Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicol Mech Methods ; 33(2): 123-130, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35822219

RESUMO

Drug-induced convulsions-often caused by the inhibition of GABA receptors and stimulation of glutamate receptors-are difficult to predict in animals. In this study, we attempted to detect the proconvulsant potential using motor-evoked potentials (MEPs) after focal electrical stimulation or upon using a functional observational battery (FOB). Pentylenetetrazole, kainic acid, and pilocarpine were used as convulsion-inducing drugs, and baclofen was used as a negative control. First, each compound was administered to male rats, and the FOB tests were performed. All drugs induced behavioral changes, but no commonality was found. Single electrical stimulation train MEPs were recorded under anesthesia for 60 min (at 5 min intervals) after administration of each drug. A dose-dependent increase in MEPs was observed for each convulsion-inducing drug. Moreover, paired electrical stimulation (conditioned and test) of the cerebral motor cortex was conducted with a 1-15 ms interstimulus interval (ISI), 10 min after administration of the drug. All convulsion-inducing drugs inhibited the short-interval intracortical inhibition (ISI: 3 ms), which may be associated with GABA. Intracortical facilitation (ISI: 11 ms), related to glutamate, was not enhanced by any drug but was inhibited by pilocarpine. Dose correlation was not found in short-interval intracortical inhibition or intracortical facilitation in any drugs. No changes in MEPs were observed after baclofen administration. These results suggest that it is possible to evaluate the convulsion potential and associated mechanisms using MEP, independent of the behavioral changes. The early identification of convulsion potential using this model will lead to more efficient drug development.


Assuntos
Baclofeno , Músculo Esquelético , Masculino , Ratos , Animais , Músculo Esquelético/fisiologia , Baclofeno/toxicidade , Pilocarpina , Estimulação Elétrica/métodos , Potencial Evocado Motor/fisiologia , Convulsões/induzido quimicamente
2.
Exp Neurol ; 320: 113012, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31301285

RESUMO

Transcranial focal electrical stimulation (TFS) via tripolar concentric ring electrodes (TCRE), tripolar TFS, is proposed to treat pharmacoresistant epilepsy. We determined the effect of tripolar TFS on electrical amygdaloid kindling (AK) in freely moving cats. Fifteen cats were bilaterally implanted with electrodes in the amygdala (AM) and prefrontal cortex and assigned to three groups: the control group, which only received AK; the tripolar TFS before AK group, in which TCREs were placed over the vertex and tripolar TFS (300 Hz, 200 µs biphasic equal charge, square pulses) was delivered for 40 min just prior to AK; and the tripolar TFS after AK group, in which the TCREs were placed over the temporal bone ipsilateral to the kindled AM, while tripolar TFS was administered for 2 min just after AK onset for 40 days, and, thereafter, only AK was applied. AK was applied daily until all animals reached kindling stage VI. A three concentric spheres finite element cat head model was developed to analyze the electric fields caused by tripolar TFS. Tripolar TFS after AK inhibited kindling development. Animals with tripolar TFS after AK remained at the focal seizure stages for 20 days after tripolar TFS cessation and required 80.0 ±â€¯15.42 AK stimulations to reach stage VI, significantly higher than TFS before AK, and control (P < .001). Tripolar TFS before AK did not show signs of protection against epileptogenesis. The finite modeling of tripolar TFS showed that the electric field is >0.3 mV/mm at depths less than approximately 12.6 mm in the cat brain, which should be strong enough to alter brain activity. In conclusion, tripolar TFS applied via a TCRE over the ipsilateral temporal area significantly delayed AK. This taken together with other reports of tripolar TFS aborting seizures in acute seizure models suggests that tripolar TFS is a promising new modality that should be considered for further testing.


Assuntos
Encéfalo , Eletrodos , Estimulação Transcraniana por Corrente Contínua/instrumentação , Animais , Gatos , Excitação Neurológica , Masculino , Movimento , Convulsões/prevenção & controle
3.
Brain Res ; 1631: 147-56, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26616339

RESUMO

The effects of the intravenous anesthetic, propofol, on glycinergic transmission and on glycine receptor-mediated whole-cell currents (IGly) were examined in the substantia gelatinosa (SG) neuronal cell body, mechanically dissociated from the rat spinal cord. This "synaptic bouton" preparation, which retains functional native nerve endings, allowed us to evaluate glycinergic inhibitory postsynaptic currents (IPSCs) and whole-cell currents in a preparation in which experimental solution could rapidly access synaptic terminals. Synaptic IPSCs were measured as spontaneous (s) and evoked (e) IPSCs. The eIPSCs were elicited by applying paired-pulse focal electrical stimulation, while IGly was evoked by a bath application of glycine. A concentration-dependent enhancement of IGly was observed for ≥10µM propofol. Propofol (≥3µM) significantly increased the frequency of sIPSCs and prolonged the decay time without altering the current amplitude. However, propofol (≥3µM) also significantly increased the mean amplitude of eIPSCs and decreased the failure rate (Rf). A decrease in the paired-pulse ratio (PPR) was noted at higher concentrations (≥10µM). The decay time of eIPSCs was prolonged only at the maximum concentration tested (30µM). Propofol thus acts at both presynaptic glycine release machinery and postsynaptic glycine receptors. At clinically relevant concentrations (<1µM) there was no effect on IGly, sIPSCs or eIPSCs suggesting that at anesthetic doses propofol does not affect inhibitory glycinergic synapses in the spinal cord.


Assuntos
Glicinérgicos/farmacologia , Neurônios/efeitos dos fármacos , Propofol/farmacologia , Sinapses/efeitos dos fármacos , Anestésicos Intravenosos/farmacologia , Animais , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Glicina/metabolismo , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Neurônios/metabolismo , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores de Glicina/metabolismo , Medula Espinal/efeitos dos fármacos , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
4.
Brain Res Bull ; 118: 34-45, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26343381

RESUMO

We evaluated the effects of N2O on synaptic transmission using a preparation of mechanically dissociated rat hippocampal CA3 neurons that allowed assays of single bouton responses evoked from native functional nerve endings. We studied the effects of N2O on GABAA, glutamate, AMPA and NMDA receptor-mediated currents (IGABA, IGlu, IAMPA and INMDA) elicited by exogenous application of GABA, glutamate, (S)-AMPA, and NMDA and spontaneous, miniature, and evoked GABAergic inhibitory and glutamatergic excitatory postsynaptic current (sIPSC, mIPSC, eIPSC, sEPSC, mEPSC and eEPSC) in mechanically dissociated CA3 neurons. eIPSC and eEPSC were evoked by focal electrical stimulation of a single bouton. Administration of 70% N2O altered neither IGABA nor the frequency and amplitude of both sIPSCs and mIPSCs. In contrast, N2O decreased the amplitude of eIPSCs, while increasing failure rates (Rf) and paired-pulse ratios (PPR) in a concentration-dependent manner. On the other hand, N2O decreased IGlu, IAMPA and INMDA. Again N2O did not change the frequency and amplitude of either sEPSCs of mEPSCs. N2O also decreased amplitudes of eEPSCs with increased Rf and PPR. The decay phases of all synaptic responses were unchanged. The present results indicated that N2O inhibits the activation of AMPA/KA and NMDA receptors and also that N2O preferentially depress the action potential-dependent GABA and glutamate releases but had little effects on spontaneous and miniature releases.


Assuntos
Região CA3 Hipocampal/efeitos dos fármacos , Óxido Nitroso/farmacologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Estimulação Elétrica , Feminino , Neurônios GABAérgicos/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Masculino , N-Metilaspartato/farmacologia , Ratos , Ratos Wistar , Transmissão Sináptica/efeitos dos fármacos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia , Ácido gama-Aminobutírico/farmacologia
5.
Epilepsy Behav ; 49: 33-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26006058

RESUMO

The aim of the present study was to evaluate the effects of transcranial focal electrical stimulation (TFS) on γ-aminobutyric acid (GABA) and glutamate release in the hippocampus under basal conditions and during pilocarpine-induced status epilepticus (SE). Animals were previously implanted with a guide cannula attached to a bipolar electrode into the right ventral hippocampus and a concentric ring electrode placed on the skull surface. The first microdialysis experiment was designed to determine, under basal conditions, the effects of TFS (300 Hz, 200 µs biphasic square pulses, for 30 min) on afterdischarge threshold (ADT) and the release of GABA and glutamate in the hippocampus. The results obtained indicate that at low current intensities (<2800 µA), TFS enhances and decreases the basal extracellular levels of GABA and glutamate, respectively. However, TFS did not modify the ADT. During the second microdialysis experiment, a group of animals was subjected to SE induced by pilocarpine administration (300 mg/kg, i.p.; SE group). The SE was associated with a significant rise of GABA and glutamate release (up to 120 and 182% respectively, 5h after pilocarpine injection) and the prevalence of high-voltage rhythmic spikes and increased spectral potency of delta, gamma, and theta bands. A group of animals (SE-TFS group) received TFS continuously during 2h at 100 µA, 5 min after the establishment of SE. This group showed a significant decrease in the expression of the convulsive activity and spectral potency in gamma and theta bands. The extracellular levels of GABA and glutamate in the hippocampus remained at basal conditions. These results suggest that TFS induces anticonvulsant effects when applied during the SE, an effect associated with lower amino acid release. This article is part of a Special Issue entitled "Status Epilepticus".


Assuntos
Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Estado Epiléptico/terapia , Estimulação Transcraniana por Corrente Contínua , Ácido gama-Aminobutírico/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Pilocarpina , Ratos , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/metabolismo
6.
Toxicon ; 103: 12-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25959619

RESUMO

The present study utilised a 'synaptic bouton' preparation of mechanically isolated rat hippocampal CA3 pyramidal neurons, which permits direct physiological and pharmacological quantitative analyses at the excitatory and inhibitory single synapse level. Evoked excitatory and inhibitory postsynaptic currents (eEPSCs and eIPSCs) were generated by focal paired-pulse electrical stimulation of single boutons. The sensitivity of eEPSC to tetrodotoxin (TTX) was higher than that of the voltage-dependent Na(+) channel whole-cell current (INa) in the postsynaptic CA3 soma membrane. The synaptic transmission was strongly inhibited by 3 nM TTX, at which concentration the INa was hardly suppressed. The IC50 values of eEPSC and INa for TTX were 2.8 and 37.9 nM, respectively, and complete inhibition was 3-10 nM for eEPSC and 1000 nM for INa. On the other hand, both eEPSC and eIPSC were equally and gradually inhibited by decreasing the external Na(+) concentration ([Na]o), which decreases the Na(+)gradient across the cell membrane. The results indicate that TTX at 3-10 nM could block most of voltage-dependent Na(+) channels on presynaptic nerve terminal, resulting in abruptly inhibition of action potential dependent excitatory neurotransmission.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Tetrodotoxina/toxicidade , Animais , Sistema Nervoso Central/metabolismo , Estimulação Elétrica , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Concentração Inibidora 50 , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Ratos , Ratos Wistar , Canais de Sódio/efeitos dos fármacos , Canais de Sódio/metabolismo , Ácido gama-Aminobutírico/metabolismo
7.
Eur J Pharmacol ; 718(1-3): 63-73, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24051267

RESUMO

We evaluated the effects of propofol on synaptic transmission using a mechanically dissociated preparation of rat hippocampal CA3 neurons to allow assays of single bouton responses evoked from retained functional native nerve endings. We studied synaptic and extrasynaptic GABAA and glutamate receptor responses in a preparation in which experimental solutions rapidly accessed synaptic terminals. Whole-cell responses were evoked by bath application of GABA and glutamate. Synaptic inhibitory and excitatory postsynaptic currents (IPSC and EPSC) were measured as spontaneous and evoked postsynaptic responses. Evoked currents were elicited by focal electrical stimulation. Propofol (1-100 µM) enhanced extrasynaptic GABAA-receptor mediated responses but the increase at clinically relevant concentrations (1 µM) were minor. In contrast, 1 µM propofol significantly increased both the amplitude and frequency of spontaneous IPSCs (sIPSCs) and increased the amplitudes of evoked IPSCs (eIPSCs) while decreasing failure rates (Rf) and paired-pulse ratios (PPR). Decay times of sIPSCs and eIPSCs were significantly prolonged. Although propofol had no effect on extrasynaptic glutamate responses, only supra-clinical propofol concentrations (≥ 10 µM) increased the spontaneous EPSCs (sEPSCs, amplitudes and frequencies) but suppressed evoked EPSCs (eEPSCs decreased amplitudes with increased Rf and PPR). The decay phases of sEPSCs and eEPSCs were not changed. The propofol-induced changes in sEPSCs and eEPSCs resulted from presynaptic GABAA receptor-mediated depolarization, because these actions were blocked by bicuculline. These results suggest that propofol acts at presynaptic and postsynaptic GABAA receptors within GABAergic synapses, but also increases extrasynaptic GABA responses. Our results expand the locus of propofol actions to GABAergic and glutamatergic synapses.


Assuntos
Ácido Glutâmico/metabolismo , Hipocampo/citologia , Neurônios/citologia , Propofol/farmacologia , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Animais , Cálcio/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/fisiologia , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Ratos , Ratos Wistar , Sódio/metabolismo , Sinapses/fisiologia , Fatores de Tempo
8.
Epilepsy Behav ; 28(3): 432-6, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23886585

RESUMO

Experiments were conducted to evaluate the effects of transcranial focal electrical stimulation (TFS) applied via tripolar concentric ring electrodes, alone and associated with a sub-effective dose of diazepam (DZP) on the expression of status epilepticus (SE) induced by lithium-pilocarpine (LP) and subsequent neuronal damage in the hippocampus. Immediately before pilocarpine injection, male Wistar rats received TFS (300Hz, 200-µs biphasic square charge-balanced 50-mA constant current pulses for 2min) alone or combined with a sub-effective dose of DZP (0.41mg/kg, i.p.). In contrast with DZP or TFS alone, DZP plus TFS reduced the incidence of, and enhanced the latency to, mild and severe generalized seizures and SE induced by LP. These effects were associated with a significant reduction in the number of degenerated neurons in the hippocampus. The present study supports the notion that TFS combined with sub-effective doses of DZP may represent a therapeutic tool to induce anticonvulsant effects and reduce the SE-induced neuronal damage.


Assuntos
Anticonvulsivantes/uso terapêutico , Estimulação Encefálica Profunda/métodos , Diazepam/uso terapêutico , Hipocampo/patologia , Estado Epiléptico/complicações , Estado Epiléptico/terapia , Análise de Variância , Animais , Contagem de Células , Modelos Animais de Doenças , Fluoresceínas , Cloreto de Lítio/uso terapêutico , Masculino , Agonistas Muscarínicos/toxicidade , Neurônios/patologia , Pilocarpina/toxicidade , Ratos , Ratos Wistar , Tempo de Reação/efeitos dos fármacos , Estado Epiléptico/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA