Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39131275

RESUMO

The global resurgence of syphilis has created a potent stimulus for vaccine development. To identify potentially protective antibodies (Abs) against Treponema pallidum (TPA), we used Pyrococcus furiosus thioredoxin (PfTrx) to display extracellular loops (ECLs) from three TPA outer membrane protein families (outer membrane factors for efflux pumps, eight-stranded ß-barrels, and FadLs) to assess their reactivity with immune rabbit serum (IRS). Five ECLs from the FadL orthologs TP0856, TP0858 and TP0865 were immunodominant. Rabbits and mice immunized with these five PfTrx constructs produced ECL-specific Abs that promoted opsonophagocytosis of TPA by rabbit peritoneal and murine bone marrow-derived macrophages at levels comparable to IRS and mouse syphilitic serum. ECL-specific rabbit and mouse Abs also impaired viability, motility, and cellular attachment of spirochetes during in vitro cultivation. The results support the use of ECL-based vaccines and suggest that ECL-specific Abs promote spirochete clearance via Fc receptor-independent as well as Fc receptor-dependent mechanisms.

2.
Int J Biol Macromol ; 278(Pt 2): 134748, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147348

RESUMO

Human organic anion transporting polypeptide 1B3 (OATP1B3) and 1B1 are two liver-specific and highly homologous uptake transporters, whose structures consist of 12 transmembrane domains. The present study showed that OATP1B3 is more heavily N-glycosylated than OATP1B1 in extracellular loop 2 (EL2) and EL5. OATP1B3 has six N-glycosylation sites, namely N134, N145, N151, N445, N503, and N516, which is twice of that of OATP1B1. Single removal of individual N-glycans seems to have minimal influence on the surface expression and function of OATP1B3. However, simultaneous removal of all N-glycans will lead to OATP1B3's large retention in the endoplasmic reticulum and cellular degradation and thus significantly disrupts its surface expression. While N-glycosylation plays a crucial role in the surface expression of OATP1B3, it also has some effect on the transport function of OATP1B3 per se, which is not due to a decrease of substrate binding affinity but due to a reduced transporter's turnover number. Taken together, N-glycosylation is essential for normal surface expression and function of OATP1B3. Its disruption by some liver diseases such as NASH might alter the pharmacokinetic/pharmacodynamic properties of OATP1B3's substrate drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA