Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Ann Hum Genet ; 88(1): 58-75, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37905714

RESUMO

Autosomal recessive polycystic kidney disease is an early onset inherited hepatorenal disorder affecting around 1 in 20,000 births with no approved specific therapies. The disease is almost always caused by variations in the polycystic kidney and hepatic disease 1 gene, which encodes fibrocystin (FC), a very large, single-pass transmembrane glycoprotein found in primary cilia, urine and urinary exosomes. By comparison to proteins involved in autosomal dominant PKD, our structural and molecular understanding of FC has lagged far behind such that there are no published experimentally determined structures of any part of the protein. Bioinformatics analyses predict that the ectodomain contains a long chain of immunoglobulin-like plexin-transcription factor domains, a protective antigen 14 domain, a tandem G8-TMEM2 homology region and a sperm protein, enterokinase and agrin domain. Here we review current knowledge on the molecular function of the protein from a structural perspective.


Assuntos
Rim Policístico Autossômico Recessivo , Receptores de Superfície Celular , Humanos , Rim Policístico Autossômico Recessivo/genética , Rim Policístico Autossômico Recessivo/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , RNA , Fatores de Transcrição/química , Proteínas do Espermatozoide/química , Conformação Proteica
2.
Adv Kidney Dis Health ; 30(5): 468-476, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-38097335

RESUMO

Autosomal recessive polycystic kidney disease (ARPKD) is the rare and usually early-onset form of polycystic kidney disease with a typical clinical presentation of enlarged cystic kidneys and liver involvement with congenital hepatic fibrosis or Caroli syndrome. ARPKD remains a clinical challenge in pediatrics, frequently requiring continuous and long-term multidisciplinary treatment. In this review, we aim to give an overview over clinical aspects of ARPKD and recent developments in our understanding of disease progression, risk patterns, and treatment of ARPKD.


Assuntos
Doença de Caroli , Rim Policístico Autossômico Recessivo , Criança , Humanos , Rim Policístico Autossômico Recessivo/diagnóstico , Receptores de Superfície Celular , Prognóstico , Cirrose Hepática/diagnóstico , Doença de Caroli/diagnóstico
4.
J Vasc Res ; 60(3): 125-136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37536302

RESUMO

Polycystic kidney disease (PKD) is one of the most common hereditary kidney diseases, which is characterized by progressive cyst growth and secondary hypertension. In addition to cystogenesis and renal abnormalities, patients with PKD can develop vascular abnormalities and cardiovascular complications. Progressive cyst growth substantially alters renal structure and culminates into end-stage renal disease. There remains no cure beyond renal transplantation, and treatment options remain largely limited to chronic renal replacement therapy. In addition to end-stage renal disease, patients with PKD also present with hypertension and cardiovascular disease, yet the timing and interactions between the cardiovascular and renal effects of PKD progression are understudied. Here, we review the vascular dysfunction found in clinical and preclinical models of PKD, including the clinical manifestations and relationship to hypertension, stroke, and related cardiovascular diseases. Finally, our discussion also highlights the critical questions and emerging areas in vascular research in PKD.


Assuntos
Hipertensão , Falência Renal Crônica , Doenças Renais Policísticas , Acidente Vascular Cerebral , Humanos , Doenças Renais Policísticas/terapia , Rim
5.
Am J Physiol Gastrointest Liver Physiol ; 324(5): G404-G414, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36880660

RESUMO

Systemic and portal hypertension, liver fibrosis, and hepatomegaly are manifestations associated with autosomal recessive polycystic kidney disease (ARPKD), which is caused by malfunctions of fibrocystin/polyductin (FPC). The goal is to understand how liver pathology occurs and to devise therapeutic strategies to treat it. We injected 5-day-old Pkhd1del3-4/del3-4 mice for 1 mo with the cystic fibrosis transmembrane conductance regulator (CFTR) modulator VX-809 designed to rescue processing and trafficking of CFTR folding mutants. We used immunostaining and immunofluorescence techniques to evaluate liver pathology. We assessed protein expression via Western blotting. We detected abnormal biliary ducts consistent with ductal plate abnormalities, as well as a greatly increased proliferation of cholangiocytes in the Pkhd1del3-4/del3-4 mice. CFTR was present in the apical membrane of cholangiocytes and increased in the Pkhd1del3-4/del3-4 mice, consistent with a role for apically located CFTR in enlarged bile ducts. Interestingly, we also found CFTR in the primary cilium, in association with polycystin (PC2). Localization of CFTR and PC2 and overall length of the cilia were increased in the Pkhd1del3-4/del3-4 mice. In addition, several of the heat shock proteins; 27, 70, and 90 were upregulated, suggesting that global changes in protein processing and trafficking had occurred. We found that a deficit of FPC leads to bile duct abnormalities, enhanced cholangiocyte proliferation, and misregulation of heat shock proteins, which all returned toward wild type (WT) values following VX-809 treatment. These data suggest that CFTR correctors can be useful as therapeutics for ARPKD. Given that these drugs are already approved for use in humans, they can be fast-tracked for clinical use.NEW & NOTEWORTHY ARPKD is a multiorgan genetic disorder resulting in newborn morbidity and mortality. There is a critical need for new therapies to treat this disease. We show that persistent cholangiocytes proliferation occurs in a mouse model of ARPKD along with mislocalized CFTR and misregulated heat shock proteins. We found that VX-809, a CFTR modulator, inhibits proliferation and limits bile duct malformation. The data provide a therapeutic pathway for strategies to treat ADPKD.


Assuntos
Rim Policístico Autossômico Recessivo , Humanos , Camundongos , Animais , Rim Policístico Autossômico Recessivo/tratamento farmacológico , Rim Policístico Autossômico Recessivo/genética , Rim Policístico Autossômico Recessivo/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Receptores de Superfície Celular/metabolismo , Cirrose Hepática/complicações , Proteínas de Choque Térmico/metabolismo
7.
Kidney Int Rep ; 7(7): 1643-1652, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35812281

RESUMO

Introduction: Autosomal recessive polycystic kidney disease (ARPKD) is a rare monogenic disorder characterized by early onset fibrocystic hepatorenal changes. Previous reports have documented pronounced phenotypic variability even among siblings in terms of patient survival. The underlying causes for this clinical variability are incompletely understood. Methods: We present the longitudinal clinical courses of 35 sibling pairs included in the ARPKD registry study ARegPKD, encompassing data on primary manifestation, prenatal and perinatal findings, genetic testing, and family history, including kidney function, liver involvement, and radiological findings. Results: We identified 70 siblings from 35 families with a median age of 0.7 (interquartile range 0.1-6.0) years at initial diagnosis and a median follow-up time of 3.5 (0.2-6.2) years. Data on PKHD1 variants were available for 37 patients from 21 families. There were 8 patients from 7 families who required kidney replacement therapy (KRT) during follow-up. For 44 patients from 26 families, antihypertensive therapy was documented. Furthermore, 37 patients from 24 families had signs of portal hypertension with 9 patients from 6 families having substantial hepatic complications. Interestingly, pronounced variability in the clinical course of functional kidney disease was documented in only 3 sibling pairs. In 17 of 20 families of our cohort of neonatal survivors, siblings had only minor differences of kidney function at a comparable age. Conclusion: In patients surviving the neonatal period, our longitudinal follow-up of 70 ARPKD siblings from 35 families revealed comparable clinical courses of kidney and liver diseases in most families. The data suggest a strong impact of the underlying genotype.

8.
FASEB J ; 36(6): e22364, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35593740

RESUMO

Congenital hepatic fibrosis (CHF), a genetic cholangiopathy characterized by fibropolycystic changes in the biliary tree, is caused by mutations in the PKHD1 gene, leading to defective fibrocystin (FPC), changes in planar cell polarity (PCP) and increased ß-catenin-dependent chemokine secretion. In this study, we aimed at understanding the role of Scribble (a protein involved in PCP), Yes-associated protein (YAP), and ß-catenin in the regulation of the fibroinflammatory phenotype of FPC-defective cholangiocytes. Immunohistochemistry showed that compared with wild type (WT) mice, in FPC-defective (Pkhd1del4/del4 ) mice nuclear expression of YAP/TAZ in cystic cholangiocytes, significantly increased and correlated with connective tissue growth factor (CTGF) expression and pericystic fibrosis, while Scribble expression on biliary cyst cells was markedly decreased. Cholangiocytes isolated from WT mice showed intense Scribble immunoreactivity at the membrane, but minimal nuclear expression of YAP, which conversely increased, together with CTGF, after small interfering RNA (siRNA) silencing of Scribble. In FPC-defective cholangiocytes, inhibition of YAP nuclear import reduced ß-catenin nuclear expression, and CTGF, integrin ß6, CXCL1, and CXCL10 mRNA levels, whereas inhibition of ß-catenin signaling did not affect nuclear translocation of YAP. Notably, siRNA silencing of Scribble and YAP in WT cholangiocytes mimics the fibroinflammatory changes of FPC-defective cholangiocytes. Conditional deletion of ß-catenin in Pkhd1del4/del4  mice reduced cyst growth, inflammation and fibrosis, without affecting YAP nuclear expression. In conclusion, the defective anchor of Scribble to the membrane facilitates the nuclear translocation of YAP and ß-catenin with gain of a fibroinflammatory phenotype. The Scribble/YAP/ß-catenin axis is a critical factor in the sequence of events linking the genetic defect to fibrocystic trait of cholangiocytes in CHF.


Assuntos
Cistos , beta Catenina , Animais , Modelos Animais de Doenças , Doenças Genéticas Inatas , Peptídeos e Proteínas de Sinalização Intracelular , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Camundongos , RNA Interferente Pequeno , Receptores de Superfície Celular , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
9.
Biochim Biophys Acta Mol Basis Dis ; 1868(4): 166348, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35032595

RESUMO

ARPKD is a genetically inherited kidney disease that manifests by bilateral enlargement of cystic kidneys and liver fibrosis. It shows a range of severity, with 30% of individuals dying early on and the majority having good prognosis if they survive the first year of life. The reasons for this variability remain unclear. Two genes have been shown to cause ARPKD when mutated, PKHD1, mutations in which lead to most of ARPKD cases and DZIP1L, which is associated with moderate ARPKD. This mini review will explore the genetics of ARPKD and discuss potential genetic modifiers and phenocopies that could affect diagnosis.


Assuntos
Rim Policístico Autossômico Recessivo/patologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Humanos , Rim Policístico Autossômico Recessivo/genética , Polimorfismo Genético , Prognóstico , Receptores de Superfície Celular/genética , Transdução de Sinais/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
11.
Biochem Soc Trans ; 49(3): 1171-1188, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34156429

RESUMO

Polycystic Kidney Disease (PKD) refers to a group of disorders, driven by the formation of cysts in renal tubular cells and is currently one of the leading causes of end-stage renal disease. The range of symptoms observed in PKD is due to mutations in cilia-localising genes, resulting in changes in cellular signalling. As such, compounds that are currently in preclinical and clinical trials target some of these signalling pathways that are dysregulated in PKD. In this review, we highlight these pathways including cAMP, EGF and AMPK signalling and drugs that target them and may show promise in lessening the disease burden of PKD patients. At present, tolvaptan is the only approved therapy for ADPKD, however, it carries several adverse side effects whilst comparatively, no pharmacological drug is approved for ARPKD treatment. Aside from this, drugs that have been the subject of multiple clinical trials such as metformin, which targets AMPK signalling and somatostatins, which target cAMP signalling have shown great promise in reducing cyst formation and cellular proliferation. This review also discusses other potential and novel targets that can be used for future interventions, such as ß-catenin and TAZ, where research has shown that a reduction in the overexpression of these signalling components results in amelioration of disease phenotype. Thus, it becomes apparent that well-designed preclinical investigations and future clinical trials into these pathways and other potential signalling targets are crucial in bettering disease prognosis for PKD patients and could lead to personalised therapy approaches.


Assuntos
Predisposição Genética para Doença/genética , Rim/metabolismo , Mutação , Doenças Renais Policísticas/genética , Rim Policístico Autossômico Dominante/genética , Transdução de Sinais/genética , Animais , Antagonistas dos Receptores de Hormônios Antidiuréticos/uso terapêutico , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Doenças Renais Policísticas/tratamento farmacológico , Doenças Renais Policísticas/metabolismo , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Tolvaptan/uso terapêutico
12.
Kidney Int ; 100(3): 650-659, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33940108

RESUMO

Autosomal recessive polycystic kidney disease (ARPKD) is a severe disease of early childhood that is clinically characterized by fibrocystic changes of the kidneys and the liver. The main cause of ARPKD are variants in the PKHD1 gene encoding the large transmembrane protein fibrocystin. The mechanisms underlying the observed clinical heterogeneity in ARPKD remain incompletely understood, partly due to the fact that genotype-phenotype correlations have been limited to the association of biallelic null variants in PKHD1 with the most severe phenotypes. In this observational study we analyzed a deep clinical dataset of 304 patients with ARPKD from two independent cohorts and identified novel genotype-phenotype correlations during childhood and adolescence. Biallelic null variants frequently show severe courses. Additionally, our data suggest that the affected region in PKHD1 is important in determining the phenotype. Patients with two missense variants affecting amino acids 709-1837 of fibrocystin or a missense variant in this region and a null variant less frequently developed chronic kidney failure, and patients with missense variants affecting amino acids 1838-2624 showed better hepatic outcome. Variants affecting amino acids 2625-4074 of fibrocystin were associated with poorer hepatic outcome. Thus, our data expand the understanding of genotype-phenotype correlations in pediatric ARPKD patients and can lay the foundation for more precise and personalized counselling and treatment approaches.


Assuntos
Rim Policístico Autossômico Recessivo , Criança , Pré-Escolar , Estudos de Associação Genética , Humanos , Rim , Mutação , Fenótipo , Rim Policístico Autossômico Recessivo/diagnóstico , Rim Policístico Autossômico Recessivo/genética , Receptores de Superfície Celular/genética
13.
Pediatr Nephrol ; 36(11): 3561-3570, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33594464

RESUMO

Autosomal recessive polycystic kidney disease (ARPKD) is a rare but highly relevant disorder in pediatric nephrology. This genetic disease is mainly caused by variants in the PKHD1 gene and is characterized by fibrocystic hepatorenal phenotypes with major clinical variability. ARPKD frequently presents perinatally, and the management of perinatal and early disease symptoms may be challenging. This review discusses aspects of early manifestations in ARPKD and its clincial management with a special focus on kidney disease.


Assuntos
Rim Policístico Autossômico Recessivo , Criança , Humanos , Rim Policístico Autossômico Recessivo/genética , Rim Policístico Autossômico Recessivo/terapia
14.
Semin Cell Dev Biol ; 110: 139-148, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32475690

RESUMO

Polycystic kidney disease (PKD), comprising autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD), is characterized by incessant cyst formation in the kidney and liver. ADPKD and ARPKD represent the leading genetic causes of renal disease in adults and children, respectively. ADPKD is caused by mutations in PKD1 encoding polycystin1 (PC1) and PKD2 encoding polycystin 2 (PC2). PC1/2 are multi-pass transmembrane proteins that form a complex localized in the primary cilium. Predominant ARPKD cases are caused by mutations in polycystic kidney and hepatic disease 1 (PKHD1) gene that encodes the Fibrocystin/Polyductin (FPC) protein, whereas a small subset of cases are caused by mutations in DAZ interacting zinc finger protein 1 like (DZIP1L) gene. FPC is a type I transmembrane protein, localizing to the cilium and basal body, in addition to other compartments, and DZIP1L encodes a transition zone/basal body protein. Apparently, PC1/2 and FPC are signaling molecules, while the mechanism that cilia employ to govern renal tubule morphology and prevent cyst formation is unclear. Nonetheless, recent genetic and biochemical studies offer a glimpse of putative physiological malfunctions and the pathomechanisms underlying both disease entities. In this review, I summarize the results of genetic studies that deduced the function of PC1/2 on cilia and of cilia themselves in cyst formation in ADPKD, and I discuss studies regarding regulation of polycystin biogenesis and cilia trafficking. I also summarize the synergistic genetic interactions between Pkd1 and Pkhd1, and the unique tissue patterning event controlled by FPC, but not PC1. Interestingly, while DZIP1L mutations generate compromised PC1/2 cilia expression, FPC deficiency does not affect PC1/2 biogenesis and ciliary localization, indicating that divergent mechanisms could lead to cyst formation in ARPKD. I conclude by outlining promising areas for future PKD research and highlight rationales for potential therapeutic interventions for PKD treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Cílios/metabolismo , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Recessivo/genética , Receptores de Superfície Celular/genética , Canais de Cátion TRPP/genética , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Adulto , Corpos Basais/efeitos dos fármacos , Corpos Basais/metabolismo , Corpos Basais/patologia , Criança , Cílios/efeitos dos fármacos , Cílios/patologia , Medicamentos de Ervas Chinesas/farmacologia , Flavonoides/farmacologia , Expressão Gênica , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Mutação , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/patologia , Rim Policístico Autossômico Recessivo/tratamento farmacológico , Rim Policístico Autossômico Recessivo/metabolismo , Rim Policístico Autossômico Recessivo/patologia , Receptores de Superfície Celular/deficiência , Transdução de Sinais , Canais de Cátion TRPP/deficiência
15.
Am J Kidney Dis ; 77(3): 410-419, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33039432

RESUMO

Primary cilia are specialized sensory organelles that protrude from the apical surface of most cell types. During the past 2 decades, they have been found to play important roles in tissue development and signal transduction, with mutations in ciliary-associated proteins resulting in a group of diseases collectively known as ciliopathies. Many of these mutations manifest as renal ciliopathies, characterized by kidney dysfunction resulting from aberrant cilia or ciliary functions. This group of overlapping and genetically heterogeneous diseases includes polycystic kidney disease, nephronophthisis, and Bardet-Biedl syndrome as the main focus of this review. Renal ciliopathies are characterized by the presence of kidney cysts that develop due to uncontrolled epithelial cell proliferation, growth, and polarity, downstream of dysregulated ciliary-dependent signaling. Due to cystic-associated kidney injury and systemic inflammation, cases result in kidney failure requiring dialysis and transplantation. Of the handful of pharmacologic treatments available, none are curative. It is important to determine the molecular mechanisms that underlie the involvement of the primary cilium in cyst initiation, expansion, and progression for the development of novel and efficacious treatments. This review updates research progress in defining key genes and molecules central to ciliogenesis and renal ciliopathies.


Assuntos
Síndrome de Bardet-Biedl/genética , Cílios/metabolismo , Ciliopatias/genética , Doenças Renais Policísticas/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/fisiopatologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Síndrome de Bardet-Biedl/metabolismo , Síndrome de Bardet-Biedl/fisiopatologia , Cerebelo/anormalidades , Cerebelo/metabolismo , Cerebelo/fisiopatologia , Chaperoninas/genética , Cílios/fisiologia , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/metabolismo , Transtornos da Motilidade Ciliar/fisiopatologia , Ciliopatias/metabolismo , Ciliopatias/fisiopatologia , Proteínas do Citoesqueleto/genética , Encefalocele/genética , Encefalocele/metabolismo , Encefalocele/fisiopatologia , Anormalidades do Olho/genética , Anormalidades do Olho/metabolismo , Anormalidades do Olho/fisiopatologia , Humanos , Doenças Renais Císticas/genética , Doenças Renais Císticas/metabolismo , Doenças Renais Císticas/fisiopatologia , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/metabolismo , Amaurose Congênita de Leber/fisiopatologia , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Atrofias Ópticas Hereditárias/genética , Atrofias Ópticas Hereditárias/metabolismo , Atrofias Ópticas Hereditárias/fisiopatologia , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/fisiopatologia , Proteínas/genética , Retina/anormalidades , Retina/metabolismo , Retina/fisiopatologia , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Retinose Pigmentar/fisiopatologia , Canais de Cátion TRPP/genética
16.
Diagnostics (Basel) ; 10(12)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339422

RESUMO

Ciliopathies are a group of multi-organ diseases caused by the disruption of the primary cilium. This event leads to a variety of kidney disorders, including nephronophthisis, renal cystic dysplasia, and renal cell carcinoma (RCC). Primary cilium contributes to the regulation of the cell cycle and protein homeostasis, that is, the balance between protein synthesis and degradation by acting on the ubiquitin-proteasome system, autophagy, and mTOR signaling. Many proteins are involved in renal ciliopathies. In particular, fibrocystin (PKHD1) is involved in autosomal recessive polycystic kidney disease (ARPKD), while polycystin-1 (PKD1) and polycystin-2 (PKD2) are implicated in autosomal dominant polycystic kidney disease (ADPKD). Moreover, primary cilia are associated with essential signaling pathways, such as Hedgehog, Wnt, and Platelet-Derived Growth Factor (PDGF). In this review, we focused on the ciliopathies associated with kidney diseases, exploring genes and signaling pathways associated with primary cilium and the potential role of cilia as therapeutic targets in renal disorders.

17.
Int J Mol Sci ; 21(17)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847032

RESUMO

Autosomal recessive and autosomal dominant polycystic kidney disease (ARPKD, ADPKD) are systemic disorders with pronounced hepatorenal phenotypes. While the main underlying genetic causes of both ARPKD and ADPKD have been well-known for years, the exact molecular mechanisms resulting in the observed clinical phenotypes in the different organs, remain incompletely understood. Recent research has identified cellular metabolic changes in PKD. These findings are of major relevance as there may be an immediate translation into clinical trials and potentially clinical practice. Here, we review important results in the field regarding metabolic changes in PKD and their modulation as a potential target of systemic treatment.


Assuntos
Terapia de Alvo Molecular/tendências , Doenças Renais Policísticas/tratamento farmacológico , Doenças Renais Policísticas/metabolismo , Humanos , Metaboloma/fisiologia , Terapia de Alvo Molecular/métodos , Doenças Renais Policísticas/genética , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Recessivo/tratamento farmacológico , Rim Policístico Autossômico Recessivo/genética , Rim Policístico Autossômico Recessivo/metabolismo
18.
Int J Mol Sci ; 21(14)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698519

RESUMO

Mutations of the Pkhd1 gene cause autosomal recessive polycystic kidney disease (ARPKD). Pkhd1 encodes fibrocystin/polyductin (FPC), a ciliary type I membrane protein of largely unknown function, suggested to affect adhesion signaling of cells. Contributions of epithelial cell adhesion and contractility to the disease process are elusive. Here, we link loss of FPC to defective epithelial morphogenesis in 3D cell culture and altered cell contact formation. We study Pkhd1-silenced Madin-Darby Canine Kidney II (MDCKII) cells using an epithelial morphogenesis assay based on micropatterned glass coverslips. The assay allows analysis of cell adhesion, polarity and lumen formation of epithelial spheroids. Pkhd1 silencing critically affects the initial phase of the morphogenesis assay, leading to a reduction of correctly polarized spheroids by two thirds. Defects are characterized by altered cell adhesion and centrosome positioning of FPC-deficient cells in their 1-/2-cell stages. When myosin II inhibitor is applied to reduce cellular tension during the critical early phase of the assay, Pkhd1 silencing no longer inhibits formation of correctly polarized epithelia. We propose that altered sensing and cell interaction of FPC-deficient epithelial cells promote progressive epithelial defects in ARPKD.


Assuntos
Células Epiteliais/citologia , Receptores de Superfície Celular/genética , Animais , Adesão Celular , Cães , Células Epiteliais/metabolismo , Humanos , Células Madin Darby de Rim Canino , Rim Policístico Autossômico Recessivo/genética , Interferência de RNA
19.
J Hepatol ; 71(1): 143-152, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30898581

RESUMO

BACKGROUND & AIMS: Congenital hepatic fibrosis (CHF) is a genetic liver disease resulting in abnormal proliferation of cholangiocytes and progressive hepatic fibrosis. CHF is caused by mutations in the PKHD1 gene and the subsequent dysfunction of the protein it encodes, fibrocystin. However, the underlying molecular mechanism of CHF, which is quite different from liver cirrhosis, remains unclear. This study investigated the molecular mechanism of CHF pathophysiology using a genetically engineered human induced pluripotent stem (iPS) cell model to aid the discovery of novel therapeutic agents for CHF. METHODS: PKHD1-knockout (PKHD1-KO) and heterozygously mutated PKHD1 iPS clones were established by RNA-guided genome editing using the CRISPR/Cas9 system. The iPS clones were differentiated into cholangiocyte-like cells in cysts (cholangiocytic cysts [CCs]) in a 3D-culture system. RESULTS: The CCs were composed of a monolayer of cholangiocyte-like cells. The proliferation of PKHD1-KO CCs was significantly increased by interleukin-8 (IL-8) secreted in an autocrine manner. IL-8 production was significantly elevated in PKHD1-KO CCs due to mitogen-activated protein kinase pathway activation caused by fibrocystin deficiency. The production of connective tissue growth factor (CTGF) was also increased in PKHD1-KO CCs in an IL-8-dependent manner. Furthermore, validation analysis demonstrated that both the serum IL-8 level and the expression of IL-8 and CTGF in the liver samples were significantly increased in patients with CHF, consistent with our in vitro human iPS-disease model of CHF. CONCLUSIONS: Loss of fibrocystin function promotes IL-8-dependent proliferation of, and CTGF production by, human cholangiocytes, suggesting that IL-8 and CTGF are essential for the pathogenesis of CHF. IL-8 and CTGF are candidate molecular targets for the treatment of CHF. LAY SUMMARY: Congenital hepatic fibrosis (CHF) is a genetic liver disease caused by mutations of the PKHD1 gene. Dysfunction of the protein it encodes, fibrocystin, is closely associated with CHF pathogenesis. Using an in vitro human induced pluripotent stem cell model and patient samples, we showed that the loss of fibrocystin function promotes proliferation of cholangiocytes and the production of connective tissue growth factor (CTGF) in an interleukin 8 (IL-8)-dependent manner. These results suggest that IL-8 and CTGF are essential for the pathogenesis of CHF.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/metabolismo , Células Epiteliais/metabolismo , Doenças Genéticas Inatas/metabolismo , Cirrose Hepática/metabolismo , Ductos Biliares/patologia , Proliferação de Células , Edição de Genes/métodos , Humanos , Células-Tronco Pluripotentes Induzidas , Interleucina-8/metabolismo , Mutagênese Sítio-Dirigida/métodos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
20.
Ter Arkh ; 91(6): 116-123, 2019 Jun 15.
Artigo em Russo | MEDLINE | ID: mdl-36471606

RESUMO

Polycystic kidney disease (PKD) is a genetically determined pathological process associated with the formation and growth of cysts originating from the epithelial cells of the tubules and/or collecting tubes. PBP is represented by two main types - autosomal dominant (ADPKD) and autosomal recessive PKD (ARPKD), which are different diseases. The main causes of ADPKD are mutations of the PKD1 and PKD2 genes, which encode the formation of polycystin-1 and polycystin-2 proteins. ARPKD-linked mutation in the gene PKHD1, leads to total absence or defective synthesis of receptor protein primary cilia - fibrocystin. There are relationships between the structural and functional defects in the primary cilia and PBP. Mechanisms of cysts formation and growth include a) mutations of polycystines genes located on the cilia; b) increased activity of renal intracellular cAMP; c) vasopressin V2 receptors activation; d) violation of the tubular epithelium polarity (translocation of Na,K-ATPasa from basolateral to apical membrane); e) increased mTOR activity in epithelial cells lining renal cyst. The most promising directions of ADPKD therapy are blockade of vasopressin V2 receptors activation, inhibition of mTOR signaling pathways and reduction of intracellular cAMP level. The review presents clinical studies that assessed the effectiveness of named drugs in ADPKD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA