Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.863
Filtrar
1.
Dev Cell ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39137774

RESUMO

Macrophages measure the "eat-me" signal immunoglobulin G (IgG) to identify targets for phagocytosis. We tested whether prior encounters with IgG influence macrophage appetite. IgG is recognized by the Fc receptor. To temporally control Fc receptor activation, we engineered an Fc receptor that is activated by the light-induced oligomerization of Cry2, triggering phagocytosis. Using this tool, we demonstrate that subthreshold Fc receptor activation primes mouse bone-marrow-derived macrophages to be more sensitive to IgG in future encounters. Macrophages that have previously experienced subthreshold Fc receptor activation eat more IgG-bound human cancer cells. Increased phagocytosis occurs by two discrete mechanisms-a short- and long-term priming. Long-term priming requires new protein synthesis and Erk activity. Short-term priming does not require new protein synthesis and correlates with an increase in Fc receptor mobility. Our work demonstrates that IgG primes macrophages for increased phagocytosis, suggesting that therapeutic antibodies may become more effective after initial priming doses.

2.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39126087

RESUMO

Marburg virus (MARV), a filovirus, was first identified in 1967 in Marburg, Germany, and Belgrade, former Yugoslavia. Since then, MARV has caused sporadic outbreaks of human disease with high case fatality rates in parts of Africa, with the largest outbreak occurring in 2004/05 in Angola. From 2021 to 2023, MARV outbreaks occurred in Guinea, Ghana, New Guinea, and Tanzania, emphasizing the expansion of its endemic area into new geographical regions. There are currently no approved vaccines or therapeutics targeting MARV, but several vaccine candidates have shown promise in preclinical studies. We compared three vaccine platforms simultaneously by vaccinating hamsters with either a single dose of an adenovirus-based (ChAdOx-1 MARV) vaccine, an alphavirus replicon-based RNA (LION-MARV) vaccine, or a recombinant vesicular stomatitis virus-based (VSV-MARV) vaccine, all expressing the MARV glycoprotein as the antigen. Lethal challenge with hamster-adapted MARV 4 weeks after vaccination resulted in uniform protection of the VSV-MARV and LION-MARV groups and 83% of the ChAdOx-1 MARV group. Assessment of the antigen-specific humoral response and its functionality revealed vaccine-platform-dependent differences, particularly in the Fc effector functions.


Assuntos
Doença do Vírus de Marburg , Marburgvirus , Vacinas Virais , Animais , Cricetinae , Vacinas Virais/imunologia , Marburgvirus/imunologia , Doença do Vírus de Marburg/prevenção & controle , Doença do Vírus de Marburg/imunologia , Modelos Animais de Doenças , Adenoviridae/genética , Adenoviridae/imunologia , Vesiculovirus/imunologia , Vesiculovirus/genética , Anticorpos Antivirais/imunologia , Vacinação/métodos
3.
Artigo em Inglês | MEDLINE | ID: mdl-39129161

RESUMO

Immunoglobulins (Ig) are proteins that help fight infections. IgG (IgG1, IgG2, IgG3, IgG4), IgM, IgA, IgD, and IgE are the five immunoglobulin subtypes that make up the majority of our immune system. Beneficial effects have been observed on the administration of Ig in diseases like Kawasaki, multiple myositis, chronic inflammatory demyelinating polyneuropathy (CIDP), and immune thrombocytopenia purpura (ITP). The Fc region, FcγRs, and FcRn of the IgG interact to provide both pro- and anti-inflammatory effects. IgM blocks immune-mediated inflammation using N-like glycans. It has been demonstrated that IgM demonstrates its antiinflammatory activity through IgM anti-leukocyte auto-antibodies (IgM-ALA). Since IgA is the second most prevalent and important Ig that operates on the primary objective in the immune system, which exhibits inhibitory signals in the body and generates inflammation in host cells, it plays a critical role in controlling mucosal homeostasis in the gastrointestinal (GI) tract. Additionally, it has been discovered that activating FcαRI boosts cytokine responses at different levels. IgD, a mysterious class of Ig once discovered, has a role in many disorders, including myeloma and Hodgkin's disease. The stability of IgD with development shows a different role, which has an advantage for the host's survival. IgE is mainly associated with many allergic diseases (food allergies), mediates type 1 responses, and has defenses against parasitic infections, which makes it an important parameter for monoclonal antibodies. Studies showed the possible roles of immunoglobulins, from which it came to light that immunoglobulins have their functions as agonists and antagonists in inflammation.

4.
Front Immunol ; 15: 1409480, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39148733

RESUMO

Background: Efgartigimod (Efgartigimod alpha fcab, Vyvgart™) is a pioneering neonatal Fc receptor (FcRn) antagonist for the treatment of severe autoimmune diseases mediated by pathogenic immunoglobulin G (IgG) autoantibodies, including myasthenia gravis (MG). It is a well-tolerated drug with minor side effects, such as headache and upper respiratory (lung) and urinary tract infections. Here, we present a case of Kaposi's varicelliform eruption (KVE) and herpetic conjunctivitis related to efgartigimod in a 60-year-old patient with ocular MG (OMG). Case description: A 60-year-old Chinese male suffered from acetylcholine receptor antibody positive (AChR Ab+) OMG for 8 years. During this period, he underwent first-line treatment with systemic corticosteroids, cyclosporine, cyclophosphamide, and so on, but had poor symptom improvement. On the recommendation of his attending neurologist, he received one cycle of intravenous efgartigimod (10mg/kg, once weekly for 4 weeks). The patient experienced fever, widespread painful blisters, and edema on the face on the third day after his last intravenous infusion. The patient also complained of increased secretions and a foreign body sensation in both eyes. Laboratory tests confirmed infection with herpes simplex virus (HSV). A diagnosis of efgartigimod-associated KVE and herpetic conjunctivitis was made. After intravenous administration (5mg/kg, 3 times a day, every 8 hours) for 10 days, the patient was cured without residual complications. Conclusions: This case is the first report of a patient with KVE and herpetic conjunctivitis related to efgartigimod in PubMed. This is rare and unusual. Clinicians should be alert to the rare symptoms related to efgartigimod.


Assuntos
Erupção Variceliforme de Kaposi , Miastenia Gravis , Humanos , Masculino , Pessoa de Meia-Idade , Miastenia Gravis/tratamento farmacológico , Miastenia Gravis/induzido quimicamente , Miastenia Gravis/imunologia , Miastenia Gravis/diagnóstico , Erupção Variceliforme de Kaposi/tratamento farmacológico , Herpes Simples/tratamento farmacológico , Herpes Simples/diagnóstico , Herpes Simples/imunologia , Conjuntivite Viral/tratamento farmacológico , Conjuntivite Viral/diagnóstico
5.
Int J Biol Macromol ; 278(Pt 2): 134718, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39142490

RESUMO

Peptides are a very critical class of pharmaceutical compounds that can control several signaling pathways and thereby affect many physiological and biochemical processes. Previous research suggests that both peptides and antibodies may serve as potent tools for research, diagnostics, vaccination, and therapeutics across diverse domains. The distinct attributes of peptides, like their profound tissue penetration, efficient cellular internalization, reduced immunogenicity, and adaptability to chemical modification, underscore their significance in biomedical applications. However, they also possess drawbacks such as lower affinity, poor absorption, low stability to proteolytic digestion, and rapid clearance. The advent of peptibodies is a significant advance that improves the limitations of both peptides and antibodies. Peptibodies, or Peptide-Fc fusions, represent a promising therapeutic modality comprising biologically active peptides fused to an Fc domain. The stability and efficacy of the peptide are enhanced by this fusion strategy, which overcomes some of the inherent limitations. Many peptibodies have been developed to treat conditions like cancer, diabetes, and lupus. Romiplostim and Dulaglutide are the only ones approved by the EMA and FDA, respectively. Given the growing significance of peptibodies in the pharmaceutical landscape, this investigation aims to explain key aspects encompassing the intrinsic properties of peptides, the intricacies of peptibody production, and their potential therapeutic applications.

6.
Biochem Pharmacol ; 227: 116457, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39098732

RESUMO

The chemokine receptor CXCR4 is involved in the development and migration of stem and immune cells but is also implicated in tumor progression and metastasis for a variety of cancers. Antagonizing ligand (CXCL12)-induced CXCR4 signaling is, therefore, of therapeutic interest. Currently, there are two small-molecule CXCR4 antagonists on the market for the mobilization of hematopoietic stem cells. Other molecules with improved potencies and safety profiles are being developed for different indications, including cancer. Moreover, multiple antagonistic nanobodies targeting CXCR4 displayed similar or better potencies as compared to the CXCR4-targeting molecule AMD3100 (Plerixafor), which was further enhanced through avid binding of bivalent derivatives. In this study, we aimed to compare the affinities of various multivalent nanobody formats which might be differently impacted by avidity. By fusion to a flexible GS-linker, Fc-region of human IgG1, different C4bp/CLR multimerization domains, or via site-directed conjugation to a trivalent linker scaffold, we generated different types of multivalent nanobodies with varying valencies ranging from bivalent to decavalent. Of these, C-terminal fusion, especially to human Fc, was most advantageous with a 2-log-fold and 3-log-fold increased potency in inhibiting CXCL12-mediated Gαi- or ß-arrestin recruitment, respectively. Overall, we describe strategies for generating multivalent and high-potency CXCR4 antagonistic nanobodies able to induce receptor clustering and conclude that fusion to an Fc-tail results in the highest avidity effect irrespective of the hinge linker.


Assuntos
Receptores CXCR4 , Anticorpos de Domínio Único , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/metabolismo , Receptores CXCR4/imunologia , Humanos , Anticorpos de Domínio Único/farmacologia , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Animais , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/antagonistas & inibidores , Quimiocina CXCL12/imunologia , Células HEK293 , Afinidade de Anticorpos
7.
Front Immunol ; 15: 1418539, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39131159

RESUMO

CD177 plays an important role in the proliferation and differentiation of myeloid lineage cells including neutrophils, myelocytes, promyelocytes, megakaryocytes, and early erythroblasts in bone marrow. CD177 deficiency is a common phenotype in humans. Our previous studies revealed genetic mechanisms of human CD177 deficiency and expression variations. Up to now, immune functions of CD177 remain undefined. In the current study, we revealed human IgG as a ligand for CD177 by using flow cytometry, bead-rosette formation, and surface plasmon resonance (SPR) assays. In addition, we show that CD177 variants affect the binding capacity of CD177 for human IgG. Furthermore, we show that the CD177 genetic variants significantly affect antibody-dependent cell-mediated cytotoxicity (ADCC) function. The demonstration of CD177 as a functional IgG Fc-receptor may provide new insights into CD177 immune function and genetic mechanism underlying CD177 as biomarkers for human diseases.


Assuntos
Proteínas Ligadas por GPI , Imunoglobulina G , Humanos , Imunoglobulina G/imunologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/imunologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Receptores de IgG/genética , Receptores de IgG/metabolismo , Isoantígenos/imunologia , Isoantígenos/genética , Variação Genética , Receptores Fc/metabolismo , Receptores Fc/genética , Ligação Proteica
8.
Intern Med ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39111891

RESUMO

We herein report two patients with anti-muscle-specific kinase (MuSK) antibody-positive myasthenia gravis who experienced rapid deterioration of weakness, particularly respiratory muscle weakness, necessitating non-invasive positive pressure ventilation (NIPPV) and were treated with efgartigimod. After treatment initiation, a rapid reduction in IgG levels and recovery from clinical symptoms were observed. NIPPV was no longer required two to three weeks after the first infusion of efgartigimod. These findings suggest that the reduction of IgG levels using efgartigimod is a good treatment option in patients with myasthenia gravis positive for anti-MuSK antibodies, even during the acute phase of the disease.

9.
J Biol Chem ; : 107652, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39121997

RESUMO

HLA-DQ molecules drive unwanted alloimmune responses after solid-organ transplants and several autoimmune diseases, including Type1 Diabetes and celiac disease. Biologics with HLA molecules as part of the design are emerging therapeutic options for these allo- and autoimmune conditions. However, the soluble α and ß chains of class II HLA molecules do not dimerize efficiently without their transmembrane domains, which hinders their production. In this study, we examined the feasibility of inter-chain disulfide engineering by introducing paired cysteines to juxtaposed positions in the α and ß chains of HLA-DQ7, encoded by HLA-DQA1*05:01 and HLA-DQB1*03:01 respectively. We identified three variant peptide-HLA-DQ7-Fc fusion proteins (DQ7Fc) with increased expression and production yield, namely Y19C-D6C (YCDC), A83C-E5C (ACEC), and A84C-N33C (ACNC). The mutated residues were conserved across all HLA-DQ proteins and had limited solvent exposure. Further characterizations of the YCDC variant showed that the expression of the fusion protein is peptide-dependent; inclusion of a higher-affinity peptide correlated with increased protein expression. However, high-affinity peptide alone was insufficient for stabilizing the DQ7 complex without the engineered disulfide bond. Multiple DQ7Fc variants demonstrated expected binding characteristics with commercial anti-DQ antibodies in two immunoassays and by a cell-based assay. Lastly, DQ7Fc variants demonstrated dose-dependent killing of DQ7-specific B cell hybridomas in a flow cytometric, complement-dependent cytotoxicity assay. These data support inter-chain disulfide engineering as a novel approach to efficiently producing functional HLA-DQ molecules and potentially other class II HLA molecules as candidate therapeutic agents.

10.
Biotechnol Rep (Amst) ; 43: e00847, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39040987

RESUMO

Plant-based manufacturing has the advantage of post-translational modifications. While plant-specific N-glycans have been associated with allergic reactions, their effect on the specific immune response upon vaccination is not yet understood. In this study, we produced an RBD-Fc subunit vaccine in both wildtype (WT) and glycoengineered (∆XF) Nicotiana benthamiana plants. The N-glycan analysis: RBD-Fc carrying the ER retention peptide mainly displayed high mannose. When produced in WT RBD-Fc displayed complex-type (GnGnXF) N-glycans. In contrast, ∆XF plants produced RBD-Fc with humanized complex N-glycans that lack potentially immunogenic xylose and core fucose residues (GnGn). The three recombinant RBD-Fc glycovariants were tested. Immunization with any of the RBD-Fc proteins resulted in a similar titer of anti-RBD antibodies in mice. Likewise, antisera from subunit RBD-Fc vaccines also demonstrated comparable neutralization against SARS-CoV-2. Thus, we conclude that N-glycan modifications of the RBD-Fc protein have no impact on their capacity to activate immune responses and induce neutralizing antibody production.

11.
Antib Ther ; 7(3): 209-220, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39036072

RESUMO

Fc optimization can significantly enhance therapeutic efficacy of monoclonal antibodies. However, existing Fc engineering approaches are sub-optimal with noted limitations, such as inappropriate glycosylation, polyclonal libraries, and utilizing fragment but not full-length IgG display. Applying cell cycle arrested recombinase-mediated cassette exchange, this study constructed high-quality monoclonal Fc libraries in CHO cells, displayed full-length IgG on cell surface, and preformed ratiometric fluorescence activated cell sorting (FACS) with the antigen and individual FcγRs. Identified Fc variants were quantitatively evaluated by flow cytometry, ELISA, kinetic and steady-state binding affinity measurements, and cytotoxicity assays. An error-prone Fc library focusing on the hinge-CH2 region was constructed in CHO cells with a functional diversity of 7.5 × 106. Panels of novel Fc variants with enhanced affinity and selectivity for FcγRs were isolated. Particularly, clone 2a-10 (G236E/K288R/K290W/K320M) showed increased binding strength towards FcγRIIa-131R and 131H allotypes with kinetic dissociation constants (KD-K) of 140 nM and 220 nM, respectively, while reduced binding strength towards FcγRIIb compared to WT Fc; clone 2b-1 (K222I/V302E/L328F/K334E) had KD-K of 180 nM towards FcγRIIb; clone 3a-2 (P247L/K248E/K334I) exhibited KD-K of 190 nM and 100 nM towards FcγRIIIa-176F and 176 V allotypes, respectively, and improved potency of 2.0 ng/ml in ADCC assays. Key mutation hotspots were identified, including P247 for FcγRIIIa, K290 for FcγRIIa, and K334 for FcγRIIb bindings. Discovery of Fc variants with enhanced affinity and selectivity towards individual FcγR and the identification of novel mutation hotspots provide valuable insights for further Fc optimization and serve as a foundation for advancing antibody therapeutics development.

12.
Biotechnol Bioeng ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965775

RESUMO

Urokinase-type plasminogen activator receptor (uPAR) is overexpressed on tumor cells in multiple types of cancer and contributes to disease progression and metastasis. In this work, we engineered a novel bi-paratopic uPAR targeting agent by fusing the binding domains of two native uPAR ligands: uPA and vitronectin, with a flexible peptide linker. The linker length was optimized to facilitate simultaneous engagement of both domains to their adjacent epitopes on uPAR, resulting in a high affinity and avid binding interaction. Furthermore, the individual domains were affinity-matured using yeast surface display and directed evolution, resulting in a bi-paratopic protein with affinity in the picomolar to femtomolar range. This engineered uPAR targeting agent demonstrated significantly enhanced tumor localization in mouse tumor models compared to the native uPAR ligand and warrants further investigation as a diagnostic and therapeutic agent for cancer.

13.
Cereb Cortex ; 34(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38984703

RESUMO

The propensity to experience meaningful patterns in random arrangements and unrelated events shows considerable interindividual differences. Reduced inhibitory control (over sensory processes) and decreased working memory capacities are associated with this trait, which implies that the activation of frontal as well as posterior brain regions may be altered during rest and working memory tasks. In addition, people experiencing more meaningful coincidences showed reduced gray matter of the left inferior frontal gyrus (IFG), which is linked to the inhibition of irrelevant information in working memory and the control and integration of multisensory information. To study deviations in the functional connectivity of the IFG with posterior associative areas, the present study investigated the fMRI resting state in a large sample of n = 101 participants. We applied seed-to-voxel analysis and found that people who perceive more meaningful coincidences showed negative functional connectivity of the left IFG (i.e. pars triangularis) with areas of the left posterior associative cortex (e.g. superior parietal cortex). A data-driven multivoxel pattern analysis further indicated that functional connectivity of a cluster located in the right cerebellum with a cluster including parts of the left middle frontal gyrus, left precentral gyrus, and the left IFG (pars opercularis) was associated with meaningful coincidences. These findings add evidence to the neurocognitive foundations of the propensity to experience meaningful coincidences, which strengthens the idea that deviations of working memory functions and inhibition of sensory and motor information explain why people experience more meaning in meaningless noise.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Adulto , Adulto Jovem , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Memória de Curto Prazo/fisiologia , Descanso/fisiologia , Vias Neurais/fisiologia , Vias Neurais/diagnóstico por imagem
14.
Eur J Haematol ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38993150

RESUMO

OBJECTIVES: Cluster of differentiation 38 (CD38) is a key target on multiple myeloma (MM) cells. This multi-centre, Phase 1, single-agent study (NCT04000282) investigated SAR442085, a novel fragment crystallisable (Fc)-modified anti-CD38 monoclonal antibody (mAb), with enhanced affinity towards Fc-gamma receptor on effector cells in patients with relapsed and/or refractory (RR) MM. METHODS: This study comprised two parts: Part-A (dose-escalation involving anti-CD38 mAb pre-treated and naïve patients) and Part-B (dose expansion). Primary endpoints were maximum tolerated dose and recommended Phase 2 dose (RP2D). RESULTS: Thirty-seven heavily pre-treated patients were treated in Part A. Part-B (dose-expansion) was not studied. Seven dose-limiting toxicities were reported at DL3, DL5, DL6, and DL7. RP2D was determined to be 5-7·5 mg/kg. Most common treatment-emergent adverse events were infusion-related reactions in 70·3% (26/37) patients. Grade ≥3 thrombocytopenia was reported in 48·6% (18/37). Overall response rate was 70% in anti-CD38 mAb naïve and 4% in anti-CD38 pre-treated patients, with a median progression-free survival of 7·62 (95%CI: 2·858; not calculable) months and 2·79 (95%CI: 1·150; 4·172) months and, respectively. CONCLUSIONS: The efficacy of SAR442085 was promising in anti-CD38 mAb naïve patients but did not extend to the larger cohort of anti-CD38 mAb pre-treated patients. This observation, along with transient high-grade thrombocytopenia, could potentially limit its clinical use.

15.
Eur J Immunol ; : e2451044, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014923

RESUMO

Human cytomegalovirus is a medically important pathogen. Previously, using murine CMV (MCMV), we provided evidence that both neutralizing and nonneutralizing antibodies can confer protection from viral infection in vivo. In this study, we report that serum derived from infected animals had a greater protective capacity in MCMV-infected RAG-/- mice than serum from animals immunized with purified virus. The protective activity of immune serum was strictly dependent on functional Fcγ receptors (FcγR). Deletion of individual FcγRs or combined deletion of FcγRI and FcγRIV had little impact on the protection afforded by serum. Adoptive transfer of CD115-positive cells from noninfected donors demonstrated that monocytes represent important cellular mediators of the protective activity provided by immune serum. Our studies suggest that Fc-FcγR interactions and monocytic cells are critical for antibody-mediated protection against MCMV infection in vivo. These findings may provide new avenues for the development of novel strategies for more effective CMV vaccines or antiviral immunotherapies.

16.
Antibodies (Basel) ; 13(3)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39051334

RESUMO

Immunoglobulin E (IgE) plays a critical role for the immune system, fighting against parasites, toxins, and cancer. However, when it reacts to allergens without proper regulation, it can cause allergic reactions, including anaphylaxis, through a process initiated by effector cells such as basophils and mast cells. These cells display IgE on their surface, bound to the high-affinity IgE receptor FcεRI. A cross-linking antigen then triggers degranulation and the release of inflammatory mediators from the cells. Therapeutic monoclonal anti-IgE antibodies such as omalizumab, disrupt this process and are used to manage IgE-related conditions such as severe allergic asthma and chronic spontaneous urticaria. Interestingly, naturally occurring anti-IgE autoantibodies circulate at surprisingly high levels in healthy humans and mice and may thus be instrumental in regulating IgE activity. Although many open questions remain, recent studies have shed new light on their role as IgE regulators and their mechanism of action. Here, we summarize the latest insights on natural anti-IgE autoantibodies, and we compare their functional features to therapeutic monoclonal anti-IgE autoantibodies.

17.
bioRxiv ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39026749

RESUMO

NK cells express activating receptors that signal through ITAM-bearing adapter proteins. The phosphorylation of each ITAM creates binding sites for SYK and ZAP70 protein tyrosine kinases to propagate downstream signaling including the induction of Ca 2 + influx. While all immature and mature human NK cells co-express SYK and ZAP70, clonally driven memory or adaptive NK cells can methylate SYK genes and signaling is mediated exclusively using ZAP70. Here, we examined the role of SYK and ZAP70 in a clonal human NK cell line KHYG1 by CRISPR-based deletion using a combination of experiments and mechanistic computational modeling. Elimination of SYK resulted in more robust Ca + + influx after cross-linking of the CD16 and NKp30 receptors and enhanced phosphorylation of downstream proteins, whereas ZAP70 deletion diminished these responses. By contrast, ZAP70 depletion increased proliferation of the NK cells. As immature T cells express both SYK and ZAP70 but mature T cells often express only ZAP70, we transduced the human Jurkat cell line with SYK and found that expression of SYK increased proliferation but diminished TCR-induced Ca 2 + flux and activation. We performed transcriptional analysis of the matched sets of variant Jurkat and KHYG1 cells and observed profound alterations caused by SYK expression. As depletion of SYK in NK cells increased their activation, primary human NK cells were transduced with a CD19-targeting CAR and were CRISPR edited to ablate SYK or ZAP70. Deletion of SYK resulted in more robust cytotoxic activity and cytokine production, providing a new therapeutic strategy of NK cell engineering for cancer immunotherapy.

18.
Expert Opin Investig Drugs ; : 1-6, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38980318

RESUMO

INTRODUCTION: Guillain-Barré syndrome (GBS) is a monophasic immune neuropathic disorder characterized by acute paralysis. A significant portion of patients are left with residual deficits, which presents a considerable global healthcare challenge. The precise mechanisms underlying GBS pathogenesis are not fully elucidated. Recent studies have focused on postinfectious molecular mimicry and identified involvement of IgG autoantibodies and innate immune effectors in GBS. Intravenous immunoglobulins (IVIg) and plasma exchange (PE) are two established evidence-based immunomodulatory treatments for GBS, but a significant proportion of GBS patients fails to respond adequately to either therapy. This emphasizes an urgent need for novel and more potent treatments. AREAS COVERED: We discuss novel immunomodulatory therapies presently at different phases of preclinical and clinical investigation. Some drugs in development target pathophysiologic mechanisms such as IgG autoantibody catabolism and complement activation, which are relevant to GBS. EXPERT OPINION: There is an unmet need for more effective immune therapies for GBS. New immunomodulatory therapies under development may provide more potent options for GBS patients who do not respond to IVIg or PE. Future directions may include incorporating neuroprotective interventions based on evolving understanding of mechanisms underlying nerve injury and axonal degeneration.

19.
MAbs ; 16(1): 2384104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39083118

RESUMO

In vitro assessments for the prediction of pharmacokinetic (PK) behavior of biotherapeutics can help identify corresponding liabilities significantly earlier in the discovery timeline. This can minimize the need for extensive early in vivo PK characterization, thereby reducing animal usage and optimizing resources. In this study, we recommend bolstering classical developability workflows with in vitro measures correlated with PK. In agreement with current literature, in vitro measures assessing nonspecific interactions, self-interaction, and FcRn interaction are demonstrated to have the highest correlations to clearance in hFcRn Tg32 mice. Crucially, the dataset used in this study has broad sequence diversity and a range of physicochemical properties, adding robustness to our recommendations. Finally, we demonstrate a computational approach that combines multiple in vitro measurements with a multivariate regression model to improve the correlation to PK compared to any individual assessment. Our work demonstrates that a judicious choice of high throughput in vitro measurements and computational predictions enables the prioritization of candidate molecules with desired PK properties.


Assuntos
Fluxo de Trabalho , Animais , Camundongos , Humanos , Anticorpos Monoclonais/farmacocinética , Receptores Fc/metabolismo , Camundongos Transgênicos , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo
20.
J Biol Chem ; 300(8): 107558, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002669

RESUMO

α1,6-Fucosyltransferase (Fut8) is the enzyme responsible for catalyzing core fucosylation. Exogenous L-fucose upregulates fucosylation levels through the GDP-fucose salvage pathway. This study investigated the relationship between core fucosylation and immunoglobulin G (IgG) amounts in serum utilizing WT (Fut8+/+), Fut8 heterozygous knockout (Fut8+/-), and Fut8 knockout (Fut8-/-) mice. The IgG levels in serum were lower in Fut8+/- and Fut8-/- mice compared with Fut8+/+ mice. Exogenous L-fucose increased IgG levels in Fut8+/- mice, while the ratios of core fucosylated IgG versus total IgG showed no significant difference among Fut8+/+, Fut8+/-, and Fut8+/- mice treated with L-fucose. These ratios were determined by Western blot, lectin blot, and mass spectrometry analysis. Real-time PCR results demonstrated that mRNA levels of IgG Fc and neonatal Fc receptor, responsible for protecting IgG turnover, were similar among Fut8+/+, Fut8+/-, and Fut8+/- mice treated with L-fucose. In contrast, the expression levels of Fc-gamma receptor Ⅳ (FcγRⅣ), mainly expressed on macrophages and neutrophils, were increased in Fut8+/- mice compared to Fut8+/+ mice. The effect was reversed by administrating L-fucose, suggesting that core fucosylation primarily regulates the IgG levels through the Fc-FcγRⅣ degradation pathway. Consistently, IgG internalization and transcytosis were suppressed in FcγRⅣ-knockout cells while enhanced in Fut8-knockout cells. Furthermore, we assessed the expression levels of specific antibodies against ovalbumin and found they were downregulated in Fut8+/- mice, with potential recovery observed with L-fucose administration. These findings confirm that core fucosylation plays a vital role in regulating IgG levels in serum, which may provide insights into a novel mechanism in adaptive immune regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA