Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Small ; : e2405847, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248682

RESUMO

Microneedles are demonstrated as an effective strategy for chronic wound treatment. Great endeavors are devoted to developing microneedles with natural compositions and potent functions to promote therapeutic effects for wound healing. Herein, a novel graphene oxide-integrated methacrylated fish gelatin (GO-FGelMA) microneedle patch encapsulated with bacitracin and vascular endothelial growth factor (VEGF) is developed for chronic wound management. As the natural components and porous structures of FGelMA, the fabricated microneedle patches display satisfactory biocompatibility and drug-loading ability. Owing to the integration of graphene oxide, the microneedle patches can realize promoted drug release via near-infrared (NIR) irradiation. Besides, the encapsulated bacitracin and VEGF endow the microneedle patches with the ability to inhibit bacterial growth and promote angiogenesis. It is demonstrated that the GO-FGelMA microneedle patches with efficient drug release exert a positive influence on the wound healing process through reduced inflammation, enhanced wound closure, and improved tissue regeneration. Thus, it is believed that the proposed drugs-loaded GO-FGelMA microneedle patches will hold great potential in future chronic wound treatment.

2.
Gels ; 10(9)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39330159

RESUMO

The application of fish gelatin (FG) is limited due to its poor mechanical properties and thermal stability, both of which could be significantly improved by gellan gum (GG) found in previous research. However, the FG/GG composite hydrogel was brittle and easily damaged by external forces. It was found that the composite hydrogel with Fe2(SO4)3 showed good flexibility and self-healing properties in the pre-experiment. Thus, the synergistic effect of FG, GG and Fe2(SO4)3 on the mechanical properties of the composite hydrogel was investigated in this study. According to one-way experiments, response surface tests and Texture Profile Analysis, it was found that under the optimum condition of FG concentration 186.443 g/L, GG concentration 8.666 g/L and Fe2(SO4)3 concentration 56.503 g/L, the springiness of the composite cylindrical hydrogel with the height of 25 mm formed in 25 mL beakers (bottom diameter 30 mm) was 7.602 mm. Determination of the rheological properties, compression performance, adhesive performance and self-healing properties showed that the composite hydrogel had good thermal stability, flexibility and self-healing properties with good adhesion, skin compliance and compressive strength, and it was easy to remove. The composite hydrogel showed strong antimicrobial activity against A. salmonicida and V. parahaemolyticus. All hydrogels showed a uniform and porous structure. The 3D structure of the composite hydrogel was much looser and more porous than the pure FG hydrogel. The flexible and self-healing composite hydrogel with some antimicrobial activity is suitable for the development of medical dressings, which broadens the applications of the composite hydrogel.

3.
Food Chem ; 460(Pt 1): 140567, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39059327

RESUMO

Herein, the complex coacervation of low methoxy pectin (LMP) with three types of gelatins was explored to encapsulate fish oil. The fish oil@gelatin-LMP complex coacervates with good precipitation separation could be obtained at low gelatin concentrations (Fish gelatin, FG: 10-80 mg/mL; porcine skin gelatin, PSG: 10-40 mg/mL; bovine skin gelatin, BSG: 10-80 mg/mL), high gelatin: fish oil mass ratios (4:1-1:1), appropriate gelatin: LMP mass ratios (3:1-12:1 for FG and PSG, 6:1 for BSG), and appropriate pH (FG: 4.90-5.50; PSG: 4.80-5.40; BSG: 4.10-4.50). FG induced similar loading ability, lower encapsulation ability, and comparable peroxide values to the mammalian gelatins. FG induced higher or similar free fatty acid released percentages to mammalian gelatins in the in vitro gastrointestinal model at low gelatin concentrations (10-40 mg/mL). These results provided useful information to understand the protein-polysaccharide complex coacervation to encapsulate oil-based bioactive substances.


Assuntos
Óleos de Peixe , Gelatina , Pectinas , Pectinas/química , Gelatina/química , Animais , Óleos de Peixe/química , Suínos , Bovinos , Peixes , Composição de Medicamentos
4.
Regen Ther ; 26: 251-259, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38974324

RESUMO

Diabetes Mellitus (DM) disrupts the body's capability to control blood glucose statuses. Type 1 diabetes mellitus (T1DM) arises from inadequate insulin production and is treated with insulin replacement therapy. Stem cell therapy is a hopeful treatment for T1DM that involves using adult stem cells to generate insulin-producing cells (IPCs). Mesenchymal stem cells (MSCs) are particularly advantageous for generating IPCs. The islet cells require interactions with the extracellular matrix for survival, which is lacking in conventional 2D culture systems. Natural or synthetic polymers create a supportive 3D microenvironment in tissue engineering. We aim to construct superior differentiation conditions employing polyethersulfone (PES)/Fish gelatin scaffolds to differentiate Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) to IPCs. In this study, the PES/fish gelatin scaffold (3D) was manufactured by electrospinning, and then its biocompatibility and non-toxicity were investigated by MTT assay. After that, scaffold-supportive effects on WJ-MSCs differentiation to IPCs were studied at the gene and protein levels. After exposure to the differentiation media, 2D and 3D (PES/Fish gelatin) cultured cells were slowly aggregated and developed spherical-shaped clusters. The viability of cells was found to be comparable in both 2D and 3D cultures. The gene expression analysis showed that efficiency of differentiation was more elevated in 3D culture. Additionally, ELISA results indicated that C-peptide and insulin release were more significant in 3D than in 2D culture. In conclusion, the PES/fish gelatin scaffold is highly promising for pancreatic tissue engineering because it supports the viability, growth, and differentiation of WJ-MSCs into IPCs.

5.
Int J Biol Macromol ; 271(Pt 1): 132569, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38797303

RESUMO

Food packaging based on natural polymers from polysaccharides and proteins can be an alternative to replace conventional plastics. In the present study, semi-refined iota carrageenan (SRIC) and fish gelatin (FG) were used as polymer matrix film with different concentration ratios (0.5:1.5 %, 1.0:1.0 % and 1.5:0.5 % w/w) and SiO2-ZnO nanoparticles were incorporated as fillers with the same concentration in all formulas (0.5:1.5 % w/w carrageenan-fish gelatin). This study aimed to develop films for food packaging applications with desirable physical, mechanical, optical, chemical, and microbiological properties. The results showed that incorporating SiO2-ZnO nanoparticles significantly (p < 0.05) improved the films' elongation at break, UV-screening properties, and antimicrobial activity. Also, the films' thickness, degradability, and transparency significantly (p < 0.05) increased with the higher concentration of fish gelatin addition in the SRIC matrix polymer. The best formula was obtained on the SRIC-FG film at the ratio of 1.5:0.5 % w/w, which performed excellent antimicrobial activity. Thus, semi-refined iota carrageenan/fish gelatin-based biocomposite film incorporated with SiO2-ZnO nanoparticles can be potentially developed as eco-friendly and intelligent food packaging materials to resolve traditional plastic-related issues and prevent food waste.


Assuntos
Carragenina , Embalagem de Alimentos , Gelatina , Nanopartículas , Dióxido de Silício , Óxido de Zinco , Carragenina/química , Gelatina/química , Óxido de Zinco/química , Dióxido de Silício/química , Nanopartículas/química , Embalagem de Alimentos/métodos , Animais , Peixes , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia
6.
J Sci Food Agric ; 104(12): 7429-7440, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38702916

RESUMO

BACKGROUND: The present study aimed to determine how various amounts (0.00, 0.58, 1.52 and 4.50 g 100 g-1) of wine lees (WL), which contains numerous essential components, impact the emulsifying properties of fish gelatin (FG) at a low concentration (0.5 g 100 g-1) in the high-fat phase (65 g 100 g-1). This study conducted rheology, physicochemical technical and characterization analyses on the emulsions to provide sustainable and innovative approaches for spreadable oils. RESULTS: The addition of WL to FG emulsions improved oxidative stability, emulsion stability and bioactive compounds. The zeta potential (-101 ± 5.62 mV) of 0.58 g 100 g-1 WL-containing emulsion (PE1) was found to be high, whereas particle size (347.6 ± 5.25 nm) and polydispersity index (0.50) were statistically low. It was also found that the addition of WL improved the intermolecular interactions, crystallinity and microstructural properties of the emulsions. All these results were supported by simulating the molecular configuration between FG and WL. The compounds gallic acid, caffeic acid, myricetin, quercetin and resveratrol showed a strong affinity to FG, with free binding energies of -5.50, -5.88, -6.53, -6.68 and -6.66 kcal mol-1, respectively. CONCLUSION: As a result, WL-supported FG has the potential to be used as an alternative to egg proteins to develop sustainable low-cost spreadable emulsions. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Emulsões , Gelatina , Simulação de Acoplamento Molecular , Tamanho da Partícula , Vinho , Gelatina/química , Emulsões/química , Vinho/análise , Animais , Peixes , Reologia
7.
Polymers (Basel) ; 16(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611154

RESUMO

Fish gelatin (FG)-based wound dressings exhibit superior water absorption capacity, thermal stability, and gelation properties, which enhance the performance of these dressings. In this study, our objective was to investigate the conditions underlying the enzymatic hydrolysis of FG and subsequent cross-linking to prepare high-performance gels. A two-step enzymatic method of protease-catalyzed hydrolysis followed by glutamine transglutaminase (TGase)-catalyzed cross-linking was used to prepare novel high-performance fish gelatin derivatives with more stable dispersion characteristics than those of natural gelatin derivatives. Compared with conventional TGase cross-linked derivatives, the novel derivatives were characterized by an average pore size of 150 µm and increased water solubility (423.06% to 915.55%), water retention (by 3.6-fold to 43.89%), thermal stability (from 313 °C to 323 °C), and water vapor transmission rate, which reached 486.72 g·m-2·24 h-1. In addition, loading glucose oxidase onto the fish gelatin derivatives increased their antibacterial efficacy to >99% against Escherichia coli and Staphylococcus aureus.

8.
J Dent Sci ; 19(2): 900-908, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38618111

RESUMO

Background/purpose: Porcine collagen is widely used in regenerative therapies to generate membranes for bone augmentation. However, porcine or bovine gelatin or collagen is often not appropriate for patients with creed and religious beliefs or for allergic reasons. In this study, we evaluated the potential of fish gelatin to generate membranes. Materials and methods: Fish gelatin and hydroxyapatite (HAp) were used at three different ratios (2:0, 2:1, 2:1.5, and 2:2) to prepare gelatin-hydroxyapatite (G-HAp) membranes via freeze-drying and heat-crosslinking. The surface morphology and cell attachment of G-HAp membranes were observed using scanning electron microscopy and confocal laser microscopy. G-HAp membrane was placed at the bottom of a well plate, and MC3T3-E1 cells were seeded on it. Cell viability and cytotoxicity were tested after 1 and 3 days of culture. Alkaline phosphatase (ALP) and alizarin red staining was performed at 10 and 21 days, respectively. Results: Viability of cells on G-HAp membrane with the gelatin:HAp ratio of 2:1.5 was significantly higher than that on membranes with other gelatin:HAp ratios. ALP and alizarin red staining showed that ALP-positive areas and calcium deposition were the highest on G-HAp membrane with the gelatin:HAp ratio of 2:1. These membranes showed negligible cytotoxicity. Conclusion: Fish-derived G-HAp membranes have the potential to promote osteogenic differentiation of MC3T3-E1 cells with negligible cytotoxicity.

9.
Front Nutr ; 11: 1343394, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571750

RESUMO

In this work, the effect of the addition of γ-polyglutamic acid (γ-PGA) on the rheology, physicochemical properties, and microstructure of fish gelatin (FG) emulsion gel was investigated. Samples of the emulsion gel were evaluated for rheological behavior and stability prior to gelation. The mechanical properties and water-holding capacity (WHC) of the emulsion were determined after gelation. The microstructure of the emulsion gel was further examined using confocal laser scanning microscopy (CLSM). The results indicated a gradual increase in the apparent viscosity and gelation temperature of the emulsion at a higher concentration of γ-PGA. Additionally, frequency scan results revealed that on the addition of γ-PGA, FG emulsion exhibited a stronger structure. The emulsion containing 0.1% γ-PGA exhibited higher stability than that of the control samples. The WHC and gel strength of the emulsion gel increased on increasing the γ-PGA concentration. CLSM images showed that the addition of γ-PGA modified the structure of the emulsion gel, and the droplets containing 0.1% γ-PGA were evenly distributed. Moreover, γ-PGA could regulate the droplet size of the FG emulsion and its size distribution. These findings suggest that the viscoelasticity and structure of FG emulsion gels could be regulated by adjusting the γ-PGA concentration. The γ-PGA-modified FG emulsion gel also exhibited improved rheology and physicochemical properties. The results showed that γ-PGA-modified FG emulsion gel may find potential applications in food, medicine, cosmetics, and other industries.

10.
Food Chem ; 449: 139214, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581790

RESUMO

This study investigated the effects of ultrasound-assisted phosphorylation on gelling properties of fish gelatin (FG). Ultrasound-assisted phosphorylation (UP) for 60, 90, and 120 min resulted in >6.54% increase of phosphorylation degree and decreased zeta potential of FG. Atomic force microscopy revealed that UP-FGs showed larger aggregates than P-FGs (normal phosphorylation FGs). Low frequent-NMR and microstructure analysis revealed that phosphorylation enhanced water-binding capability of FG and improved the gel networks. However, UP60 had the highest gel strength (340 g), gelling (17.96 °C) and melting (26.54 °C) temperature while UP90 and UP120 showed slightly lower of them. FTIR analysis indicated thatß-sheet and triple helix content increased but random coil content decreased in phosphorylated FGs. Mass spectrometry demonstrated phosphate groups mainly bound to serine, threonine and tyrosine residues of FG and UP-FG exhibited more phosphorylation sites. The study showed that mild phosphorylation (UP60) could be applied to improve FG gel properties.


Assuntos
Proteínas de Peixes , Peixes , Gelatina , Géis , Gelatina/química , Fosforilação , Animais , Géis/química , Proteínas de Peixes/química , Produtos Pesqueiros/análise , Reologia
11.
Food Res Int ; 182: 114176, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519189

RESUMO

In this work, the effects of Maillard reaction of different monosaccharide-modified fish gelatin were studied. The changes of gel properties, rheology and structure of fish gelatin before and after modification were compared and analyzed, and oil-in-woter emulsions were prepared. The results showed that the five-carbon monosaccharide had stronger modification ability than the six-carbon monosaccharide, which was mainly due to the different steric hindrance of the amino acids in the nuclear layer and the outer layer to the glycosylation reaction. With the progress of the Maillard reaction, the color of fish gelatin gradually became darker. The attachment of sugar chains inhibited the gelation process of fish gelatin, decreased the gelation rate, changed the secondary structure, increased the content of ß-turn or α-helix, increased the degree of fluorescence quenching, and enhanced the emulsifying properties and emulsion stability. This study provides useful information for the preparation of different types of monosaccharide-modified proteins and emulsions.


Assuntos
Gelatina , Monossacarídeos , Animais , Gelatina/química , Reação de Maillard , Emulsões/química , Carbono
12.
Heliyon ; 10(2): e24504, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38298630

RESUMO

Although fish gelatin has become a research hotspot in recent years, researchers and manufacturers are still looking for high-quality sources of fish galatin to meet the commercial demand for safer gelatin.became This study aimed to evaluate the impact of seasonal variation and farming systems on the properties of gelatin extracted from Nile tilapia scales. Gelatin extracted from farmed tilapia had lowest impurities, higher clarity as well as desirable color characteristics (L* = 65.95 and a* = -0.33). The protein and fat composition of Wild (91.00 ± 0.00c) and 1.94 ± 0.05a respectively were higher than farmed gelatin of protein (91.00 ± 0.00c) and fat (0.84 ± 0.08b) but gelatin from the farmed type were clearer (98.30 ± 0.28a) than wild type (94.60 ± 0.28b). In addition, the XRD analysis confirmed its amorphous structure (2θ = 11°, 21°. 29°, and 31°). The gelatin extracted from wild tilapia showed an average yield of 1.98 % and good physicochemical and functional properties. Furthermore, FTIR indicated a strong bond positioned in the amide I region (1650.88 cm-1) of the wild tilapia gelatin. Partial Least Square (PLS) confirmed that viscosity is positively correlated with melting temperature upon a unit change in gelatin yield. This work highlights the significance of farming systems and seasonal variation in extraction conditions and great parameter to comprehensively navigate the functional, biochemical, and physical properties of Nile tilapia gelatin for broadening both food and non-food industrial appliactions.

13.
Mater Today Bio ; 24: 100911, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38188649

RESUMO

Tumor recurrence and tissue regeneration are two major challenges in the postoperative treatment of cancer. Current research hotspots are focusing on developing novel scaffold materials that can simultaneously suppress tumor recurrence and promote tissue repair. Here, we propose a microfluidic 3D-printed methacrylate fish gelatin (F-GelMA@BBR) scaffold loaded with berberine (BBR) for the postoperative treatment of gastric cancer. The F-GelMA@BBR scaffold displayed a significant killing effect on gastric cancer MKN-45 cells in vitro and demonstrated excellent anti-recurrence efficiency in gastric cancer postoperative models. In vitro experiments have shown that F-GelMA@BBR exhibits significant cytotoxicity on gastric cancer cells while maintaining the cell viability of normal cells. The results of in vivo experiments show that F-GelMA@BBR can significantly suppress the tumor volume to 49.7 % of the control group. In addition, the scaffold has an ordered porous structure and good biocompatibility, which could support the attachment and proliferation of normal cells to promote tissue repair at the tumor resection site. These features indicated that such scaffold material is a promising candidate for postoperative tumor treatment in the practical application.

14.
Food Chem ; 439: 138152, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070232

RESUMO

Fish gelatin (FG) and octenyl succinic anhydride starch (OSAS) composite films loaded with 1, 2, 3 and 4 wt% bacterial nanocellulose (BNC) and Satureja Khuzestanica Jamzad essential oil (SKEO) were achieved successfully and their physicochemical and release properties were investigated. The results revealed that incorporation of BNC improved the tensile strength which was associated with FE-SEM, FTIR and XRD. Moreover, this study focused on the release modeling of SKEO in 4, 25 and 37 °C from nanocomposite films using different release kinetic and Arrhenius models. Also, analysis of variance-simultaneous component analysis (ASCA) and exploratory data visualization by principal component analysis (PCA) were carried out to investigate the effects of two controlled factors. Consequently, the Peleg model showed the best fitting of experimental data. The activation energies decreased by increasing the BNC concentration. This research demonstrated the nanocomposite film containing SKEO would be a suitable candidate for active food packaging.


Assuntos
Nanocompostos , Óleos Voláteis , Satureja , Animais , Óleos Voláteis/química , Amido/química , Satureja/química , Gelatina , Temperatura , Anidridos Succínicos
15.
Int J Biol Macromol ; 257(Pt 1): 128552, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061524

RESUMO

Foods and beverages with excessive tannins acid (TA) content taste astringent and bitter. The overconsumption of TA could result in nutritional and digestive problems. In this study, the cellulose nanocrystals (CNC)/fish swim bladder gelatin (FG) composite sponge was prepared with glutaraldehyde as a crosslinking agent. The TA adsorption performance of the sponge was discussed. The freeze-dried CNC/FG composite sponge had a porous network structure. CNC was combined into the FG matrix as a reinforcing phase. The mechanical strength, thermal stability, and swelling properties of the composite sponge were improved with the addition of an appropriate amount of CNC. Although CNC decreased the porosity of composite sponge, the increase in active adsorption sites resulted in an overall positive effect on its TA adsorption properties. Under the optimal adsorption conditions, the TA removal rate of 1.0 % CNC composites reached 80.4 %. Furthermore, the sponge retained a TA removal rate of 54 % after five cycles of adsorption and desorption using 50 % ethanol. The results demonstrated that CNC/FG composite sponge has application potential in the field of adsorption materials for TA.


Assuntos
Celulose , Gelatina , Polifenóis , Animais , Celulose/química , Gelatina/química , Adsorção , Bexiga Urinária
16.
Int J Biol Macromol ; 254(Pt 1): 127763, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37924901

RESUMO

Gastric cancer is the fifth most frequently diagnosed malignant neoplasm and the third leading cause of cancer-related mortality. Nevertheless, the therapeutic efficacy of conventional surgical and chemotherapeutic interventions in clinical practice is often unsatisfactory. Curcumin (Cur) has shown promise as a therapeutic agent in prior studies. However, its progress in this context has been impeded by challenges including low solubility, instability in aqueous environments, and rapid metabolism. In this study, we develop methacrylate fish gelatin (FGMA) hydrogel microparticles (FGMPs@Cur) encapsulating Cur via microfluidic electrospray technology for postoperative comprehensive treatment of gastric cancer. Comprehensive characterizations and analyses were conducted to assess the cytotoxicity against gastric cancer cells and potential tissue reparative effects of FGMPs@Cur. In vitro experiments revealed that FGMPs@Cur exhibited a remarkable cytotoxic effect on nearly 80 % of gastric cancer cells while maintaining at least 95 % viability of normal cells in cell compatibility tests. In vivo results demonstrated that FGMPs@Cur significantly reduced tumor volume to 47 % of the control group, and notable tissue regeneration was observed at the surgical site. These properties indicated that such a hydrogel microparticle system is a promising candidate for postoperative gastric cancer treatment in practical application.


Assuntos
Curcumina , Nanopartículas , Neoplasias Gástricas , Animais , Curcumina/farmacologia , Gelatina , Neoplasias Gástricas/tratamento farmacológico , Microfluídica , Hidrogéis , Linhagem Celular Tumoral
17.
Gels ; 9(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37998934

RESUMO

Chondroitin sulfate (ChS), chitosan (Chi), and fish gelatin (FG), which are byproducts of a fish-treatment small enterprise, were incorporated with glycerol (Gly) to obtain dense hydrogel membranes with reduced brittleness, candidates for dressing in wound healing applications. The mechanical properties of all samples were studied via Dynamic Mechanical Analysis (DMA) and tensile tests while their internal structure was characterized using Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) and X-ray Diffraction (XRD) instruments. Their surface morphology was analyzed by ThermoGravimetric Analysis (TGA) method, while their water permeability was estimated via Water Vapor Transmission Rate (WVTR) measurements. Wettability and degradation rate measurements were also carried out. Characterization results indicated that secondary interactions between the natural polymers and the plasticizer create the hydrogel membranes. The samples were amorphous due to the high concentration of plasticizer and the amorphous nature of the natural polymers. The integration of ChS led to decreased decomposition temperature in comparison with the glycerol-free sample, and all the materials had dense structures. Finally, the in vitro endothelial cell attachment studies indicate that the hydrogel membranes successfully support the attachment and survival of primary on the hydrogel membranes and could be appropriate for external application in wound healing applications as dressings.

18.
Gels ; 9(11)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37999008

RESUMO

The significant concerns associated with the widespread use of petroleum-based plastic materials have prompted substantial research on and development of active food packaging materials. Even though fish gelatin-based films are appealing as active food packaging materials, they present practical production challenges. Therefore, this study aimed to develop an edible film using Ficus carica L. leaf extract (FLE), as it is affordable, accessible, and has superoxide anion radical scavenging action. This edible film was produced by adding FLE to mackerel skin gelatin at varied concentrations (2.5-10% w/w). The results showed that adding FLE to gelatin films significantly affected the tensile strength (TS), elongation at break (EAB), transmittance and transparency, solubility, water vapor permeability (WVP), antioxidant activity, and antibacterial activity. Among all the samples, the most promising result was obtained for the edible film with FLE 10%, resulting in TS, EAB, solubility, WVP, antioxidant activity, and antibacterial activity against S. aureus and E. coli results of 2.74 MPa, 372.82%, 36.20%, 3.96 × 10-11 g/msPa, 45.49%, 27.27 mm, and 25.10 mm, respectively. The study's overall findings showed that fish gelatin-based films incorporated with FLE are promising eco-friendly, biodegradable, and sustainable active packaging materials.

19.
Foods ; 12(19)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37835334

RESUMO

Phosphorylated fish gelatin (PFG) exhibited preferable physical and chemical properties than fish gelatin (FG) in our previous study. To investigate the application values of PFG, the effects of different ratios (2:1, 1:1 and 1:2) of FG(PFG)/κ carrageenan (κC) on the quality of jelly gels (JGs) were investigated. The sensory quality of PFG:κC (1:2)/FG:κC (1:2) was found to be superior based on sensory evaluations, which was also verified with the results for texture, rheology, etc. Moreover, the structural changes in JGs were related to the introduction of phosphoric acid groups into the molecular chain of gelatin and the protein-polysaccharide interactions. According to the storage results, PFG jelly had better storage quality, higher hardness and chewiness values than those of FG jelly. High-throughput sequencing of JG microbial analysis showed that the addition of PFG changed the amount of microorganisms, microbial species abundance and the microbial composition of JGs, which were also closely related to the storage quality of JGs. In conclusion, the applications of PFG have promising potential to improve the quality of confectionery.

20.
ACS Appl Mater Interfaces ; 15(36): 42304-42316, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37647580

RESUMO

It remains challenging to fabricate highly stretchable and adhesive hydrogel dressings for wound healing using simple, safe, and green methods. Herein, inspired by the main components of snail mucus, a fully physical double-network (DN) hydrogel dressing composed of fish gelatin (FGel) and glycyrrhizic acid (GL) was fabricated, in which FGel provided a protein scaffold to mimic snail mucus proteins, while GL mimicked the adhesion and bioactivity of snail mucus because of its abundant carboxyl and hydroxyl groups and intrinsic immunomodulatory activity. As expected, the obtained FGel/GL hydrogel dressings exhibited outstanding mechanical and adhesive performances (flexibility, stretchability, adhesive ability, and removability), high transparency, and good antifreezing properties. More importantly, they also possessed excellent biocompatibility, cell migration, and angiogenesis ability in vitro experiments. Finally, animal experiments in vivo indicated that the FGel/GL hydrogel dressings significantly promoted full-thickness wound healing, including promoting granulation tissue formation, collagen deposition, and skin angiogenesis and inhibiting the inflammatory response. All these findings indicated that the FGel/GL hydrogel dressings have great potential for applications in the clinical treatment of wound healing.


Assuntos
Gelatina , Hidrogéis , Animais , Gelatina/farmacologia , Hidrogéis/farmacologia , Ácido Glicirrízico/farmacologia , Cicatrização , Bandagens , Peixes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA