Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 15(9): 15371-15380, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34450007

RESUMO

The Stark effect is one of the most efficient mechanisms to manipulate many-body states in nanostructured systems. In mono- and few-layer transition metal dichalcogenides, it has been successfully induced by optical and electric field means. Here, we tune the optical emission energies and dissociate excitonic states in MoSe2 monolayers employing the 220 MHz in-plane piezoelectric field carried by surface acoustic waves. We transfer the monolayers to high dielectric constant piezoelectric substrates, where the neutral exciton binding energy is reduced, allowing us to efficiently quench (above 90%) and red-shift the excitonic optical emissions. A model for the acoustically induced Stark effect yields neutral exciton and trion in-plane polarizabilities of 530 and 630 × 10-5 meV/(kV/cm)2, respectively, which are considerably larger than those reported for monolayers encapsulated in hexagonal boron nitride. Large in-plane polarizabilities are an attractive ingredient to manipulate and modulate multiexciton interactions in two-dimensional semiconductor nanostructures for optoelectronic applications.

2.
Nanomaterials (Basel) ; 11(2)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669280

RESUMO

Understanding the exciton dissociation process in organic solar cells is a fundamental issue for the design of high-performance photovoltaic devices. In this article, a parameterized quantum theory based on a coarse-grained tight-binding model plus non-local electron-hole interactions is presented, while the diffusion and recombination of excitons are studied in a square lattice of excitonic states, where a real-space renormalization method on effective chains has been used. The Hamiltonian parameters are determined by fitting the measured quantum efficiency spectra and the theoretical short-circuit currents without adjustable parameters show a good agreement with the experimental ones obtained from several polymer:fullerene and polymer:polymer heterojunctions. Moreover, the present study reveals the degree of polymerization and the true driving force at donor-acceptor interface in each analyzed organic photovoltaic device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA