Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Meta Gene ; 9: 185-90, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27617217

RESUMO

We report on a 16-year-old boy with a maternally inherited ~ 18.3 Mb Xq13.2-q21.31 duplication delimited by aCGH. As previously described in patients with similar duplications, his clinical features included intellectual disability, developmental delay, speech delay, generalized hypotonia, infantile feeding difficulties, self-injurious behavior, short stature and endocrine problems. As additional findings, he presented recurrent seizures and pubertal gynecomastia. His mother was phenotypically normal and had completely skewed inactivation of the duplicated X chromosome, as most female carriers of such duplications. Five previously reported patients with partial Xq duplications presented duplication breakpoints similar to those of our patient. One of them, a fetus with multiple congenital abnormalities, had the same cytogenetic duplication breakpoint. Three of the reported patients shared many features with our proband but the other had some clinical features of the Prader-Willi syndrome. It was suggested that ATRX overexpression could be involved in the major clinical features of patients with partial Xq duplications. We propose that this gene could also be involved with the obesity of the patient with the Prader-Willi-like phenotype. Additionally, we suggest that the PCDH11X gene could be a candidate for our patient's recurrent seizures. In males, the Xq13-q21 duplication should be considered in the differential diagnosis of Prader-Willi syndrome, as previously suggested, and neuromuscular diseases, particularly mitochondriopathies.

2.
Meta Gene ; 2: 16-24, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25606385

RESUMO

Studies in mice demonstrated that the Shh gene is crucial for normal development of both incisors and molars, causing a severe retardation in tooth growth, which leads to abnormal placement of the tooth in the jaw and disrupted tooth morphogenesis. In humans the SHH gene is located on chromosome 7q36. Defects in its protein or signaling pathway may cause holoprosencephaly spectrum, a disorder in which the developing forebrain fails to correctly separate into right and left hemispheres and that can be manifested in microforms such as single maxillary central incisor. A novel role for this gene in the developing human primary dentition was recently demonstrated. We report a 12-year old boy with a de novo 7q36.1-qter deletion characterized by high-resolution karyotyping, oligonucleotide aCGH and FISH. His phenotype includes intellectual disability, non-verbal communication, hypospadia, partial sacral agenesis and absence of coccyx, which are distinctive features of the syndrome and mainly correlated with the MNX1, HTR5A and EN2 genes. No microforms of holoprosencephaly spectrum were observed; but the patient had diastema and dental developmental abnormalities, such as conical, asymmetric and tapered inferior central incisors. The dental anomalies are reported herein for the first time in subtelomeric 7q36 deletion syndrome and may confirm clinically a novel role for the SHH gene in dental development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA