Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.980
Filtrar
1.
Food Chem X ; 22: 101406, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38707782

RESUMO

We aimed to explore the effect of salidroside (SAL) on meat quality, antioxidant capacity, and lipid metabolism in broilers. The results demonstrated that SAL significantly reduced the yellowness (b*), shear force, cooking loss, drip loss, MDA, TBARS, and carbonyl content in breast (P < 0.05), while increasing the pH value (P < 0.05), suggesting an improvement in meat quality. SAL lowered the lipid contents in liver and serum (P < 0.05), while increasing the proportion of unsaturated fatty acids in breast (P < 0.05), indicating effective regulation of lipid metabolism by SAL. SAL increased the activity of antioxidant enzymes and the expression of antioxidant genes in both liver and muscle (P < 0.05). Additionally, SAL improved the meat quality and antioxidant capacity of breast subjected to repeated freeze-thaw treatment. SAL may enhance meat quality by improving antioxidative stability and regulating lipid metabolism, potentially serving as a dietary supplement for broilers.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38710650

RESUMO

BACKGROUND: Current research on ethanol-induced cardiovascular anomalies has focused on left ventricular (LV) function and blood pressure. To extend this area of research, we sought to determine whether ethanol-induced alterations in the structure and function of the right cardiac ventricle (RV) and pulmonary artery (PA) lead to pulmonary arterial hypertension (PAH). METHODS: Two groups of male Sprague-Dawley rats received a balanced liquid diet containing 5% ethanol (w/v) or a pair-fed isocaloric liquid diet for 8 weeks. Weekly echocardiography was conducted to evaluate cardiopulmonary function, and lung and RV tissues were collected for ex vivo histological and molecular studies. RESULTS: The ethanol-treated rats exhibited: (1) Elevated mean pulmonary arterial pressure and decreased pulmonary artery acceleration time/ejection time; (2) Pulmonary vascular remodeling comprising intrapulmonary artery medial layer thickening; and (3) RV hypertrophy along with increased RV/LV + septum, RV diameter, RV cardiomyocyte cross-sectional area, and LV mass/body weight ratio. These responses were associated with increased lung and RV pro-inflammatory markers, endothelin-1 (ET-1), TNF-α, and IL-6 levels and higher ET-1, ET-1 type A/B receptor ratio, and downregulation of the cytoprotective protein, bone morphogenetic protein receptor 2 (BMPR2), in the lungs. CONCLUSION: These findings show that moderate ethanol-induced cardiopulmonary changes underlie progression to PAH via an upregulated proinflammatory ET1-TNFα-IL6 pathway and suppression of the anti-inflammatory BMPR2.

4.
Chemphyschem ; : e202400164, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714531

RESUMO

Molecules, which were predicted to be produced by C-C or C-O bond formation between ethanol molecules induced by a laser-driven shock wave, were identified by gas chromatography-mass spectrometry. Moreover, the laser irradiation of a methanol-ethanol mixture revealed the formation of C-C and C-O bonds between both components. Particularly, four hemiacetals (methoxymethanol, 1-methoxyethanol, ethoxymethanol, and 1-ethoxyethanol) were identified in the Ar-saturated alcohol samples, whereas acetalization dominated sufficiently in the CO2-saturated samples, significantly reducing the hemiacetals. It was verified that some molecules were produced by the dropout of an ethanol part during the C-C or C-O bond formation, supporting the contribution of laser-driven shock waves.

5.
Acta Ortop Bras ; 32(spe1): e271878, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716467

RESUMO

Objective: To evaluate the correlation between blood alcohol levels and the severity of injuries assessed by the Injury Severity Score (ISS) in patients who were victims of traffic accidents admitted to the Hospital das Clínicas of the Faculty of Medicine of the University of São Paulo (HCFMUSP). Methods: Cross-sectional study carried out between July 2018 and June 2019, at the Central Emergency Room of the Hospital das Clínicas of the Faculty of Medicine of the University of São Paulo (PSC-HCFMUSP). A total of 172 hospitalized patients victims of traffic accidents were included in this study. Blood samples were analyzed by the FMUSP Toxicology Laboratory. Results: 36 patients (20.9%) had positive BAC (≥ 0.2 g/L) with a mean of 1.21 g/L. Overall, patients had a mean age of 37.2 years old, and 136 (79.1%) were men. The ISS of the total casuistry was 15.6; regarding the external cause, the motorcycle was ranked first with 100 cases (58.1%), and drivers were the majority with 57.4% of the sample. Conclusion: There was no correlation between the severity of the injuries and the blood alcohol levels of traffic accident victims admitted to a reference hospital. Level of Evidence II, Cross-Sectional Study.


Objetivo: Avaliar a correlação entre a alcoolemia e a gravidade das lesões avaliadas pelo Índice de Gravidade da Lesão ( Injury Severity Score* ­ ISS) em vítimas de acidentes de trânsito internadas no Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP). Método: Estudo transversal realizado entre julho de 2018 e junho de 2019, no Pronto Socorro Central do HC-FMUSP. Foram incluídas 172 vítimas de acidentes de trânsito. Amostras de sangue foram analisadas pelo Laboratório de Toxicologia da FMUSP. Resultados: 36 pacientes (20,9%) apresentaram alcoolemia positiva (≥ 0,2 g/L), com valor médio de 1,21 g/L. No geral, os pacientes tinham uma idade média de 37,2 anos, e 136 (79,1%) eram homens. O ISS da casuística total foi 15,6; quanto à causa externa, a motocicleta ficou em primeiro lugar com 100 casos (58,1%); e os condutores foram prevalentes entre as vítimas (57,4%). Conclusão: Não houve correlação entre a gravidade das lesões e a alcoolemia das vítimas de acidente de trânsito internadas em um hospital de referência. Nível de Evidência II, Estudo de Corte Transversal.

6.
Chemphyschem ; : e202400359, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721776

RESUMO

The interaction between organic molecules and oxidized catalyst surfaces has been used to study the fuel crossover from the anode to the cathode in direct liquid fuel cells. In such experiments, the oxidized surface is put in contact with the fuel under open circuit conditions, and the potential is registered. The open circuit potential (OCP) can then inform on the reactivity of the fuel with the oxidized surface and provide valuable information. Herein we present an experimental investigation of the OC interaction between ethanol or 2-propanol with oxidized platinum surfaces. Besides the OCP, we have also employed cyclic voltammetry and fast oxide reduction sweep in the presence of the alcohols. Comparable reaction currents are obtained in the voltammogram, but the electro-oxidation of 2-propanol sets in at considerably lower overpotentials than that of ethanol. At the high potential region, both the magnitude and the potential of the current peak are nearly identical in both cases. Under open circuit conditions, the interaction of ethanol with the oxidized platinum surface is more pronounced than that found for 2-propanol, and these results are corroborated by the facile reduction of the platinum oxides along the fast backward sweep for the latter.

7.
Int J Pharm ; 658: 124180, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38705246

RESUMO

During the past several decades, nanostructures have played their increasing influences on the developments of novel nano drug delivery systems, among which, double-chamber Janus nanostructure is a popular one. In this study, a new tri-channel spinneret was developed, in which two parallel metal capillaries were nested into another metal capillary in a core-shell manner. A tri-fluid electrospinning was conducted with a solvent mixture as the shell working fluid for ensuring the formation of an integrated Janus nanostructure. The scanning electronic microscopic results demonstrated that the resultant nanofibers had a linear morphology and two distinct compartments within them, as indicated by the image of a cross-section. Fourier Transformation Infra-Red spectra and X-Ray Diffraction patterns verified that the loaded poorly water-soluble drug, i.e. icariin, presented in the Janus medicated nanofibers in an amorphous state, which should be attributed to the favorable secondary interactions between icariin and the two soluble polymeric matrices, i.e. hydroxypropyl methyl cellulose (HPMC) and polyvinylpyrrolidone (PVP). The in vitro dissolution tests revealed that icariin, when encapsulated within the Janus nanofibers, exhibited complete release within a duration of 5 min, which was over 11 times faster compared to the raw drug particles. Furthermore, the ex vivo permeation tests demonstrated that the permeation rate of icariin was 16.2 times higher than that of the drug powders. This improvement was attributed to both the rapid dissolution of the drug and the pre-release of the trans-membrane enhancer sodium lauryl sulfate from the PVP side of the nanofibers. Mechanisms for microformation, drug release, and permeation were proposed. Based on the methodologies outlined in this study, numerous novel Janus nanostructure-based nano drug delivery systems can be developed for poorly water-soluble drugs in the future.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38696012

RESUMO

To ensure the safety of food contact materials, a liquid chromatography method was established to determine the migration of formaldehyde in paper packaging with various food simulants (10%, 25%, 50%, 75%, and 95% ethanol by volume) and to investigate the migration behavior of formaldehyde after various durations and with various materials. The results showed that the method has good linearity with a correlation coefficient of R2 > 0.9990, a detection limit of 0.0011 ~ 0.0027 mg L-1, and a spiked recovery of 89.7 ~ 103.2% in the range of formaldehyde determination; the migration of formaldehyde in all six paper contact materials showed a trend of gradual increase with time until equilibrium was reached. At the same time and temperature, the migration of formaldehyde in paper packaging was the highest in low-concentration ethanol. With the same food simulants and materials, the maximum migration of formaldehyde in printed materials was greater than that in nonprinted materials; with different materials and the same food simulant, the thickness value was higher, with the use of water-based ink as a printing material, and the maximum migration value of formaldehyde by offset printing technology was low.

9.
Alcohol ; 118: 45-55, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38705312

RESUMO

Prenatal alcohol exposure can have persistent effects on learning, memory, and synaptic plasticity. Previous work from our group demonstrated deficits in long-term potentiation (LTP) of excitatory synapses on dentate gyrus granule cells in adult offspring of rat dams that consumed moderate levels of alcohol during pregnancy. At present, there are no pharmacotherapeutic agents approved for these deficits. Prior work established that systemic administration of the histaminergic H3R inverse agonist ABT-239 reversed deficits in LTP observed following moderate PAE. The present study examines the effect of a second H3R inverse agonist, SAR-152954, on LTP deficits following moderate PAE. We demonstrate that systemic administration of 1 mg/kg of SAR-152954 reverses deficits in potentiation of field excitatory post-synaptic potentials (fEPSPs) in adult male rats exposed to moderate PAE. Time-frequency analyses of evoked responses revealed PAE-related reductions in power during the fEPSP, and increased power during later components of evoked responses which are associated with feedback circuitry that are typically not assessed with traditional amplitude-based measures. Both effects were reversed by SAR-152954. These findings provide further evidence that H3R inverse agonism is a potential therapeutic strategy to address deficits in synaptic plasticity associated with PAE.

10.
J Biol Eng ; 18(1): 31, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715085

RESUMO

Alcohol consumption, a pervasive societal issue, poses considerable health risks and socioeconomic consequences. Alcohol-induced hepatic disorders, such as fatty liver disease, alcoholic hepatitis, chronic hepatitis, liver fibrosis, and cirrhosis, underscore the need for comprehensive research. Existing challenges in mimicking chronic alcohol exposure in cellular systems, attributed to ethanol evaporation, necessitate innovative approaches. In this study, we developed a simple, reusable, and controllable device for examining the physiological reactions of hepatocytes to long-term alcohol exposure. Our approach involved a novel device designed to continuously release ethanol into the culture medium, maintaining a consistent ethanol concentration over several days. We evaluated device performance by examining gene expression patterns and cytokine secretion alterations during long-term exposure to ethanol. These patterns were correlated with those observed in patients with alcoholic hepatitis. Our results suggest that our ethanol-releasing device can be used as a valuable tool to study the mechanisms of chronic alcohol-mediated hepatic diseases at the cellular level. Our device offers a practical solution for studying chronic alcohol exposure, providing a reliable platform for cellular research. This innovative tool holds promise for advancing our understanding of the molecular processes involved in chronic alcohol-mediated hepatic diseases. Future research avenues should explore broader applications and potential implications for predicting and treating alcohol-related illnesses.

11.
Biotechnol Biofuels Bioprod ; 17(1): 62, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715100

RESUMO

BACKGROUND: The use of ionic liquids (ILs) to fractionate lignocelluloses for various bio-based chemicals productions is in the ascendant. On this basis, the protic ILs consisting of triethylammonium hydrogen sulfate ([TEA][HSO4]) possessed great promise due to the low price, low pollution, and high efficiency. In this study, the microwave-assistant [TEA][HSO4] fractionation process was established for corn stover fractionation, so as to facilitate the monomeric sugars production and supported the downstream acetone-butanol-ethanol (ABE) fermentation. RESULTS: The assistance of microwave irradiation could obviously shorten the fractionation period of corn stover. Under the optimized condition (190 W for 3 min), high xylan removal (93.17 ± 0.63%) and delignification rate (72.90 ± 0.81%) were realized. The mechanisms for the promotion effect of the microwave to the protic ILs fractionation process were ascribed to the synergistic effect of the IL and microwaves to the depolymerization of lignocellulose through the ionic conduction, which can be clarified by the characterization of the pulps and the isolated lignin specimens. Downstream valorization of the fractionated pulps into ABE productions was also investigated. The [TEA][HSO4] free corn stover hydrolysate was capable of producing 12.58 g L-1 of ABE from overall 38.20 g L-1 of monomeric sugars without detoxification and additional nutrients supplementation. CONCLUSIONS: The assistance of microwave irradiation could significantly promote the corn stover fractionation by [TEA][HSO4]. Mass balance indicated that 8.1 g of ABE and 16.61 g of technical lignin can be generated from 100 g of raw corn stover based on the novel fractionation strategy.

12.
Food Chem ; 454: 139749, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38797104

RESUMO

Plastic food packaging, with its harmful migration of microplastics and nanoplastics into food, presents significant ecological imbalance and human health risks. In this regard, using food and agricultural byproducts as packaging materials reduces environmental and economic concerns and supports their sustainable management. Herein, cellulosic residue from corncob was employed as a renewable source for developing biodegradable packaging films. It was solubilized in ZnCl2 solution, crosslinked with Ca2+ ions, and plasticized with sorbitol to form films and used to improve the shelf-life of raspberries. The optimized film possesses water vapor permeability, tensile strength, and elongation at break of 1.8(4) x10-10 g-1 s-1 Pa-1, 4.7(1) MPa, and 15.4(7)%, respectively. It displays UV-blocking and antioxidant properties and biodegrades within 29 days at 24% soil moisture. It preserves raspberries for 7 and 5 more days at room temperature and refrigeration conditions, respectively, compared to polystyrene film. Overall, more value addition could be envisioned from agricultural residues to minimize post-harvest losses and food waste through biodegradable packaging, which also aids in mitigating plastic perils.

13.
J Anal Toxicol ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808379

RESUMO

Electronic cigarette liquids (e-liquids) can contain a variety of chemicals to impart flavors, smells, and pharmacological effects. Surveillance studies have identified hundreds of chemicals used in e-liquids which have known health and safety implications. Ethyl acetate has been identified as a common constituent of e-liquids. Ethyl acetate is rapidly hydrolyzed to ethanol in vivo. Animal studies have demonstrated that inhaling >2000 mg/L ethyl acetate can lead to accumulation of ethanol in the blood at concentrations greater than 1000 mg/L, or 0.10%. A "Heisenberg" e-liquid was submitted to the Laboratory for Forensic Toxicology Research for analysis after a random workplace drug test resulted in a breath test result of 0.019% for a safety-sensitive position employee. Analysis of this sample resulted in the detection of 1488 ± 6 mg/L ethyl acetate. The evaluation of several "Heisenberg" e-liquids determined that these products contain ethyl acetate. The identification of ethyl acetate in e-liquids demonstrates poor regulatory oversight and enforcement that potentially has consequences to preliminary breath ethanol testing and interpretations. The accumulation of ethanol in the breath from the ingestion/inhalation of ethyl acetate from an e-liquid used prior to a breath test may contribute to the detection of ethanol.

14.
J Colloid Interface Sci ; 670: 473-485, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38772263

RESUMO

Developing a novel catalyst with lower noble-metal loading and higher catalytic efficiency is significant for promoting the widespread application of direct alcohol fuel cells (DAFCs). In this work, poly(3,4-ethylenedioxythiophene) (PEDOT) supported the PdSn alloy (PdSn/PEDOT) were simply synthesized and their electrocatalytic performance toward the oxidation of ethylene glycol and ethanol (EGOR and EOR) were investigated in alkaline media, respectively. In comparison with other control catalysts, the optimized Pd4Sn6/PEDOT catalyst exhibits the highest mass activity (7125/4166 mA mgPd-1) and specific activity (26/15 mA cm-2) towards EGOR/EOR. The mass activity of Pd4Sn6/PEDOT for EGOR and EOR are 11.9 and 10.9 times higher than commercial Pd/C, respectively. Moreover, chronoamperometry (CA) and successive cyclic voltammetry (CV) tests show that the CO resistance ability and durability of the Pd4Sn6/PEDOT catalyst were superior to Pd4Sn6, Pd/PEDOT and commercial Pd/C catalysts, which can be attributed to the d-band center of Pd can be effectively downshifted and the interface strain effect between electrons caused by the conjugated structure between PEDOT groups. This work provides an effective strategy for the development of highly efficient anode catalysts of DAFCs.

15.
Reprod Biol ; 24(2): 100854, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38772287

RESUMO

Ethanol affects pre-conceptional oocyte quality in women. In this study, we examined the effect of low ethanol concentrations on mouse oocytes. Oocytes were collected from the ovaries of 9-10 week old mice and allowed to mature in vitro in the presence of low concentrations of ethanol (0.1% and 0.2% v/v) for 24 h. Treatment of oocytes with ethanol (0.2%) during maturation decreased the mitochondrial DNA content and membrane potential compared to that in untreated ones, whereas the ATP content did not differ between the groups. Both 0.1% and 0.2% ethanol reduced the lipid content in the oocytes. In addition, immunostaining revealed that oocytes cultured in maturation medium containing ethanol (0.2%) had reduced levels of global DNA methylation and DNMT3A compared with untreated oocytes, and decreased rate of blastocyst development with low mitochondrial protein levels (TOMM40) in embryo. RNA-sequencing of the ethanol-treated (0.2%) and untreated oocytes revealed that mitochondria were a major target of ethanol. In conclusion, treatment of oocytes with low concentration of ethanol reduces the developmental rate to the blastocyst stage, with a lower total cell number and global DNA methylation. In addition, ethanol affected mitochondrial function and mitochondria-related gene expression.

16.
Brain Behav Immun ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38777284

RESUMO

Fever plays an indispensable role in host defense processes and is used as a rapid index of infection severity. Unfortunately, there are also substantial individual differences in fever reactions with biological sex, immunological history, and other demographic variables contributing to adverse outcomes of infection. The present series of studies were designed to test the hypothesis that a history of adolescent alcohol misuse may be a latent experiential variable that determines fever severity using polyinosinic:polycytidylic acid (poly I:C), a synthetic form of double-stranded RNA that mimics a viral challenge. Adult male and female Sprague Dawley rats were injected with 0 (saline) or 4 mg/kg poly I:C to first establish sex differences in fever sensitivity in Experiment 1 using implanted radiotelemetry devices for remote tracking. In Experiments 2 and 3, adolescent males and females were exposed to either water or ethanol (0 or 4 g/kg intragastrically, 3 days on, 2 days off, ∼P30-P50, 4 cycles/12 exposures total). After a period of abstinence, adult rats (∼P80-96) were then challenged with saline or poly I:C, and fever induction and maintenance were examined across a prolonged time course of 8 h using implanted probes. In Experiments 4 and 5, adult male and female subjects with a prior history of adolescent water or adolescent intermittent ethanol (AIE) were given saline or poly I:C, with tissue collected for protein and gene expression analysis at 5 h post-injection. Initial sex differences in fever sensitivity were minimal in response to the 4 mg/kg dose of poly I:C in ethanol-naïve rats. AIE exposed males injected with poly I:C showed a sensitized fever response as well as enhanced TLR3, IκBα, and IL-1ß expression in the nucleus of the solitary tract. Other brain regions related to thermoregulation and peripheral organs such as spleen, liver, and blood showed generalized immune responses to poly I:C, with no differences evident between AIE and water-exposed males. In contrast, AIE did not affect responsiveness to poly I:C in females. Thus, the present findings suggest that adolescent binge drinking may produce sex-specific and long-lasting effects on fever reactivity to viral infection, with preliminary evidence suggesting that these effects may be due to centrally-mediated changes in fever regulation rather than peripheral immunological mechanisms.

17.
Environ Pollut ; : 124163, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38782165

RESUMO

By 2020, China has implemented the use of 10% ethanol-blended-gasoline (E10), which is expected to notably impact vehicular volatile organic compounds (VOCs) emissions. The adoption of E10 reduced certain emissions but raised concerns with about more reactive oxygenated volatile organic compounds (OVOCs). This study aimed to evaluate the impact of E10 on the total VOCs emissions from both exhaust and evaporative emissions by conducting tests on the CHINA V (or CHINA VI) light-duty gasoline vehicles (LDGVs) using 0% ethanol blended gasoline (E0) and E10. E10 reduces VOCs emissions in the exhaust, and reduces the ozone and secondary organic aerosol generation potential of VOCs in the exhaust, as evidenced by the lower emission factors (EFs), ozone formation potentials (OFPs) and secondary organic aerosol formation potential (SOAFPs) in the CHINA V LDGVs. Evaporative emissions showed differences in emitted VOCs, with lower EFs, OFPs and SOAFPs for the CHINA V LDGVs fueled with E10. The CHINA VI LDGVs also exhibited reduced EFs, OFPs and SOAFPs. These findings highlight the environmental benefits of E10 in the CHINA VI-compliant LDGVs; however, the effectiveness of the earlier CHINA V standard vehicles requires further evaluation.

18.
Future Microbiol ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700288

RESUMO

Aim: Endogenous ethanol production emerges as a mechanism of nonalcoholic steatohepatitis, obesity, diabetes and auto-brewery syndrome. Methods: To identify ethanol-producing microbes in humans, we used the NCBI taxonomy browser and the PubMed database with an automatic query and manual verification. Results: 85 ethanol-producing microbes in human were identified. Saccharomyces cerevisiae, Candida and Pichia were the most represented fungi. Enterobacteriaceae was the most represented bacterial family with mainly Escherichia coli and Klebsiella pneumoniae. Species of the Lachnospiraceae and Clostridiaceae family, of the Lactobacillales order and of the Bifidobacterium genus were also identified. Conclusion: This catalog will help the study of ethanol-producing microbes in human in the pathophysiology, diagnosis, prevention and management of human diseases associated with endogenous ethanol production.


Our bodies are home to a community of tiny living organisms like bacteria, viruses and archaea, collectively known as the microbiota. These microbes are crucial for our well-being and the proper functioning of our bodies. Certain things, like antibiotics or an imbalanced diet, can disturb this microbial community, known as dysbiosis. This can lead to illness. This review focuses on dysbiosis related to the production of ethanol, a type of alcohol, within our bodies. While the disruption of the microbiota has been linked to several health issues, the role of ethanol production in this is not well explored. This review aims to shed light on the microbes involved in this process. We found 85 microbes capable of producing ethanol in the human body, including 61 bacterial and 24 yeast species. This review provides a detailed updated catalog of ethanol-producing microbes in humans. Understanding these microbes and their role in diseases related to ethanol production could pave the way for better diagnostic tools and treatments in the future.

19.
Orphanet J Rare Dis ; 19(1): 195, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741122

RESUMO

BACKGROUND: Clinically, arteriovenous malformations in the buttocks (bAVMs) are extremely rare. Our study aimed to evaluate the efficacy and safety of ethanol embolotherapy in managing bAVMs. RESULTS: A total of 32 patients with bAVMs (14 females and 18 males) from 2012 to 2021 were included in this study. All patients underwent complete clinical and imaging examinations. Further, the AVMs lesions were analyzed according to Schöbinger staging and Yakes classification. Each patient had undergone a multistage ethanol embolization. The amelioration of clinical symptoms and devascularization on angiography were evaluated at regular follow-ups. In the present cohort, the 11-20 age group had the most patients (15/32; 46.88%). A total of 124 embolization procedures were performed (average 3.88 procedures per patient), and the average dose of absolute ethanol was 18.96 mL per procedure. Thirteen patients with dominant draining veins underwent additional coil deployment before ethanol embolization (13/32; 40.63%). During follow-ups, clinical improvement was found in 23 of 27 who presented with a pulsating mass (85.19%), 17 of 20 with abnormal local skin temperature (85%), 5 of 6 with bleeding (83.33%), and 5 of 5 patients treated for pain (100%). More than 75% angiographic devascularization was achieved in 18 patients (18/32; 56.25%). Finally, 12 out of 13 patients (92.31%) reduced from Schöbinger Stage III to a lower grade, and ten patients exhibited a complete response (10/32; 31.23%). There was a single serious complication of local necrosis, while neither paranesthesia nor infection was observed postoperatively. CONCLUSIONS: Ethanol embolization assisted with coils can treat bAVMs effectively and safely. The Yakes classification contributed to the optimal ethanol embolotherapy of bAVMs.


Assuntos
Malformações Arteriovenosas , Embolização Terapêutica , Etanol , Humanos , Embolização Terapêutica/métodos , Feminino , Masculino , Etanol/uso terapêutico , Malformações Arteriovenosas/terapia , Nádegas/irrigação sanguínea , Adulto , Adulto Jovem , Adolescente , Criança , Pessoa de Meia-Idade , Resultado do Tratamento
20.
Eur Heart J Case Rep ; 8(5): ytae216, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38751903

RESUMO

Background: Ablation failures are common in case of intramural location of the arrhythmogenic substrate. Case summary: We report the case of a patient with cardiomyopathy contributed by frequent monomorphic ventricular arrhythmias (VAs) from intramural basal interventricular septum treated with double-balloon venous ethanol ablation (VEA) after a previous failed endocardial radiofrequency (RF) ablation. Discussion: Double-balloon VEA represents a safe and effective therapeutic option in case of intramural VAs also in the absence of venous collaterals joining selectively an intramural arrhythmic substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...