934: 173202, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754517

RESUMO

Net ecosystem exchange (NEE) of carbon dioxide (CO2) in disturbed tidal wetlands remain less investigated, albeit the importance of these 'blue carbon' ecosystems in mitigating climate change has been increasingly recognized. The invasion of smooth cordgrass into China's unvegetated tidal wetlands promotes the carbon sink, however little is known about the changes in NEE when the cordgrass is intensively removed. Here, two-year continuous eddy covariance measurements from Nov. 2021 to Oct. 2023 were used to examine how intensive cordgrass removal affects NEE in a cordgrass-dominated saltmarsh-mangrove ecotone of Southeast China. The results showed (a) this wetland acted as a monthly CO2 sink throughout the pre-removal year with nearly 90 % of the annual sink (-719.7 g C m-2 yr-1) in the cordgrass growing season from Apr. to Oct.; (b) the cordgrass removal turned this high-sink wetland into a weak CO2 source at an annual scale (39.0 g C m-2 yr-1), while the change of the sink was diurnally and seasonally unequal with daytime and growing season, respectively, accounting for the majority of the reduction; (c) tidal inundation exerted inhibitive effects on the response of daytime and nighttime NEE to photosynthetically active radiation and air temperature, respectively, with the changes in all-day NEE more driven by photosynthesis than ecosystem respiration. As one of the first assessments on the impacts of cordgrass removal on NEE, this study confirms the reduction in annual CO2 sink is predominantly attributed to the cordgrass removal instead of the climatic difference. This study highlights the importance of the interactive effects among phenological, meteorological, and tidal factors in regulating the seasonality of NEE and its changes along with cordgrass removal. Future longer flux measurements with extended years are needed to complement the present assessment of the cordgrass removal-induced impacts on NEE from a long-term perspective.

10.
Sci Total Environ ; 934: 173293, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759925

RESUMO

Anthropogenic activities and natural erosion caused abundant influx of heavy metals (HMs) and organic matter (OM) into estuaries characterized by the dynamic environments governed by tidal action and river flow. Similarities and differences in the fate of HM and OM as well as the influences of OM on HMs remain incomplete in estuaries with seasonal human activity and hydrodynamic force. To address this gap, dissolved HMs (dHMs) and fluorescence dissolved OM (FDOM) were investigated in the Pearl River Estuary, a highly seasonally anthropogenic and dynamic estuary. It aimed to elucidate the effects of hydrodynamic conditions and DOM on the seasonal fate of dHMs via the multivariate statistical methods. Our findings indicated dHMs and FDOM exhibited consistently higher levels in the upper estuarine and coastal waters in both seasons, predominantly controlled by the terrestrial/anthropogenic discharge. In the wet season, dHMs and humic-like substances (HULIS) were positively correlated, showing that dHMs readily combined with HULIS. This association led to a synchronous decrease offshore along the axis of the estuary and the transport following the river plume in the surface affected by the salt wedge. Contrarily, dHMs were prone to complex with protein-like components impacted by the hydrodynamics during the dry season. Principal component analysis (PCA) results revealed the terrestrial/anthropogenic inputs and the fresh-seawater mixing process were the most crucial factors responsible for the fate of dHM in wet and dry seasons, respectively, with DOM identified as a secondary but significant influencing factor in both seasons. This study holds significance in providing valuable insights into the migration, transformation, the ultimate fate of dHMs in anthropogenically influenced estuaries, as well as the intricate dynamics governing coastal ecosystems.

11.
Emerg Infect Dis ; 30(6): 1133-1143, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781927

RESUMO

We describe an unusual mortality event caused by a highly pathogenic avian influenza (HPAI) A(H5N1) virus clade 2.3.4.4b involving harbor (Phoca vitulina) and gray (Halichoerus grypus) seals in the St. Lawrence Estuary, Quebec, Canada, in 2022. Fifteen (56%) of the seals submitted for necropsy were considered to be fatally infected by HPAI H5N1 containing fully Eurasian or Eurasian/North American genome constellations. Concurrently, presence of large numbers of bird carcasses infected with HPAI H5N1 at seal haul-out sites most likely contributed to the spillover of infection to the seals. Histologic changes included meningoencephalitis (100%), fibrinosuppurative alveolitis, and multiorgan acute necrotizing inflammation. This report of fatal HPAI H5N1 infection in pinnipeds in Canada raises concerns about the expanding host of this virus, the potential for the establishment of a marine mammal reservoir, and the public health risks associated with spillover to mammals.Nous décrivons un événement de mortalité inhabituelle causé par un virus de l'influenza aviaire hautement pathogène A(H5N1) clade 2.3.4.4b chez des phoques communs (Phoca vitulina) et gris (Halichoerus grypus) dans l'estuaire du Saint-Laurent au Québec, Canada, en 2022. Quinze (56%) des phoques soumis pour nécropsie ont été considérés comme étant fatalement infectés par le virus H5N1 de lignées eurasiennes ou de réassortiment eurasiennes/nord-américaines. Un grand nombre simultané de carcasses d'oiseaux infectés par le H5N1 sur les sites d'échouement a probablement contribué à la contamination de ces phoques. Les changements histologiques associés à cette infection incluaient : méningo-encéphalite (100%), alvéolite fibrinosuppurée et inflammation nécrosante aiguë multi-organique. Cette documentation soulève des préoccupations quant à l'émergence de virus mortels, à la possibilité d'établissement de réservoirs chez les mammifères marins, et aux risques pour la santé publique associés aux propagations du virus chez les mammifères.


Assuntos
Surtos de Doenças , Virus da Influenza A Subtipo H5N1 , Animais , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Quebeque/epidemiologia , Surtos de Doenças/veterinária , Estuários , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Influenza Aviária/história , Focas Verdadeiras/virologia , Filogenia , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/epidemiologia , Aves/virologia
12.
Environ Res ; 256: 119207, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38782345

RESUMO

The Laptev Sea is a major Marginal Sea in the Western Arctic Ocean. The Arctic amplification brought by global warming influences the hydrological properties of rivers passing through the permafrost zone, which would alter the biological community structure at continental margin. In this study, the structure, assembly, and gene expression of planktonic microbial communities in two estuaries (Protoka Ularovskaya River Estuary, PURE; Lena River Estuary, LRE) of Laptev Sea were examined to investigate the environmental effects of polar rivers. PURE and LRE exhibited distinct environmental characteristics: low temperature and high salinity for PURE, and high temperature and low salinity for LRE, influenced by runoff size. Salinity more closely influenced microbial communities in LRE, with freshwater species playing a significant role in community composition. The findings revealed differences between two estuaries in community composition and diversity. Prokaryotes and microeukaryotes had shown different assembly patterns in response to habitat changes caused by terrestrial freshwater input. Furthermore, compared with the PURE, the co-occurrence and inter-domain network of the LRE, which was more affected by terrestrial input, was more complex and stable. Functional gene prediction revealed a higher gene expression of methane metabolism in LRE than in PURE, particularly those related to methane oxidation, and this conclusion could help better explore the impact of global warming on the methane cycle in the Arctic Marginal Seas. This study explored the increased freshwater runoffs under the background of global warming dramatically affect Arctic microplankton communities from community structure, assembly and gene expression aspects.

13.
Aquat Toxicol ; 272: 106943, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38733942

RESUMO

The Chinese sturgeon (Acipenser sinensis) is an endangered freshwater mega-fish (IUCN-red listed) that survives in the Yangtze River Basin, but the population of which has declined significantly in response to environmental pressures generated by human activities. In order to evaluate the interaction between Chinese sturgeon and microplastics (MPs) for the first time, we examined the gut and gills of historical samples (n = 27), in conjunction with the blood and mucus of live samples (n = 10), to explore the potential pathways involved in MP uptake. We detected MPs in 62.9 % of the field fish, with no significant difference between guts (mean=0.9 items/individual) and gills (mean=0.8 items/individual). The abundance of MPs in fish from 2017 was significantly higher than that from 2015 to 2016 with regards to both gills and gut samples. The size of MPs in gills was significantly smaller than those in guts, yet both contained mostly fibers (90.2 %). No MPs were confirmed in blood, however 62.5 % of mucus samples contained MPs. The MPs in mucus indicated the possibility of MPs entering Chinese sturgeons if their skins were damaged. The body size of Chinese sturgeons affected their MPs uptake by ingestion and inhalation, as less MPs were detected in the gut and gills of smaller individuals. Combining the evidence from historical and live samples, we revealed the presence of MPs in different tissues of Chinese sturgeon and their potential relevance to exposure pathways. Our work expands the understanding of multiple exposure pathways between MPs and long-lived mega-fish, while emphasizing the potential risks of long-term exposure in the field.

14.
Sci Total Environ ; 935: 173345, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38782265

RESUMO

Intermittently closed and open coastal lakes and lagoons (ICOLLs) are ecologically important and hydrologically sensitive estuarine systems. We explore how extreme drought and ICOLL entrance management intersect to influence the geochemical cycling of iron. Opening the ICOLL entrance just prior to an extreme drought in 2019 led to prolonged extremely low water levels, thereby exposing intertidal/subtidal sulfidic sediments and causing oxidation of sedimentary pyrite. Subsequent reflooding of exposed sediments for ∼4 months led to extremely elevated Fe2+(aq) (>10 mM) in intertidal hyporheic porewaters, consistent with Fe2+(aq) release via pyrite oxidation and via reductive dissolution of newly-formed Fe(III) phases. Re-opening the ICOLL entrance caused a rapid fall in water levels (∼1.5 m over 7 d), driving the development of effluent groundwater gradients in the intertidal zone, thereby transporting Fe2+-rich porewater into surface sediments and surface waters. This was accompanied by co-mobilisation of some trace metals and nutrients. On contact with oxic, circumneutral-pH estuarine water, the abundant Fe2+(aq) oxidised, forming a spatially extensive accumulation of poorly crystalline Fe(III) oxyhydroxide floc (up to 25 % Fe dry weight) in shallow intertidal zone benthic sediments throughout the ICOLL. Modelling estimates ∼4050 × 103 kg of poorly-crystalline Fe was translocated into surficial sediments. The newly formed Fe(III)-oxyhydroxides serve as a metastable sink encouraging enrichment of both phosphate and various trace metal(loid)s in near-surface sediments, which may have consequences for future cycling of nutrients, metals and ICOLL ecological function. The additional Fe also may enhance ICOLL sensitivity to similar future drought events by encouraging pyrite formation in shallow (<5 cm) benthic sediments. This system-wide translocation of Fe from deeper sediments into surficial benthic sediments represents a form of geochemical hysteresis with an uncertain recovery trajectory. This study demonstrates how climate extremes can interact with anthropogenic management to amplify ICOLL hydrological oscillations and influence biogeochemistry in complex ways.

15.
Sci Total Environ ; 933: 173176, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38750734

RESUMO

The Pearl River Estuary (PRE), one of the primary e-waste recycling centers in the world, has been suffering from the pollution of Liquid Crystal Monomers (LCMs), critical materials with persistent, bio-accumulative, and toxic substances used in electronic devices. It has been detected in seabed sediment with both high frequency and concentration near PRE - Hong Kong (HK) waters. In the same area, dredging operations with in-situ sediment have been frequently used in the last decades for coastal land reclamation projects. Dredging is known to cause a huge amount of sediment re-suspension into water columns, with potential damage to marine ecosystems and biodiversity. In this study, we proposed a new risk assessment strategy to estimate the secondary pollution due to the re-suspension sediment highly contaminated by LCMs. We formulate a robust and reliable probabilistic approach based on unsupervised machine learning and hydrodynamic and sediment transport numerical simulation. New risk indexes were also proposed to better quantify the impact of contaminated sediments. We applied the methodology to assess the potential impact of dredging operations in the PRE and Hong Kong waters on the local marine ecosystem. The results of the analysis showed how the potentially contaminated areas depended on the dredging locations.

16.
Mar Pollut Bull ; 203: 116487, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744046

RESUMO

Mangroves forests may be important sinks of carbon in coastal areas but upon their death, these forests may become net sources of carbon dioxide (CO2) and methane (CH4) to the atmosphere. Here we assessed the spatial and temporal variability in soil CO2 and CH4 fluxes from dead mangrove forests and paired intact sites in SE-Brazil. Our findings demonstrated that during warmer and drier conditions, CO2 soil flux was 183 % higher in live mangrove forests when compared to the dead mangrove forests. Soil CH4 emissions in live forests were > 1.4-fold higher than the global mangrove average. During the wet season, soil GHG emissions dropped significantly at all sites. During warmer conditions, mangroves were net sources of GHG, with a potential warming effect (GWP100) of 32.9 ± 10.2 (±SE) Mg CO2e ha-1 y-1. Overall, we found that dead mangroves did not release great amounts of GHG after three years of forest loss.


Assuntos
Dióxido de Carbono , Monitoramento Ambiental , Gases de Efeito Estufa , Metano , Solo , Áreas Alagadas , Brasil , Gases de Efeito Estufa/análise , Solo/química , Dióxido de Carbono/análise , Metano/análise , Florestas
17.
Mar Pollut Bull ; 203: 116492, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754324

RESUMO

Nanhui Dongtan Wetland is an important part of Yangtze Estuary Wetland, and its species diversity has been affected by reclamation in recent years. To increase the diversity of species in reclamation areas, stock enhancement was implemented in the Nanhui Dongtan Wetland in May 2020 as a method of ecological restoration. We investigated macrobenthos before and after release, analysed changes in the macrobenthos and evaluated the ecological health of the sampled area. The diversity index showed species were more abundant and community structure were more diversified after release. Functional groups and redundancy analysis showed that the effects of stock enhancement on macrobenthos in Nanhui Dongtan wetland may be based on changes in secondary productivity. Stock enhancement may promote the resistance of macrobenthic communities to organic pollution without negatively affecting ecological health. As a method of ecological restoration, stock enhancement will play a positive role in the restoration of macrobenthic communities.


Assuntos
Biodiversidade , Estuários , Invertebrados , Áreas Alagadas , China , Animais , Monitoramento Ambiental/métodos , Recuperação e Remediação Ambiental/métodos
18.
Mar Pollut Bull ; 203: 116500, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38762937

RESUMO

The study on natural radionuclides in edible bivalves from the Cochin backwater lagoon, Kerala, employing alpha spectrometry, revealed higher concentrations of 210Po and 210Pb compared to 238U and 232Th. The annual committed effective dose (ACED) for the adult coastal population was calculated at a range of 1494.9 to 5783.4 µSv y-1, with 210Po being the predominant contributor, responsible for about 85 % of the dose. This highlighted significant health risks, underscored by a calculated cumulative mortality and morbidity risk range between 5.23 × 10-3 and 2.02 × 10-2. These findings emphasized the need for further research and the development of regulatory measures to mitigate exposure risks.


Assuntos
Bivalves , Monitoramento de Radiação , Poluentes Radioativos da Água , Animais , Índia , Poluentes Radioativos da Água/análise , Polônio/análise , Tório/análise , Radioisótopos de Chumbo/análise , Humanos
19.
Mar Pollut Bull ; 203: 116505, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38772172

RESUMO

Marine litter pollution poses a significant threat to offshore ecosystems, eliciting widespread concern. We investigated seafloor litter patterns in the Pearl River Estuary and adjacent coastal waters of China in 2023 via bottom trawl survey. Average number and weight densities were found to be 154.34 ± 30.95 n/km2 and 2384.63 ± 923.98 g/km2, respectively. Plastic was the most abundant material by number density (79.07 %), and rubber the highest by weight density (22.93 %). Overall number density varied from 40.50 ± 22.50 to 221.13 ± 52.44 n/km2, with the highest in Daya Bay and the lowest in Guanghai Bay. Weight density varied from 189.93 ± 71.94 to 5386.70 ± 3050.30 g/km2, with the highest in Qiao Island and the lowest in Honghai Bay. The main source was plastic bags and wrappers. The Pearl River Delta and Daya Bay were identified as seafloor litter distribution hotspots. Controlling plastic waste input is crucial for reducing seafloor litter in the Pearl River Estuary.


Assuntos
Monitoramento Ambiental , Estuários , Plásticos , Rios , China , Plásticos/análise , Ecossistema
20.
Mar Pollut Bull ; 203: 116431, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692003

RESUMO

Tidal dynamics contribute to fluctuations in microplastic abundance (MPs). This is the first study to characterize MPs under the influence of tidal fluctuations in the Musi River Estuary. MPs samples were collected during flood and ebb tides at 10 research stations representing the inner, middle and outer parts of the Musi River Estuary. MPs were extracted to identify the shape, color and size. MP abundances were 467.67 ± 127.84 particles/m3 during flood tide and 723.67 ± 112.05 particles/m3 during ebb tide. The concentration of MPs in the outer zone of the estuary (ocean) was detected to be higher than in the inner zone of the estuary (river). The MPs found were dominated by black color, film shape and size 101-250 µm. A greater abundance of MPs at ebb tide than at flood tide implies that the Musi Estuary's largest source of emissions is discharge from the river.


Assuntos
Monitoramento Ambiental , Estuários , Microplásticos , Rios , Indonésia , Monitoramento Ambiental/métodos , Microplásticos/análise , Rios/química , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...