Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 647
Filtrar
1.
New Phytol ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107899

RESUMO

Forests face many threats. While traditional breeding may be too slow to deliver well-adapted trees, genomic selection (GS) can accelerate the process. We describe a comprehensive study of GS from proof of concept to operational application in western redcedar (WRC, Thuja plicata). Using genomic data, we developed models on a training population (TrP) of trees to predict breeding values (BVs) in a target seedling population (TaP) for growth, heartwood chemistry, and foliar chemistry traits. We used cross-validation to assess prediction accuracy (PACC) in the TrP; we also validated models for early-expressed foliar traits in the TaP. Prediction accuracy was high across generations, environments, and ages. PACC was not reduced to zero among unrelated individuals in TrP and was only slightly reduced in the TaP, confirming strong linkage disequilibrium and the ability of the model to generate accurate predictions across breeding generations. Genomic BV predictions were correlated with those from pedigree but displayed a wider range of within-family variation due to the ability of GS to capture the Mendelian sampling term. Using predicted TaP BVs in multi-trait selection, we functionally implemented and integrated GS into an operational tree-breeding program.

2.
PeerJ ; 12: e17644, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39131610

RESUMO

Background: Tree ontogeny is the genetic trajectories of regenerative processes in trees, repeating in time and space, including both development and reproduction. Understanding the principles of tree ontogeny is a key priority in emulating natural ecological patterns and processes that fall within the calls for closer-to-nature forest management. By recognizing and respecting the growth and development of individual trees and forest stands, forest managers can implement strategies that align with the inherent dynamics of forest ecosystem. Therefore, this study aims to determine the ontogenetic characteristics of tree regeneration and growth in northern European hemiboreal forests. Methodology: We applied a three-step process to review i) the ontogenetic characteristics of forest trees, ii) ontogenetic strategies of trees for stand-forming species, and iii) summarise the review findings of points i and ii to propose a conceptual framework for transitioning towards closer-to-nature management of hemiboreal forest trees. To achieve this, we applied the super-organism approach to forest development as a holistic progression towards the establishment of natural stand forming ecosystems. Results: The review showed multiple aspects; first, there are unique growth and development characteristics of individual trees at the pre-generative and generative stages of ontogenesis under full and minimal light conditions. Second, there are four main modes of tree establishment, growth and development related to the light requirements of trees; they were described as ontogenetic strategies of stand-forming tree species: gap colonisers, gap successors, gap fillers and gap competitors. Third, the summary of our analysis of the ontogenetic characteristics of tree regeneration and growth in northern European hemiboreal forests shows that stand-forming species occupy multiple niche positions relative to forest dynamics modes. Conclusions: This study demonstrates the importance of understanding tree ontogeny under the pretext of closer-to-nature forest management, and its potential towards formulating sustainable forest management that emulates the natural dynamics of forest structure. We suggest that scientists and foresters can adapt closer-to-nature management strategies, such as assisted natural regeneration of trees, to improve the vitality of tree communities and overall forest health. The presented approach prioritizes ecological integrity and forest resilience, promoting assisted natural regeneration, and fostering adaptability and connectivity among plant populations in hemiboreal tree communities.


Assuntos
Agricultura Florestal , Florestas , Árvores , Árvores/crescimento & desenvolvimento , Agricultura Florestal/métodos , Conservação dos Recursos Naturais/métodos , Europa (Continente) , Ecossistema
3.
Environ Monit Assess ; 196(9): 825, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162832

RESUMO

Forest fire risk assessment plays a crucial role in the environmental management of natural hazards, serving as a key tool in the prevention of forest fires and the protection of various species. As these risks continue to evolve with environmental changes, the pertinence of contemporary research in this field remains undiminished. This review constructs a comprehensive taxonomic framework for classifying the existing body of literature on forest fire risk assessment within forestry studies. The developed taxonomy categorizes existing studies into 8 primary categories and 23 subcategories, offering a structured perspective on the methodologies and focus areas prevalent in the domain. We categorize a sample of 170 articles to present recent trends and identify research gaps in forest fire risk assessment literature. The classification facilitates a critical evaluation of the current research landscape, identifying areas in need of further exploration. Particularly, our review identifies underrepresented methodologies such as optimization modeling and some advanced machine learning techniques, which present routes for future inquiry. Moreover, the review underscores the necessity for model development that is tailored to specific regional data sets but also adaptable to global data resources, striking a balance between local specificity and broad applicability. Emphasizing the dynamic nature of forest fire behavior, we advocate for models that integrate the burgeoning field of machine learning and multi-criteria decision analysis to refine predictive accuracy and operational effectiveness in fire risk assessment. This study highlights the great potential for new ideas in modeling techniques and emphasizes the need for increased collaboration among research communities to improve the effectiveness of assessing forest fire risks.


Assuntos
Agricultura Florestal , Florestas , Incêndios Florestais , Medição de Risco/métodos , Agricultura Florestal/métodos , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Incêndios , Aprendizado de Máquina
4.
Environ Geochem Health ; 46(9): 330, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017950

RESUMO

This study aims to assess the amount of organic carbon stored in soils, as it is an intention of knowing the sustainable soil management, by using two common methods for determining soil organic matter (SOM), namely oxidation with acidified wet dichromate (Walkley-Black method-WB) and loss on ignition (LOI). The study was carried with soil samples collected from a depth of 0 to 30 cm in the Saharan arid region of Ghardaïa (Algeria), with different land uses: agricultural, forest and pastoral. The results obtained from the LOI and WB methods were subjected to statistical analysis, and the relations between both methods were tested to investigate their relationship. The mean percentage of SOM values were 1.86, 2.42, 1.54 by using LOI, but, lower values of 0.34, 0.33, 0.36 were determined by using WB method, for agricultural, forest and pastoral soils respectively. A weak linear relationship between the two analytical procedures was obtained (R2 of 0.19 and 0.13 for agricultural and forest soils), while a medium relationship (R2 = 0.65) was found for pastoral soils when using linear adjustment. However, the opposite behaviour was found when we use the logarithmic adjustment. The study outcomes indicated discrepancies in the measurements of SOM values between the two methods, been higher those estimated with LOI. Finally, in order to identify the best methodology to measure soil organic matter in arid soils, more research is required in these extreme arid regions as they are a gap in world soil organic matter maps.


Assuntos
Agricultura , Carbono , Solo , Argélia , Solo/química , Carbono/análise , Florestas , Monitoramento Ambiental/métodos , Sequestro de Carbono , Clima Desértico
5.
Microorganisms ; 12(7)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39065028

RESUMO

As leptospirosis is re-emerging, a seroprevalence study was conducted, assessing the prevalence of anti-Leptospira IgG antibodies and infection-associated risk factors among forestry workers (FWs) in Lower Saxony, Germany, to develop targeted public health measures. Sera of 877 FWs, sampled in 2016, were tested for anti-Leptospira seropositivity by commercial IgG-ELISA. Data on demographics and Leptospira-specific exposures, knowledge, sources of information, and preventive measures were collected by standardized, self-administered questionnaire. A subset of 244 sera was retested via in-house IgG-ELISA. Risk factors were assessed from the subset using multivariable logistic regression analysis. The commercial IgG-ELISA revealed a seroprevalence of 4.8% (95% confidence interval CI95 = 3.5-6.4). Of the 601 FWs who completed the questionnaire, 67.9% had been informed about leptospirosis and Leptospira spp., mainly by employers (55.2%) and peers (38.9%). Positive associations with seropositivity were observed for canoeing (adjusted odds ratio (aOR) = 2.35, p = 0.044), touching rodents (aOR = 2.4, p = 0.021), and living close to beech trees (aOR = 2.18, p = 0.075). Frequently cleaning animal stables was negatively associated (aOR = 0.20, p = 0.002). The unexpected positive association with wearing gloves when handling plants and soil (aOR = 2.16, p = 0.011) needs further discussion. Overall, seroprevalence was in the range of other studies in Germany. The identified factors will be used to develop targeted information reaching out to at-risk groups tapping various communication channels.

6.
Sci Total Environ ; 947: 174680, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38992363

RESUMO

Forest management pathways for nature-based climate solutions, such as variable retention harvesting (VRH), have been gaining traction in recent years; however, their net biochemical and biophysical impacts remain unknown. Here, we use a combination of close-range and satellite remote sensing, eddy covariance technique, and ground-based biometric measurements to investigate forest thinning density and aggregation that maintain ecosystem nutrients, enhance tree growth and provide a negative feedback to the local climate in a northern temperate coniferous forest stand in Ontario, Canada. Our results showed that soil carbon (C) and nitrogen (N) in VRH plots were significantly lower (p < 0.05) for all VRH treatments compared to unharvested plots. On average, soil C was reduced by -0.64 ± 0.22 Δ% C and N by -0.023 ± 0.008 Δ% N in VRH plots. We also observed the largest loss of soil C and N in open areas of aggregate plots. Furthermore, the changes in albedo resulting from VRH treatment were equivalent to removing a large amount of C from the atmosphere, ranging from 1.3 ± 0.2 kg C yr-1 m-2 in aggregate 33 % crown retention plots to 3.4 ± 0.5 kg C yr-1 m-2 in dispersed 33 % crown retention plots. Our findings indicate that spatially dispersed VRH resulted in minimal loss of soil C and N and the highest understory growth and C uptake, while enhanced tree growth and local cooling through increased albedo were observed in dispersed VRH plots with the fewest residual trees. These findings suggest that using the harvested trees from VRH in a way that avoids releasing C into the atmosphere makes dispersed VRH the preferred forest management pathway for nature-based climate solutions.

7.
Sci Total Environ ; 948: 174919, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39038686

RESUMO

Large old trees in urban public green spaces deliver a diversity of values essential for human well-being, including biodiversity conservation. Yet, the conservation of large old trees bearing key wildlife microhabitats interferes with safety considerations. This intuitive notion, however, is backed by an insufficient and scattered body of evidence. Here, we empirically examined this process using data on 5974 trees across 510 sample plots, organized as quintuplets within 102 sample sites, including urban parks, cemeteries, recreational forests, and historic reserves in the urban agglomeration of Kraków, Poland. Our analyses demonstrate that trees situated in areas frequently visited by people, or those near walking paths, benches, or playgrounds, have elevated accident hazards and, therefore, necessitate intensive tree surgeries (pruning and logging) to remain harmless. Large old trees, which bear the most diverse microhabitats and pose greater risks when they collapse, are especially affected by these measures. Accordingly, we found that the co-occurrence of large trees with elevated accident hazards results in significant losses of dead and sloped trees, and trees with cavities, injuries, crown deadwood, fungal fruiting bodies, or epiphytes, particularly in parks and, to a lesser extent, in recreational forests. Apparently, some tree-related microhabitats, such as injuries, cavities, and microsoils, also emerge in risky spots after pruning. Our findings underscore that the conservation of large old trees and their ecological functions faces significant challenges due to safety considerations. To address conservation challenges and harmonize human coexistence with biodiversity, we recommend enhancing environmental awareness and reevaluating arboricultural and planning policies. This would involve establishing strategic and pocket reserves on city peripheries and interiors, allowing larger older trees to thrive and develop important microhabitats without compromising public safety. Otherwise, we risk losing many large old trees and/or their superior value for wildlife, which will regenerate over decades, if not centuries.


Assuntos
Conservação dos Recursos Naturais , Árvores , Polônia , Biodiversidade , Florestas , Cidades , Parques Recreativos , Ecossistema , Segurança , Humanos
8.
Front Plant Sci ; 15: 1402601, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011308

RESUMO

Forestry is facing an unprecedented challenging time. Due to climate change, major tree species, which until recently fulfilled major ecosystem services, are being lost and it is often unclear if forest conversion with other native or non-native tree species (NNT) are able to maintain or restore the endangered ecosystem services. Using data from the Austrian Forest Inventory, we analysed the current and future (2081-2100, RCP 4.5 and RCP 8.5) productivity of forests, as well as their protective function (avalanches and rockfall). Five different species change scenarios were considered for the replacement of a tree species failing in the future. We used seven native tree species (Picea abies, Abies alba, Pinus sylvestris, Larix decidua, Fagus sylvatica, Quercus robur and Quercus petraea) and nine NNT (Pseudotsuga menziesii, Abies grandis, Thuja plicata, Pinus radiata, Pinus contorta, Robinia pseudoacacia, Quercus rubra, Fraxinus pennsylvanica and Juglans nigra). The results show that no adaptation would lead to a loss of productivity and a decrease in tree species richness. The combined use of native and NNT is more favorable than purely using native species in terms of productivity and tree species richness. The impact of the different species change scenarios can vary greatly between the different environmental zones of Austria (Alpine south, Continental and Pannonian). The Pannonian zone would benefit from the use of NNT in terms of timber production. For the protection against avalanches or rockfall in alpine regions, NNT would not be an advantage, and it is more important if broadleaved or coniferous trees are used. Depending on whether timber production, protective function or tree species richness are considered, different tree species or species change scenarios can be recommended. Especially in protective forests, other aspects are essential compared to commercial forests. Our results provide a basis for forest owners/managers in three European environmental zones to make decisions on a sustainable selection of tree species to plant in the face of climate change.

9.
Evol Appl ; 17(6): e13711, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38894979

RESUMO

Climate change poses a particular threat to long-lived trees, which may not adapt or migrate fast enough to keep up with rising temperatures. Assisted gene flow could facilitate adaptation of populations to future climates by using managed translocation of seeds from a warmer location (provenance) within the current range of a species. Finding the provenance that will perform best in terms of survival or growth is complicated by a trade-off. Because trees face a rapidly changing climate during their long lives, the alleles that confer optimal performance may vary across their lifespan. For instance, trees from warmer provenances could be well adapted as adults but suffer from colder temperatures while juvenile. Here we use a stage-structured model, using both analytical predictions and numerical simulations, to determine which provenance would maximize the survival of a cohort of long-lived trees in a changing climate. We parameterize our simulations using empirically estimated demographic transition matrices for 20 long-lived tree species. Unable to find reliable quantitative estimates of how climatic tolerance changes across stages in these same species, we varied this parameter to study its effect. Both our mathematical model and simulations predict that the best provenance depends strongly on how fast the climate changes and also how climatic tolerance varies across the lifespan of a tree. We thus call for increased empirical efforts to measure how climate tolerance changes over life in long-lived species, as our model suggests that it should strongly influence the best provenance for assisted gene flow.

10.
Plants (Basel) ; 13(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891237

RESUMO

Several Acacia species are aggressive invaders outside their native range, often occupying extensive areas. Traditional management approaches have proven to be ineffective and economically unfeasible, especially when dealing with large infestations. Here, we explain a different approach to complement traditional management by using the waste from Acacia management activities. This approach can provide stakeholders with tools to potentially reduce management costs and encourage proactive management actions. It also prioritizes potential applications of Acacia waste biomass for agriculture and forestry as a way of sequestering the carbon released during control actions. We advocate the use of compost/vermicompost, green manure and charcoal produced from Acacia waste, as several studies have shown their effectiveness in improving soil fertility and supporting crop growth. The use of waste and derivatives as bioherbicides or biostimulants is pending validation under field conditions. Although invasive Acacia spp. are banned from commercialization and cultivation, the use of their waste remains permissible. In this respect, we recommend the collection of Acacia waste during the vegetative stage and its subsequent use after being dried or when dead, to prevent further propagation. Moreover, it is crucial to establish a legal framework to mitigate potential risks associated with the handling and disposal of Acacia waste.

11.
12.
Nature ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914801
13.
Sci Rep ; 14(1): 12821, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834628

RESUMO

Timber plantations across the world are suffering from the effects of increasingly frequent wildfires, which potentially degrade the wood of affected trees, depending on the exposure temperature and time. However, it is rather complicated to determine the exact temperature of the fire, or the temperature to which the wood was exposed. This study aimed to determine the exposure temperature of wood retrospectively through solid-state NMR analysis. Models were developed from softwood and hardwood samples exposed to defined temperatures, which successfully linked the NMR signal to the exposure temperature. Various fit equations were developed to link the half-width or peak area of the NMR signal to the exposure temperatures. Hard- and softwoods displayed noticeable differences: a linear function best described the half-width in the higher temperature region for Pine and Eucalyptus, whereas a parabolic function for the peak area of Eucalyptus yielded the best correlation to the entire temperature range. This non-destructive and direct method offers a valuable evaluation method to determine, if wood in burnt trees is degraded and can be processed. An informed choice can be made on the decision to use, or discard burnt wood.

14.
New Phytol ; 243(2): 526-536, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38803120

RESUMO

Forests make immense contributions to societies in the form of ecological services and sustainable industrial products. However, they face major challenges to their viability and economic use due to climate change and growing biotic and economic threats, for which recombinant DNA (rDNA) technology can sometimes provide solutions. But the application of rDNA technologies to forest trees faces major social and biological obstacles that make its societal acceptance a 'wicked' problem without straightforward solutions. We discuss the nature of these problems, and the social and biological innovations that we consider essential for progress. As case studies of biological challenges, we focus on studies of modifications in wood chemistry and transformation efficiency. We call for major innovations in regulations, and the dissolution of method-based market barriers, that together could lead to greater research investments, enable wide use of field studies, and facilitate the integration of rDNA-modified trees into conventional breeding programs. Without near-term adoption of such innovations, rDNA-based solutions will be largely unavailable to help forests adapt to the growing stresses from climate change and the proliferation of forest pests, nor will they be available to provide economic and environmental benefits from expanded use of wood and related bioproducts as part of an expanding bioeconomy.


Assuntos
Biotecnologia , Florestas , Biotecnologia/métodos , Madeira , Árvores , Mudança Climática
15.
Sensors (Basel) ; 24(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38793969

RESUMO

Digital twins aim to optimize practices implemented in various sectors by bridging the gap between the physical and digital worlds. Focusing on open-field agriculture, livestock farming, and forestry and reviewing the current applications in these domains, this paper reveals the multifaceted roles of digital twins. Diverse key aspects are examined, including digital twin integration and maturity level, means of data acquisition, technological capabilities, and commonly used input and output features. Through the prism of four primary research questions, the state of the art of digital twins, the extent of their achieved integration, and an overview of the critical issues and potential advancements are provided in the landscape of the sectors under consideration. The paper concludes that in spite of the remarkable progress, there is a long way towards achieving full digital twin. Challenges still persist, while the key factor seems to be the integration of expert knowledge from different stakeholders. In light of the constraints identified in the review analysis, a new sector-specific definition for digital twins is also suggested to align with the distinctive characteristics of intricate biotic and abiotic systems. This research is anticipated to serve as a useful reference for stakeholders, enhancing awareness of the considerable benefits associated with digital twins and promoting a more systematic and comprehensive exploration of this transformative topic.

16.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230123, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38705177

RESUMO

Arthropods contribute importantly to ecosystem functioning but remain understudied. This undermines the validity of conservation decisions. Modern methods are now making arthropods easier to study, since arthropods can be mass-trapped, mass-identified, and semi-mass-quantified into 'many-row (observation), many-column (species)' datasets, with homogeneous error, high resolution, and copious environmental-covariate information. These 'novel community datasets' let us efficiently generate information on arthropod species distributions, conservation values, uncertainty, and the magnitude and direction of human impacts. We use a DNA-based method (barcode mapping) to produce an arthropod-community dataset from 121 Malaise-trap samples, and combine it with 29 remote-imagery layers using a deep neural net in a joint species distribution model. With this approach, we generate distribution maps for 76 arthropod species across a 225 km2 temperate-zone forested landscape. We combine the maps to visualize the fine-scale spatial distributions of species richness, community composition, and site irreplaceability. Old-growth forests show distinct community composition and higher species richness, and stream courses have the highest site-irreplaceability values. With this 'sideways biodiversity modelling' method, we demonstrate the feasibility of biodiversity mapping at sufficient spatial resolution to inform local management choices, while also being efficient enough to scale up to thousands of square kilometres. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Assuntos
Artrópodes , Biodiversidade , DNA Ambiental , Tecnologia de Sensoriamento Remoto , Artrópodes/classificação , Animais , DNA Ambiental/análise , Tecnologia de Sensoriamento Remoto/métodos , Florestas , Distribuição Animal , Código de Barras de DNA Taxonômico/métodos
18.
Ecol Evol ; 14(5): e11351, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38716166

RESUMO

Population trends are lacking for most threatened species, especially those that are cryptic and difficult to survey. Recent developments in passive acoustics and semi-automated call recognition provide a cost-effective option to systematically monitor populations of vocal species. We assessed recent trends for the koala Phascolarctos cinereus, an iconic marsupial, based on 7 years of acoustic monitoring across 224 forested sites. The study period overlapped with a severe drought and extensive megafires in 2019 followed by 2 years of extremely high rainfall. Dynamic occupancy modelling with a range of covariates at multiple landscape scales found that initial occupancy was related to elevation (-ve), NDVI (+ve) and previous selective harvesting (16-30-year age class; weakly +ve). Extinction probability increased with the extent of high-severity fire. Colonisation probability was related to a range of factors, with the top model showing a decrease with increasing lagged annual rainfall. However, the null model was also supported, suggesting weak associations for colonisation. Using these relationships, koala occupancy was found to be high and stable over the study period. Fire did not influence regional trends because koalas often persisted with low- to moderate-severity fire and because high-severity fire was limited to 11% of their habitat. In contrast, bellow rate varied across years, being initially low and declining immediately after the 2019 fires, with the driver of these changes unclear. Neither timber harvesting nor low-severity fire influenced koala occupancy or bellow rate. Given the extensive area of koala habitat in the region, our results point to the presence of a large population in these public forests, and in recent years, stable occupancy (albeit with site-scale reductions in density with high-severity fire). Ongoing monitoring is crucial for tracking future changes, especially with predictions of more frequent, severe forest fires due to climate change.

19.
Ambio ; 53(7): 970-983, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38696060

RESUMO

The EU Nature Restoration Law (NRL) is critical for the restoration of degraded ecosystems and active afforestation of degraded peatlands has been suggested as a restoration measure under the NRL. Here, we discuss the current state of scientific evidence on the climate mitigation effects of peatlands under forestry. Afforestation of drained peatlands without restoring their hydrology does not fully restore ecosystem functions. Evidence on long-term climate benefits is lacking and it is unclear whether CO2 sequestration of forest on drained peatland can offset the carbon loss from the peat over the long-term. While afforestation may offer short-term gains in certain cases, it compromises the sustainability of peatland carbon storage. Thus, active afforestation of drained peatlands is not a viable option for climate mitigation under the EU Nature Restoration Law and might even impede future rewetting/restoration efforts. Instead, restoring hydrological conditions through rewetting is crucial for effective peatland restoration.


Assuntos
Conservação dos Recursos Naturais , União Europeia , Agricultura Florestal , Solo , Conservação dos Recursos Naturais/legislação & jurisprudência , Conservação dos Recursos Naturais/métodos , Agricultura Florestal/legislação & jurisprudência , Agricultura Florestal/métodos , Solo/química , Florestas , Sequestro de Carbono , Recuperação e Remediação Ambiental/métodos , Mudança Climática , Ecossistema , Áreas Alagadas
20.
Nature ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719956
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA