Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Braz J Microbiol ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008244

RESUMO

At the end of 2019, the world witnessed the beginning of the COVID-19 pandemic. As an aggressive viral infection, the entire world remained attentive to new discoveries about the SARS-CoV-2 virus and its effects in the human body. The search for new antivirals capable of preventing and/or controlling the infection became one of the main goals of research during this time. New biocompounds from marine sources, especially microalgae and cyanobacteria, with pharmacological benefits, such as anticoagulant, anti-inflammatory and antiviral attracted particular interest. Polysaccharides (PS) and extracellular polymeric substances (EPS), especially those containing sulfated groups in their structure, have potential antiviral activity against several types of viruses including HIV-1, herpes simplex virus type 1, and SARS-CoV-2. We review the main characteristics of PS and EPS with antiviral activity, the mechanisms of action, and the different extraction methodologies from microalgae and cyanobacteria biomass.

2.
Microbiol Spectr ; 11(6): e0265723, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37819075

RESUMO

IMPORTANCE: In this work, we characterized the composition, structure, and functional potential for biofilm formation of Exiguobacterium strains isolated from the Salar de Huasco in Chile in the presence of arsenic, an abundant metalloid in the Salar that exists in different oxidation states. Our results showed that the Exiguobacterium strains tested exhibit a significant capacity to form biofilms when exposed to arsenic, which would contribute to their resistance to the metalloid. The results highlight the importance of biofilm formation and the presence of specific resistance mechanisms in the ability of microorganisms to survive and thrive under adverse conditions.


Assuntos
Arsênio , Arsênio/toxicidade , Exiguobacterium , Biofilmes , Oxirredução , Chile
3.
Crit Rev Microbiol ; 49(3): 370-390, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35584310

RESUMO

Biofilms are complex tri-dimensional structures that encase microbial cells in an extracellular matrix comprising self-produced polymeric substances. The matrix rich in extracellular polymeric substance (EPS) contributes to the unique features of biofilm lifestyle and structure, enhancing microbial accretion, biofilm virulence, and antimicrobial resistance. The role of the EPS matrix of biofilms growing on biotic surfaces, especially dental surfaces, is largely unravelled. To date, there is a lack of a broad overview of existing literature concerning the relationship between the EPS matrix and the dental implant environment and its role in implant-related infections. Here, we discuss recent advances in the critical role of the EPS matrix on biofilm growth and virulence on the dental implant surface and its effect on the etiopathogenesis and progression of implant-related infections. Similar to other biofilms associated with human diseases/conditions, EPS-enriched biofilms on implant surfaces promote microbial accumulation, microbiological shift, cross-kingdom interaction, antimicrobial resistance, biofilm virulence, and, consequently, peri-implant tissue damage. But intriguingly, the protagonism of EPS role on implant-related infections and the development of matrix-target therapeutic strategies has been neglected. Finally, we highlight the need for more in-depth analyses of polymicrobial interactions within EPS matrix and EPS-targeting technologies' rationale for disrupting the complex biofilm microenvironment with more outstanding translation to implant applications in the near future.


Assuntos
Anti-Infecciosos , Implantes Dentários , Humanos , Biofilmes , Matriz Extracelular , Matriz Extracelular de Substâncias Poliméricas
4.
Bioresour Technol ; 357: 127355, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35609753

RESUMO

This study evaluated the influence of carbon sources on alginate-like exopolymers (ALE) and tryptophan (Trp) biosynthesis in the aerobic granular sludge (AGS). With acetate, the highest biopolymers levels, per gram of volatile suspended solids (VSS) (418.7 mgALE∙g-1 and 4.1 mgTrp∙gVSS-1), were found likely due to biomass loss throughout the operation, which resulted in lower sludge age (4-7 days) and shorter famine period. During granulation, encouraging results on ALE production were obtained with propionate (>250 mgALE∙gVSS-1), significantly higher than those found with glycerol, glucose, and sucrose. Regarding tryptophan production, propionate and glycerol proved to be good substrates, although the content was still lower than acetate (1.6 mgTrp∙gVSS-1). Granules fed with glucose showed the worst results compared to the other substrates (38.5 mgALE∙VSS-1 and 0.6 mgTrp∙gVSS-1) due to the filamentous microorganisms' abundance found. Therefore, this study provides insights to value the production of compounds of industrial interest in AGS systems.


Assuntos
Esgotos , Águas Residuárias , Aerobiose , Alginatos , Reatores Biológicos , Carbono , Glucose , Glicerol , Propionatos , Esgotos/química , Triptofano , Eliminação de Resíduos Líquidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA