Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Phys Med Biol ; 69(8)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38252970

RESUMO

Objective. Ionization chambers, mostly used for beam calibration and for reference dosimetry, can show high recombination effects in pulsed high dose rate proton beams. The aims of this paper are: first, to characterize the linearity response of newly designed asymmetrical beam monitor chambers (ABMC) in a 100-226 MeV pulsed high dose rate per pulse scanned proton beam; and secondly, to calibrate the ABMC with a PPC05 (IBA Dosimetry) plane parallel ionization chamber and compare to calibration with a home-made Faraday cup (FC).Approach. The ABMC response linearity was evaluated with both the FC and a PTW 60019 microDiamond detector. Regarding ionometry-based ABMC calibration, recombination factors were evaluated theoretically, then numerically, and finally experimentally measured in water for a plane parallel ionization chamber PPC05 (IBA Dosimetry) throughkssaturation curves. Finally, ABMC calibration was also achieved with FC and compared to the ionometry method for 7 energies.Main results. Linearity measurements showed that recombination losses in the new ABMC design were well taken into account for the whole range of the machine dose rates. The two-voltage-method was not suitable for recombination correction, but Jaffé's plots analysis was needed, emphasizing the current IAEA TRS-398 reference protocol limitations. Concerning ABMC calibration, FC based absorbed dose estimation and PPC05-based absorbed dose estimation differ by less than 6.3% for the investigated energies.Significance.So far, no update on reference dosimetry protocols is available to estimate the absorbed dose in ionization chambers for clinical high dose rate per pulse pulsed scanned proton beams. This work proposes a validation of the new ABMC design, a method to take into account the recombination effect for ionometry-based ABMC calibration and a comparison with FC dose estimation in this type of proton beams.


Assuntos
Prótons , Radioatividade , Ciclotrons , Calibragem , Radiometria/métodos , Água
2.
Med Phys ; 51(3): 2277-2292, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37991110

RESUMO

BACKGROUND: A Faraday cup (FC) facilitates a quite clean measurement of the proton fluence emerging from clinical spot-scanning nozzles with narrow pencil-beams. The utilization of FCs appears to be an attractive option for high dose rate delivery modes and the source models of Monte-Carlo (MC) dose engines. However, previous studies revealed discrepancies of 3%-6% between reference dosimetry with ionization chambers (ICs) and FC-based dosimetry. This has prevented the widespread use of FCs for dosimetry in proton therapy. PURPOSE: The current study aims at bridging the gap between FC dosimetry and IC dosimetry of proton fields delivered with spot-scanning treatment heads. Particularly, a novel method to evaluate FC measurements is introduced. METHODS: A consistency check is formulated, which makes use of the energy balance and the reciprocity theorem. The measurement data comprise central-axis depth distributions of the absorbed dose of quasi-monochromatic fields with a width of about 28.5 cm and FC measurements of the reciprocal fields with a single spot. These data are complemented by a look-up of energy-range tables, the average Q-value of transmutations, and the escape energy carried away by neutrons and photons. The latter data are computed by MC simulations, which in turn are validated with measurements of the distal dose tail and neutron out-of-field doses. For comparison, the conventional approach of FC evaluation is performed, which computes absorbed dose from the product of fluence and stopping power. The results from the FC measurements are compared with the standard dosimetry protocols and improved reference dosimetry methods. RESULTS: The deviation between the conventional FC-based dosimetry and the IC-based one according to standard dosimetry protocols was -4.7 ( ± $\pm$ 3.3)% for a 100 MeV field and -3.6 ( ± $\pm$ 3.5)% for 200 MeV, thereby agreeing within the reported uncertainties. The deviations could be reduced to -4.0 ( ± $\pm$ 2.9)% and -3.0 ( ± $\pm$ 3.1)% by adopting state-of-the-art reference dosimetry methods. The alternative approach using the energy balance gave deviations of only -1.9% (100 MeV) and -2.6% (200 MeV) using state-of-the-art dosimetry. The standard uncertainty of this novel approach was estimated to be about 2%. CONCLUSIONS: An alternative concept has been established to determine the absorbed dose of monoenergetic proton fields with an FC. It eliminates the strong dependence of the conventional FC-based approach on the MC simulation of the stopping-power and of the secondary ions, which according to the study at hand is the major contributor to the underestimation of the absorbed dose. Some contributions to the uncertainty of the novel approach could potentially be reduced in future studies. This would allow for accurate consistency tests of conventional dosimetry procedures.


Assuntos
Terapia com Prótons , Prótons , Radiometria/métodos , Simulação por Computador , Calibragem , Método de Monte Carlo , Dosagem Radioterapêutica
3.
Med Phys ; 50(9): 5828-5841, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37227735

RESUMO

BACKGROUND: Experiments with ultra-high dose rates in proton therapy are of increasing interest for potential treatment benefits. The Faraday Cup (FC) is an important detector for the dosimetry of such ultra-high dose rate beams. So far, there is no consensus on the optimal design of a FC, or on the influence of beam properties and magnetic fields on shielding of the FC from secondary charged particles. PURPOSE: To perform detailed Monte Carlo simulations of a Faraday cup to identify and quantify all the charge contributions from primary protons and secondary particles that modify the efficiency of the FC response as a function of a magnetic field employed to improve the detector's reading. METHODS: In this paper, a Monte Carlo (MC) approach was used to investigate the Paul Scherrer Institute (PSI) FC and quantify contributions of charged particles to its signal for beam energies of 70, 150, and 228 MeV and magnetic fields between 0 and 25 mT. Finally, we compared our MC simulations to measurements of the response of the PSI FC. RESULTS: For maximum magnetic fields, the efficiency (signal of the FC normalized to charged delivered by protons) of the PSI FC varied between 99.97% and 100.22% for the lowest and highest beam energy. We have shown that this beam energy-dependence is mainly caused by contributions of secondary charged particles, which cannot be fully suppressed by the magnetic field. Additionally, it has been demonstrated that these contributions persist, making the FC efficiency beam energy dependent for fields up to 250 mT, posing inevitable limits on the accuracy of FC measurements if not corrected. In particular, we have identified a so far unreported loss of electrons via the outer surfaces of the absorber block and show the energy distributions of secondary electrons ejected from the vacuum window (VW) (up to several hundred keV), together with electrons ejected from the absorber block (up to several MeV). Even though, in general, simulations and measurements were well in agreement, the limitation of the current MC calculations to produce secondary electrons below 990 eV posed a limit in the efficiency simulations in the absence of a magnetic field as compared to the experimental data. CONCLUSION: TOPAS-based MC simulations allowed to identify various and previously unreported contributions to the FC signal, which are likely to be present in other FC designs. Estimating the beam energy dependence of the PSI FC for additional beam energies could allow for the implementation of an energy-dependent correction factor to the signal. Dose estimates, based on accurate measurements of the number of delivered protons, provided a valid instrument to challenge the dose determined by reference ionization chambers, not only at ultra-high dose rates but also at conventional dose rates.


Assuntos
Terapia com Prótons , Prótons , Radiometria , Método de Monte Carlo , Campos Magnéticos , Dosagem Radioterapêutica
4.
Heliyon ; 8(9): e10621, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36164541

RESUMO

We report a comparative study of a single plasma and a colliding laser produced plasma, investigated using a Faraday cup. An enhancement in ion emission and stagnation is observed in colliding plasma plume compared to single plasma plume. We observed that fast ion generation in laser ablated plasma can be achieved at large laser intensity on to the target. As laser intensity increases ionic yield increases for both colliding and single plume and at a fixed laser intensity ionic yield decreases with increase in ambient pressure. The double peak structure is observed in the ion signal at large fluence where the peaks correspond to fast and slow species. A Faraday cup composed of nine collectors is used to measure the spatial/angular distribution of ion of expanding plasma plume. Ionic yield is found to be larger in the colliding plasma plume than the single plasma plume at all spatial/angular positions.

5.
Phys Med Biol ; 66(12)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33906166

RESUMO

Recently, proton therapy treatments delivered with ultra-high dose rates have been of high scientific interest, and the Faraday cup (FC) is a promising dosimetry tool for such experiments. Different institutes use different FC designs, and either a high voltage guard ring, or the combination of an electric and a magnetic field is employed to minimize the effect of secondary electrons. The authors first investigate these different approaches for beam energies of 70, 150, 230 and 250 MeV, magnetic fields between 0 and 24 mT and voltages between -1000 and 1000 V. When applying a magnetic field, the measured signal is independent of the guard ring voltage, indicating that this setting minimizes the effect of secondary electrons on the reading of the FC. Without magnetic field, applying the negative voltage however decreases the signal by an energy dependent factor up to 1.3% for the lowest energy tested and 0.4% for the highest energy, showing an energy dependent response. Next, the study demonstrates the application of the FC up to ultra-high dose rates. FC measurements with cyclotron currents up to 800 nA (dose rates of up to approximately 1000 Gy s-1) show that the FC is indeed dose rate independent. Then, the FC is applied to commission the primary gantry monitor for high dose rates. Finally, short-term reproducibility of the monitor calibration is quantified within single days, showing a standard deviation of 0.1% (one sigma). In conclusion, the FC is a promising, dose rate independent tool for dosimetry up to ultra-high dose rates. Caution is however necessary when using a FC without magnetic field, as a guard ring with high voltage alone can introduce an energy dependent signal offset.


Assuntos
Terapia com Prótons , Calibragem , Prótons , Radiometria , Reprodutibilidade dos Testes
6.
Ultramicroscopy ; 223: 113221, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33588232

RESUMO

Modern quantitative TEM methods such as the ζ-factor technique require precise knowledge of the electron beam current. To this end, a macroscopic Faraday cup was designed and constructed. It can replace the viewing screen in the projection chamber of a TEM and guarantees highly accurate measurement of the electron beam with precision only limited by the used amperemeter. The easy to install, affordable device is shown to be highly apt for precision measurement of currents >5pA. The Faraday cup results are used for an assessment and a comparison of various other beam current measurement methods. It is found that the built-in screen amperemeter of the used TEM is quite inaccurate and that measurements using the screen in general tend to underestimate the current. If present, the drift tube of a spectrometer can also be used as a Faraday cup, but certain described peculiarities have to be taken into account. Direct ultrafast electron detection cameras allow precise measurement at very small currents. For the electron counting technique, which exploits single electron detection capabilities of STEM detectors, a systematic current underestimation was observed and investigated. This results in a reformulated routine for the method and with these improvements it is demonstrated to be capable of accurate high-precision measurements for currents <5pA.

7.
Zhongguo Yi Liao Qi Xie Za Zhi ; 43(2): 102-105, 2019 Mar 30.
Artigo em Chinês | MEDLINE | ID: mdl-30977605

RESUMO

er to detect the beam quality of the SC200 superconducting cyclotron,measure the beam at the extraction reference and the acceptance of the accelerator is realized.This article mainly introduces the design that use the scintillation screen at the extraction reference to measure the beam profile,position and use the Faraday cup to measure the current intensity with 2.5 level accuracy.The remoted controlling of probes and the acquisition and processing of signal based on LabVIEW and PLC.


Assuntos
Terapia com Prótons , Terapia com Prótons/instrumentação
8.
Med Phys ; 46(2): 1049-1053, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30570757

RESUMO

PURPOSE: Daily verification of the proton beam range in proton radiation therapy is a vital part of the quality assurance (QA) program. The objective of this work is to study the use of a multilayer Faraday cup (MLFC) to perform a quick and precise daily range verification of proton beams produced by a synchrotron. METHODS: Proton beam depth dose measurements were performed at room iso-center in water using PTW water tank and Bragg Peak ion chamber. The IBA Giraffe, calibrated against the water tank data, was used to measure the water equivalent thickness (WET) of the sample copper plates. The WET measurements provided the range calibration factors for the MLFC. To establish a baseline for in room measurements, range measurements for energies from 70 to 250 MeV in steps of 10 MeV were performed using the Pyramid MLFC at room iso-center. For the daily range verification measurements, the MLFC is permanently placed at the end of the beam line, inside the accelerator vault. The daily range constancy is performed for five representative beam energies; namely 70, 100, 150, 200, and 250 MeV. Data collected over a period of more than 100 days are analyzed and presented. RESULTS: The measured WET values of the copper plates increased with increasing energy. The centroid channel number in the MLFC where the protons stop, was converted to depth in water and compared to the depth of the distal 80% (d80) obtained from the water tank measurements. The depths agreed to within 2 mm, with the maximum deviation of 1.97 mm observed for 250 MeV beam. The daily variation in the ranges measured by the MLFC was within ±0.5 mm. The total time to verify five proton beam ranges varies between 4 and 5 min. CONCLUSION: Based on the result of our measurements, the MLFC can be used for a daily range constancy check with submillimeter accuracy. It is a quick and simple method to perform range constancy verification on a daily basis.


Assuntos
Neoplasias/radioterapia , Imagens de Fantasmas , Terapia com Prótons , Garantia da Qualidade dos Cuidados de Saúde/normas , Radiometria/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Idoso , Calibragem , Humanos , Controle de Qualidade , Dosagem Radioterapêutica , Água
9.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-772554

RESUMO

er to detect the beam quality of the SC200 superconducting cyclotron,measure the beam at the extraction reference and the acceptance of the accelerator is realized.This article mainly introduces the design that use the scintillation screen at the extraction reference to measure the beam profile,position and use the Faraday cup to measure the current intensity with 2.5 level accuracy.The remoted controlling of probes and the acquisition and processing of signal based on LabVIEW and PLC.


Assuntos
Terapia com Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA