Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.676
Filtrar
1.
Int J Biol Macromol ; 276(Pt 1): 133668, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992537

RESUMO

This review explores the intricate wound healing process, emphasizing the critical role of dressing material selection, particularly for chronic wounds with high exudate levels. The aim is to tailor biodegradable dressings for comprehensive healing, focusing on maximizing moisture retention, a vital element for adequate recovery. Researchers are designing advanced wound dressings that enhance techno-functional and bioactive properties, minimizing healing time and ensuring cost-effective care. The study delves into wound dressing materials, highlighting carrageenan biocomposites superior attributes and potential in advancing wound care. Carrageenan's versatility in various biomedical applications demonstrates its potential for tissue repair, bone regeneration, and drug delivery. Ongoing research explores synergistic effects by combining carrageenan with other novel materials, aiming for complete biocompatibility. As innovative solutions emerge, carrageenan-based wound-healing medical devices are poised for global accessibility, addressing challenges associated with the complex wound-healing process. The exceptional physico-mechanical properties of carrageenan make it well-suited for highly exudating wounds, offering a promising avenue to revolutionize wound care through freeze-drying techniques. This thorough approach to evaluating the wound healing effectiveness of carrageenan-based films, particularly emphasizing the development potential of lyophilized films, has the potential to significantly improve the quality of life for patients receiving wound healing treatments.

2.
Foods ; 13(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38998590

RESUMO

This study addressed the critical issue of food waste, particularly focusing on carrot pomace, a by-product of carrot juice production, and its potential reutilization. Carrot pomace, characterized by high dietary fiber content, presents a sustainable opportunity to enhance the functional properties of food products. The effects of physical pretreatments-high shearing (HS), hydraulic pressing (HP), and their combination (HSHP)-alongside two drying methods (freeze-drying and dehydration) on the functional, chemical, and physical properties of carrot pomace were explored. The results indicated significant enhancements in water-holding capacity, fat-binding capacity, and swelling capacity, particularly with freeze-drying. Freeze-dried pomace retained up to 33% more carotenoids and demonstrated an increase of up to 22% in water-holding capacity compared to dehydrated samples. Freeze-dried pomace demonstrated an increase of up to 194% in fat-binding capacity compared to dehydrated samples. Furthermore, HSHP pretreatment notably increased the swelling capacity of both freeze-dried (54%) and dehydrated pomace (35%) compared to pomace without pretreatments. Freeze-drying can enhance the functional properties of dried carrot pomace and preserve more carotenoids. This presents an innovative way for vegetable juice processors to repurpose their processing by-products as functional food ingredients, which can help reduce food waste and improve the dietary fiber content and sustainability of food products.

3.
Int J Pharm ; : 124466, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39009288

RESUMO

Biopharmaceuticals are labile biomolecules that must be safeguarded to ensure the safety, quality, and efficacy of the product. Batch freeze-drying is an established means of manufacturing solid biopharmaceuticals but alternative technologies such as spray-drying may be more suitable for continuous manufacturing of inhalable biopharmaceuticals. Here we assessed the feasibility of spray-drying Olipudase alfa, a novel parenteral therapeutic enzyme, by evaluating some of its critical quality attributes (CQAs) in a range of excipients, namely, trehalose, arginine (Arg), and arginine hydrochloride (Arg-HCl) in the sucrose/methionine base formulation. The Arg-HCl excipient produced the best gain in CQAs of spray-dried Olipudase with a 63% reduction in reconstitution time and 83% reduction in the optical density of the solution. Molecular dynamics simulations revealed the atomic-scale mechanism of the protein-excipient interactions, substantiating the experimental results. The Arg-HCl effect was explained by the calculated thermal stability and structural order of the protein wherein Arg-HCl acted as a crowding agent to suppress protein aggregation and promote stabilization of Olipudase post-spray-drying. Therefore, by rational selection of appropriate excipients, our experimental and modelling dataset confirms spray-drying is a promising technology for the manufacture of Olipudase and demonstrates the potential to accelerate development of continuous manufacturing of parenteral biopharmaceuticals.

4.
BioTechnologia (Pozn) ; 105(2): 109-119, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988367

RESUMO

In this work, we evaluated the protective capacity of Spirulina platensis biomass in preserving Lactobacillus delbrueckii subsp. bulgaricus WDCM 00102. The L. bulgaricus strain was freeze-dried in the presence of S. platensis biomass and the freeze-dried samples were then stored at 5 and 25°C for varying periods. Subsequently, the samples were rehydrated and bacterial plate counts were determined. The results indicate that a concentration of 12% S. platensis biomass was highly effective in preserving L. bulgaricus. Commercial products with higher S. platensis biomass content exhibited greater protective capacity. While S. platensis biomass is well-known for its prebiotic properties, its protective role has not been previously reported or thoroughly explored. This study demonstrates the protective capacity of S. platensis biomass in preserving L. bulgaricus, a strain particularly sensitive to preservation processes.

5.
Cryobiology ; 116: 104938, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38960349

RESUMO

It is thought that surface melting and puffing of freeze-dried amorphous materials are related to the difference between the surface temperature (Tsur) and freeze-concentrated glass transition temperature (Tg') of the materials. Although Tg' is a material-specific parameter, Tsur is affected by the type and amount of solute and freeze-drying conditions. Therefore, it will be practically useful for preventing surface melting and puffing if Tsur can be calculated using only the minimum necessary parameters. This study aimed to establish a predictive model for the surface melting and puffing of freeze-dried amorphous materials according to the calculated Tsur. First, a Tsur-predictive model was proposed under the thermodynamic equilibrium assumptions. Second, solutions with various solute mass fractions of sucrose, maltodextrin, and sucrose-maltodextrin mixture were prepared, and three material-specific parameters (Tg', unfrozen water content, and true density) were experimentally determined. According to the proposed model with the parameters, the Tsur of the samples was calculated at chamber pressures of 13, 38, and 103 Pa. The samples were freeze-dried at the chamber pressures, and their appearance was observed. As expected, surface melting and puffing occurred at calculated Tsur > Tg' with some exceptions. The water activity (aw) of the freeze-dried samples increased as the Tsur - Tg' increased. This will have resulted from surface melting and puffing, which created a covering film, thereby preventing subsequent dehydration. The observations suggest that the proposed model is also useful for predetermining the drying efficiency and storage stability of freeze-dried amorphous materials.

6.
Int J Biol Macromol ; : 133674, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971290

RESUMO

In recent years, the utilization of aerogel templates in oleogels to replace animal fats has garnered considerable attention due to health concerns. This study employed a "fiber-particle core-shell nanostructure model" to combine sodium carboxymethylcellulose (CMCNa) and soy protein isolate (SPI) or SPI hydrolysate (SPIH), and freeze-dried to form aerogel template, which was then dipped into oil to induce oleogels. The results showed that adding SPIH significantly improved the physicochemical properties of oleogels. The results of ζ-potential, FTIR, and rheology demonstrated a stronger binding of SPIH to CMC-Na compared to SPI. The CMC-Na-SPIH aerogels exhibited a coarser surface and denser network structure in contrast to CMC-Na-SPI aerogels, with an oil holding capacity (OHC) of up to 84.6 % and oil absorption capacity (OAC) of 47.4 g/g. The mechanical strength of oleogels was further enhanced through chemical crosslinking. Both CMC-Na-SPI and CMC-Na-SPIH oleogels displayed excellent elasticity and reversible compressibility, with CMC-Na-SPIH oleogels demonstrating superior mechanical strength. Additionally, CMC-Na-SPIH oleogels exhibited enhanced slow release of antimicrobial substances and antioxidant properties. Increasing the content of SPI/SPIH significantly improved the mechanical strength, antioxidant capacity, and OHC of the oleogels. This research presents a straightforward and promising approach to enhance the performance of aerogel template oleogels.

7.
J Sci Food Agric ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984980

RESUMO

BACKGROUND: Human serum albumin (HSA) is the most abundant protein in plasma, playing crucial roles in regulating osmotic pressure and maintaining protein homeostasis. It is widely applied in the clinical treatment of various diseases. HSA can be purified from plasma or produced using recombinant DNA technology. Due to the improved efficiency and reduced costs, a growing body of research has focused on enhancing albumin production through bacterial strain overexpression. However, there have been few studies on the effect of albumin on the characteristics of the overexpressing-strain itself, particularly stress resistance. In this study, we utilized Lactiplantibacillus plantarum (L. plantarum) AR113 as the expression host and successfully constructed the albumin overexpression strain AR113-pLLY01 through gene editing technology. The successful expression of albumin was achieved and subsequently compared with the wild-type strain AR113-pIB184. RESULTS: The results demonstrated that the survival rate of AR113-pLLY01 was also significantly better than that of AR113-pIB184 after lyophilization. In addition, AR113-pLLY01 exhibited a significantly better protective effect than AR113-pIB184 at pH 3, indicating that albumin possesses a certain tolerance to acidic stress. At bile salt concentrations higher than 0.03%, both strains showed limited growth, but at a concentration of 0.02%, AR113-pLLY01 had a significant protective effect. CONCLUSION: This study suggest that albumin can improve strain tolerance, which has significant implications for future applications. © 2024 Society of Chemical Industry.

8.
Prep Biochem Biotechnol ; : 1-11, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028537

RESUMO

Recombinant human acidic fibroblast growth factor (rh-aFGF) is a widely used biological product, but it is unstable and its biological activity is easy to decrease. In order to maintain the long-term stability and biological activity of rh-aFGF, based on the response surface method, the freeze-drying characterization and cell proliferation rate of rh-aFGF freeze-dried powder were evaluated by scoring and Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay in this study. The optimal concentrations of trehalose, glycine and BSA were optimized, and the optimal formulation was verified by regression experiment. The results showed that trehalose, glycine and BSA had significant effects on the characterization of lyophilized rh-aFGF and cell proliferation. The optimal formulation of 5.7% trehalose, 2.04% glycine and 1.98%BSA combined with rh-aFGF could achieve the optimal freeze-dried characterization and biological activity. Using the best formulation to verify, the freeze-dried formability index of the freeze-dried powder was 23.35, and the rate of cell proliferation was 43.59%, which was close to the expected 23 and 41.69%. This study determined a freeze-dried formulation of rh-aFGF that meets the requirements of freeze-dried formalization integrity and maintains biological activity, providing reliable support for the subsequent development of related drugs.

9.
Food Chem ; 459: 140437, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39029421

RESUMO

Freeze-drying is a preservation method known for its effectiveness in dehydrating food products while minimizing their deterioration. However, protein denaturation and oxidation during freezing and drying can degrade the quality of meat and aquatic products. Therefore, finding the strategies to ensure the dried products' sensory, functional, and nutritional attributes is crucial. This study aimed to summarize protein denaturation mechanisms and overall quality changes in meat and aquatic products during freezing and drying, while also exploring methods for quality control. Different freeze-drying conditions result in varying levels of oxidation and functionality in meat and aquatic products, leading to changes in quality, such as altered fatty and amino acid compositions, protein digestibility, and sensory attributes. To obtain high-quality dried products by freeze-drying, several parameters should be considered, including sample type, freezing and drying temperatures, moisture content, pulverization effects, and storage conditions.

10.
Food Res Int ; 191: 114716, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059964

RESUMO

Dehydration is an effective method for the long-term storage and aroma retention of gonggan (Citrus sinensis Osb. 'Deqing Gonggan'), which is a Chinese variety of citrus, with unique and characteristic floral, fruity, and citrus flavors. However, the aroma profiles of gonggans prepared using oven- and freeze-drying, the most widely-used drying methods, remain unclear. In this study, a total of 911 volatile organic compounds (VOCs) were detected in dried gonggan. These were primarily composed of alcohols (7.69%), aldehydes (7.03%), esters (15.38%), ketones (7.58%), and terpenoids (23.19%). A total of 67 odorants contributed significantly to the overall aroma of dried gonggans, with the major odor qualities being detected as green, citrus, fruity, floral, and sweet. These were mainly attributed to the presence of aldehydes, esters, and terpenoids. Freeze-drying was more effective in maintaining the unique citrus and mandarin-like aromas attributed to compounds such as limonene, citrial, ß-myrcene, ß-pinene, and γ-terpinene. Moreover, (E,E)-2,4-decadienal had the highest relative odor activity value (rOAV) in freeze-dried gonggans, followed by (E)-2-nonenal, furaneol, (E, E)-2, 4-nonadienal, and E-2-undecenal. Oven-drying promoted the accumulation of terpenes such as octatriene, trans-ß-ocimene, cyclohexanone, copaene, and ɑ-irone, imparting a soft aroma of flowers, fruits, and sweet. Increasing the temperature led to an increase in existing VOCs or the generation of new VOCs through phenylpropanoid, terpenoid, and fatty acid metabolism. The findings of this study offer insights into an optimized procedure for producing high-quality dried gonggans. These insights can be valuable for the fruit-drying industry, particularly for enhancing the quality of dried fruits.


Assuntos
Liofilização , Odorantes , Terpenos , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Odorantes/análise , Terpenos/análise , Frutas/química , Citrus sinensis/química , Dessecação/métodos , Aldeídos/análise , Cromatografia Gasosa-Espectrometria de Massas , Cetonas/análise , Monoterpenos Bicíclicos/análise , Ésteres/análise , Alcadienos/análise , Cicloexenos/análise , Manipulação de Alimentos/métodos , Monoterpenos Acíclicos , Monoterpenos Cicloexânicos , Alcenos , Sesquiterpenos
11.
J Chromatogr A ; 1730: 465130, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38955130

RESUMO

This study describes the preparation of a cylindrical polymer foam column termed Chitosan/ß-Cyclodextrin/MIL-68(Al) (CS/ß-CD/MIL-68(Al)). An ice template-freeze drying technique was employed to prepare the CS/ß-CD/MIL-68(Al) foam column by embedding MIL-68(Al) in a polymer matrix comprising cross-linked chitosan (CS) and ß-cyclodextrin (ß-CD). The cylindrical CS/ß-CD/MIL-68(Al) foam was subsequently inserted into a syringe to develop a solid phase extraction (SPE) device. Without the requirement for an external force, the sample solution passed easily through the SPE column thanks to the porous structure of the CS/ß-CD/MIL-68(Al) foam column. Moreover, the CS/ß-CD/MIL-68(Al) foam column was thought to be a superior absorbent for SPE since it included the adsorptive benefits of CS, ß-CD, and MIL-68(Al). The SPE was utilized in conjunction with high-performance liquid chromatography to analyze six sulfonamides found in milk, urine, and water. With matrix effects ranging from 80.49 % to 104.9 % with RSD values of 0.4-14.0 %, the method showed high recoveries ranging from 80.6 to 107.4 % for water samples, 93.4-105.2 % for urine, and 87.4-100.9 % for milk. It also demonstrated good linearity in the range of 10-258 ng·mL-1 with the limits of detection ranging from 1.88 to 2.58 ng·mL-1. The cylindrical CS/ß-CD/MIL-68(Al) foam column prepared in this work offered several advantages, including its simple fabrication, excellent water stability, absence of pollutants, biodegradability, and reusability. It is particularly well-suited for SPE. Furthermore, the developed SPE method, employing CS/ß-CD/MIL-68(Al) foam column, is straightforward and precise, and its benefits, including affordability, ease of preparation, lack of specialized equipment, and solvent economy, underline its broad applicability for the pretreatment of aqueous samples.


Assuntos
Quitosana , Limite de Detecção , Estruturas Metalorgânicas , Leite , Extração em Fase Sólida , Sulfonamidas , beta-Ciclodextrinas , Extração em Fase Sólida/métodos , Quitosana/química , beta-Ciclodextrinas/química , Leite/química , Estruturas Metalorgânicas/química , Sulfonamidas/urina , Sulfonamidas/isolamento & purificação , Sulfonamidas/química , Animais , Cromatografia Líquida de Alta Pressão/métodos , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Humanos , Reprodutibilidade dos Testes
12.
Foods ; 13(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39063343

RESUMO

The effects of MRS, whey protein and blueberry alone, and mixed fermentation on the survival rate of lactic acid bacteria under various freeze-drying conditions were investigated. The surface structure of the freeze-dried powders was also investigated to explore the anti-freezing protection mechanism of mixed whey protein and blueberry fermentation on the bacteria. It was found that the mixed fermentation medium of blueberry and whey protein has a protective effect on the freeze-drying bacteria and is better than the traditional MRS and whey protein medium. The optimal concentration of blueberry juice addition was 9%. The survival rate of the pre-freezing temperature at -80 °C was higher than at -20 °C after the pre-freezing and freeze-drying processes. The freeze-drying thickness of 0.3 cm could improve the survival rate of the bacteria. The Fourier transform infrared spectroscopy results indicated the interaction between the whey protein, anthocyanins, and the surface composition of the lactic acid bacteria.

13.
J Biomater Sci Polym Ed ; : 1-25, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970296

RESUMO

Recent advancements in tissue engineering have witnessed luffa-derived scaffolds, exhibiting their exceptional potential in cellular proliferation, biocompatibility, appropriate interconnectivity, and biomechanical strength. In vivo studies involved implanting fabricated scaffolds subcutaneously in Wistar rats to evaluate their impact on the heart, liver, and kidneys. This approach provided a safe and minimally invasive means to evaluate scaffold compatibility with surrounding tissues. Male Wistar rats were categorized into four distinct groups, Group A, B, C, and D are referred to as 3% LC implanted scaffolds, 5% LC implanted scaffolds, control (without luffa scaffolds), and Sham (without any scaffold implantation), respectively. Histological analysis in all the groups indicated that the animal models did not exhibit any signs of inflammation or toxicity, suggesting favorable tissue response to the implanted scaffolds. Initial observations revealed elevated levels of enzymes and biomarkers in the experimental groups after a 24 h interval, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), bilirubin, creatine kinase-MB (CK-MB), and serum creatinine. However, these parameters normalized 3 weeks post-implantation, with no significant increase compared to the control groups, suggesting that the implanted luffa-based scaffolds did not induce adverse effects on the heart, liver, and kidneys. Furthermore, the scaffold's significant pore size and porosity enable it to release drugs, including antibacterial medications. This study demonstrates promising results, indicating excellent scaffold porosity, sustained drug release, affirming the in vivo biocompatibility, absence of inflammatory responses, and overall tissue compatibility highlighting the immense potential of these luffa-based scaffolds in various tissue engineering and regenerative medicine applications.

14.
Int J Pharm ; 661: 124423, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38971511

RESUMO

Among the various pharmaceutical forms, tablets offer numerous advantages, like ease of administration, cost-effectiveness in production, and better stability of biomolecules. Beyond these benefits, the tablet form opens up possibilities for alternative routes for the local delivery of biopharmaceuticals such as oral or vaginal administration, thereby expanding the therapeutic applications of these biomolecules and overcoming the inconvenients associated with parenteral administration. However, to date there is limited information on the feasibility of developing biomolecules in the tablet form. In this study, we have evaluated the feasibility of developing monoclonal antibodies in the tablet form while preserving their biological properties. Different excipients and process parameters were studied to assess their impact on the antibody's integrity during tableting. ELISA results show that applying compression pressure up to 100 MPa is not detrimental to the antibody's binding properties when formulated from a lyophilized powder containing trehalose or sucrose as the major excipient. This observation was confirmed with SPR and ultracentrifugation experiments, which demonstrated that neither the binding affinity for both Fc and Fab antibody fragments nor its aggregation rate are affected by the tableting process. After compression, the tablets containing the antibodies have been shown to be stable for 6 months at room temperature.


Assuntos
Anticorpos Monoclonais , Excipientes , Comprimidos , Excipientes/química , Anticorpos Monoclonais/química , Anticorpos Monoclonais/administração & dosagem , Estabilidade de Medicamentos , Trealose/química , Sacarose/química , Química Farmacêutica/métodos , Pós , Sistemas de Liberação de Medicamentos/métodos , Composição de Medicamentos/métodos , Liofilização
15.
J Pharm Sci ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39033976

RESUMO

This article is the second of a series of two articles. In the first article of the series, a new Kv distribution model and an experimental methodology to measure the Kv distribution were introduced. In this second part, the Kv distribution is integrated into a lyo-simulation tool, to more accurately predict the variability of the product temperature, primary drying time, total sublimation mass flow and Pirani signal. The Kv distribution is also integrated into the graphical design space. The impact of incorporating the Rp distribution is briefly discussed. The comparison of the simulation tool with actual product temperature monitoring, Pirani signal or overall sublimation flow shows very good agreement in the case studies presented. Overall, the lyo-simulation incorporating the Kv distribution is a very useful tool to support industrial development, i.e. process optimization, scale assessment, technology transfer, and troubleshooting of the lyophilization process.

16.
Gels ; 10(7)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39057461

RESUMO

Bio-aerogels have emerged as promising materials for energy storage, providing a sustainable alternative to conventional aerogels. This review addresses their syntheses, properties, and characterization challenges for use in energy storage devices such as rechargeable batteries, supercapacitors, and fuel cells. Derived from renewable sources (such as cellulose, lignin, and chitosan), bio-based aerogels exhibit mesoporosity, high specific surface area, biocompatibility, and biodegradability, making them advantageous for environmental sustainability. Bio-based aerogels serve as electrodes and separators in energy storage systems, offering desirable properties such as high specific surface area, porosity, and good electrical conductivity, enhancing the energy density, power density, and cycle life of devices. Recent advancements highlight their potential as anode materials for lithium-ion batteries, replacing non-renewable carbon materials. Studies have shown excellent cycling stability and rate performance for bio-aerogels in supercapacitors and fuel cells. The yield properties of these materials, primarily porosity and transport phenomena, demand advanced characterization methods, and their synthesis and processing methods significantly influence their production, e.g., sol-gel and advanced drying. Bio-aerogels represent a sustainable solution for advancing energy storage technologies, despite challenges such as scalability, standardization, and cost-effectiveness. Future research aims to improve synthesis methods and explore novel applications. Bio-aerogels, in general, provide a healthier path to technological progress.

17.
Carbohydr Polym ; 342: 122326, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39048186

RESUMO

Developing a hemostatic material suitable for rapid hemostasis remains a challenge. This study presents a novel aminated gelatin sponge cross-linked with dialdehyde starch, exhibiting excellent biocompatibility and hemostatic ability. This aminated gelatin sponge features hydrophilic surface and rich porous structure with a porosity of up to 80 %. The results show that the aminated gelatin sponges exhibit superior liquid absorption capacity and can absorb up to 30-50 times their own mass of simulated body fluid within 5 min. Compared with the commercial gelatin hemostatic sponge and non-aminated gelatin hemostatic sponge, the aminated gelatin hemostatic sponge can accelerate the hemostatic process through electrostatic interactions, demonstrating superior hemostatic performance in both in vitro and in vivo hemostasis tests. The aminated gelatin sponge can effectively control the hemostatic time within 80 s in the in vivo rat femoral artery injury model, significantly outperforming both commercial and non-aminated gelatin sponges. In addition, the aminated gelatin sponge also exhibits good biocompatibility and certain antibacterial properties. The proposed aminated gelatin sponge has very good application prospects for the management of massive hemorrhage.


Assuntos
Materiais Biocompatíveis , Gelatina , Hemostáticos , Amido , Animais , Amido/química , Amido/farmacologia , Amido/análogos & derivados , Ratos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Hemostáticos/química , Hemostáticos/farmacologia , Gelatina/química , Gelatina/farmacologia , Masculino , Porosidade , Ratos Sprague-Dawley , Hemorragia/tratamento farmacológico , Hemostasia/efeitos dos fármacos , Esponja de Gelatina Absorvível/química , Esponja de Gelatina Absorvível/farmacologia , Reagentes de Ligações Cruzadas/química , Artéria Femoral/efeitos dos fármacos , Humanos
18.
Carbohydr Polym ; 342: 122358, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39048190

RESUMO

With the increase of oily wastewater discharge and the growing demand for clean water supply, high throughput green materials for oil-water separation with anti-pollution and self-cleaning ability are urgently needed. Herein, the polysaccharide-based composite aerogels of CMC/SA@TiO2-MWCNTs (CSTM) with fast photo-driven self-cleaning ability have been prepared by a simple freeze-drying and ionic cross-linking strategy. The introduction of TiO2 /MWCNTs nanocomposites effectively improves the underwater oleophobic and mechanical properties of polysaccharide aerogels and enables their photo-driven self-cleaning ability for efficient oil-water separation and purification of complex oily wastewater. For immiscible oil-water mixtures, a high separation flux of about 7650 L m-2 h-1 and a separation efficiency of up to 99.9 % was obtained. For surfactant-stabilized oil-in-water emulsion, a flux of 3952 L m-2 h-1 was achieved with a separation efficiency of up to 99.3 %. More importantly, the excellent photoluminescent self-cleaning ability and low oil adhesion contribute to the high contamination resistance, excellent reusability, and robust durability of CSTM aerogel. With the advantages of simple preparation, remarkable performance, and recyclability, this aerogel is expected to provide a green, economical, and scalable solution for the purification of oily wastewater.

19.
Pharm Res ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39078576

RESUMO

OBJECTIVE: This paper investigates the critical role of material thickness in freeze-dried pellets for enhancing the storage stability of encapsulated bacteria. Freeze dried material of varying thicknesses obtained from different annealing durations is quantified using Scanning Electron Microscopy (SEM) and X-ray microtomography (µCT), the material thickness is then correlated to the storage stability of the encapsulated cells. METHODS: A formulation comprising of sucrose, maltodextrin, and probiotic cells is quenched in liquid nitrogen to form pellets. The pellets undergo different durations of annealing before undergoing freeze-drying. The material thickness is quantified using SEM and µCT. Storage stability in both oxygen-rich and oxygen-poor environments is evaluated by measuring CFU counts and correlated with the pellet structure. RESULTS: The varying annealing protocols produce a range of material thicknesses, with more extensive annealing resulting in thicker materials. Storage stability exhibits a positive correlation with material thickness, indicating improved stability with thicker materials. Non-annealed pellets exhibit structural irregularities and inconsistent storage stability, highlighting the impracticality of avoiding annealing in the freeze-drying process. CONCLUSIONS: Extensive annealing not only enhances the storage stability of probiotic products but also provides greater control over the freeze-drying process, ensuring homogeneous and reproducible products. This study underscores the importance of material thickness in freeze-dried pellets for optimizing storage stability for probiotic formulations, and emphasize the necessity of annealing as a critical step in freeze-drying quenched pellets to achieve desired structural and stability outcomes.

20.
Int J Pharm ; : 124511, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39067548

RESUMO

Monoclonal antibodies (mAbs) represent a promising modality for the prevention and treatment of viral infections. For infections that initiate from the respiratory tract, direct administration of specific neutralizing mAbs into lungs has advantages over systemic injection of the same mAbs. Herein, using AUG-3387, a human-derived mAb with high affinity to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its various variants, as a model mAb, we formulated the mAb into dry powders by thin-film freeze-drying, confirmed that the AUG-3387 mAb reconstituted from the dry powders retained their integrity, high affinity to the SARS-CoV-2 spike protein receptor binding domain (RBD), as well as ability to neutralize RBD-expressing pseudoviruses. Finally, we showed that one of the AUG-3387 mAb dry powders have desirable aerosol properties for pulmonary delivery into the lung. We concluded that thin-film freeze-drying represents a viable method to prepare inhalable powders of virus-neutralizing mAbs for pulmonary delivery into the lung.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA