Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 98(1): 167-81, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26394026

RESUMO

Chronic elevation of plasma free fatty acid (FFA) levels is commonly associated with obesity, type 2 diabetes, cardiovascular disease and some cancers. Experimental evidence indicates FFA and their metabolites contribute to disease development through lipotoxicity. Previously, we identified a specific fatty acid transport inhibitor CB16.2, a.k.a. Lipofermata, using high throughput screening methods. In this study, efficacy of transport inhibition was measured in four cell lines that are models for myocytes (mmC2C12), pancreatic ß-cells (rnINS-1E), intestinal epithelial cells (hsCaco-2), and hepatocytes (hsHepG2), as well as primary human adipocytes. The compound was effective in inhibiting uptake with IC50s between 3 and 6µM for all cell lines except human adipocytes (39µM). Inhibition was specific for long and very long chain fatty acids but had no effect on medium chain fatty acids (C6-C10), which are transported by passive diffusion. Derivatives of Lipofermata were evaluated to understand structural contributions to activity. Lipofermata prevented palmitate-mediated oxidative stress, induction of BiP and CHOP, and cell death in a dose-dependent manner in hsHepG2 and rnINS-1E cells, suggesting it will prevent induction of fatty acid-mediated cell death pathways and lipotoxic disease by channeling excess fatty acids to adipose tissue and away from liver and pancreas. Importantly, mice dosed orally with Lipofermata were not able to absorb (13)C-oleate demonstrating utility as an inhibitor of fatty acid absorption from the gut.


Assuntos
Ácidos Graxos/metabolismo , Compostos de Espiro/farmacologia , Tiadiazóis/farmacologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Humanos , Estrutura Molecular , Bibliotecas de Moléculas Pequenas
2.
Biochem Biophys Res Commun ; 465(3): 534-41, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26284975

RESUMO

The inhibition of the fatty acid uptake into non-adipose tissues provides an attractive target for prevention of lipotoxicity leading to obesity-associated non-alcoholic fatty liver disease and type 2 diabetes. Fatty acid transport proteins (FATPs) are bifunctional proteins involved in the uptake and activation of fatty acids by esterification with coenzyme A. Here we characterize Grassofermata/CB5, previously identified as a fatty acid uptake inhibitor directed against HsFATP2. The compound was effective in inhibiting the uptake of fatty acids in the low micro-molar range (IC50 8-11 µM) and prevented palmitate-mediated lipid accumulation and cell death in cell lines that are models for intestines, liver, muscle and pancreas. In adipocytes, uptake inhibition was less effective (IC50 58 µM). Inhibition was specific for long chain fatty acids and was ineffective toward medium chain fatty acids, which are transported by diffusion. Kinetic analysis of Grassofermata-dependent FA transport inhibition verified a non-competitive mechanism. By comparison with Grassofermata, several atypical antipsychotic drugs previously implicated as inhibitors of FA uptake were ineffectual. In mice Grassofermata decreased absorption of (13)C-oleate demonstrating its potential as a therapeutic agent.


Assuntos
Adipócitos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Coenzima A Ligases/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Pirimidinas/administração & dosagem , Pirimidinas/farmacocinética , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Animais , Células CACO-2 , Coenzima A Ligases/antagonistas & inibidores , Ácidos Graxos/farmacocinética , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA