Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1393028, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855474

RESUMO

Instrumentation plays a key role in modern horticulture. Thus, the microtensiomenter, a new plant-based sensor that continuously monitors trunk water potential (Ψtrunk) can help in irrigation management decisions. To compare the response of the Ψtrunk with other continuous tree water status indicators such as the sap flow rate, the difference between canopy and air temperatures, or the variations of the trunk and fruit diameter, all the sensors were installed in 2022 in a commercial orchard of 'Honeycrisp' apple trees with M.9 rootstocks in Washinton State (USA). From the daily evolution of the Ψtrunk, five indicators were considered: predawn, midday, minimum, daily mean, and daily range (the difference between the daily maximum and minimum values). The daily range of Ψtrunk was the most linked to the maximum daily shrinkage (MDS; R2 = 0.42), the canopy-to-air temperature (Tc-Ta; R2 = 0.32), and the sap flow rate (SF; R2 = 0.30). On the other hand, the relative fruit growth rate (FRGR) was more related to the minimum Ψtrunk (R2 = 0.33) and the daily mean Ψtrunk (R2 = 0.32) than to the daily range of Ψtrunk. All indicators derived from Ψtrunk identified changes in tree water status after each irrigation event and had low coefficients of variation and high sensitivity. These results encourage Ψtrunk as a promising candidate for continuous monitoring of tree water status, however, more research is needed to better relate these measures with other widely studied plant-based indicators and identify good combinations of sensors and threshold values.

2.
Front Plant Sci ; 14: 1221163, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941676

RESUMO

Introduction: Greenhouse tomato growers face the challenge of balancing fruit size and chemical quality traits. This study focused on elucidating the interplay between plant branching and light management on these traits, while maintaining consistent shoot density. Methods: We evaluated one- and two-shoot plants under varying top light intensities using high-pressure sodium lamps and light-emitting diode (LED) inter-lighting. Results: The reduced yield in the two-shoot plants was mainly due to smaller fruit size, but not due to source strength limitations, as evaluated through leaf weight ratio (LWR), chlorophyll index, specific leaf area (SLA), leaf dry matter percentage, and stem soluble carbohydrate accumulation. Enhanced lighting improved fruit weight and various fruit traits, such as dry matter content, total soluble carbohydrate content, and phenolic content, for both one- and two-shoot plant types. Despite lower mean fruit weight, two-shoot plants exhibited higher values for chemical fruit quality traits, indicating that the fruit growth of two-shoot plants is not limited by the available carbohydrates (source strength), but by the fruit sink strength. Diurnal analysis of fruit growth showed that two-shoot plants had reduced expansion during light transitions. This drop in fruit expansion was not related to changes in root pressure (measured as xylem sap exudation from decapitated plants), but might be related to diminished xylem area in the stem joint of the two-shoot plants. The concentration of several hormones, including cytokinins, was lower in two-shoot plants, suggesting a reduced fruit sink capacity. Discussion: The predominant impact of branching to two-shoot plants on sink capacity suggests that the fruit growth is not limited by available carbohydrates (source strength). Alongside the observation that light supplementation and branching exert independent additive effects on fruit size and chemical traits, this illuminates the potential to independently regulate these aspects in greenhouse tomato production.

3.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37762656

RESUMO

Elucidating the molecular mechanisms controlling fruit development is a primary target for the improvement of new apple (Malus × domestica Borkh.) cultivars. The first two weeks of development following pollination are crucial to determine fruit characteristics. During this period, a lot of changes take place in apple fruit, going from rapid cell division to the production of important metabolites. In this work, attention was focused on the phenylpropanoid and flavonoid pathways responsible for the production of numerous compounds contributing to fruit quality, such as flavonols, catechins, dihydrochalcones and anthocyanins. A total of 17 isoenzymes were identified, belonging to seven classes of the phenylpropanoid and flavonoid pathways that, despite showing more than 80% sequence identity, showed differential expression regulation during the first two weeks of apple fruit development. This feature seems to be quite common for most of the enzymes of both pathways. Differential regulation of isoenzymes was shown to be present in both 'Golden Delicious' and a wild relative (Malus mandshurica), even though differences were also present. Each isoenzyme showed a specific pattern of expression in the flower and fruit organs, suggesting that genes coding for enzymes with the same function may control different aspects of plant biology. Finally, promoter analysis was performed in order to highlight differences in the number and type of regulatory motifs. Overall, our results indicate that the control of the expression of genes involved in the phenylpropanoid and flavonoid pathways may be very complex as not only enzymes belonging to the same class, but even putative isoenzymes, can have different roles for the plant. Such genes may represent an important regulatory mechanism, as they would allow the plant to fine-tune the processing of metabolic intermediates towards different branches of the pathway, for example, in an organ-specific way.


Assuntos
Malus , Malus/genética , Isoenzimas/genética , Flavonoides , Frutas/genética , Antocianinas
4.
Plants (Basel) ; 12(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37765440

RESUMO

Salicylic acid (SA) application is a promising agronomic tool. However, studies under field conditions are required, to confirm the potential benefits of SA. Thus, SA application was evaluated under field conditions for its effect on abscisic acid levels, antioxidant related-parameters, fruit quality, and yield in Aristotelia chilensis subjected to different levels of irrigation. During two growing seasons, three-year-old plants under field conditions were subjected to full irrigation (FI: 100% of reference evapotranspiration (ETo), and deficit irrigation (DI: 60% ETo). During each growth season, a single application of 0.5 mM SA was performed at fruit color change by spraying fruits and leaves of both irrigation treatments. The results showed that DI plants experienced moderate water stress (-1.3 MPa), which increased ABA levels and oxidative stress in the leaves. The SA application facilitated the recovery of all physiological parameters under the DI condition, increasing fruit fresh weight by 44%, with a 27% increase in fruit dry weight, a 1 mm increase in equatorial diameter, a 27% improvement in yield per plant and a 27% increase in total yield, with lesser oxidative stress and tissue ABA levels in leaves. Also, SA application significantly increased (by about 10%) the values of fruit trait variables such as soluble solids, total phenols, and antioxidant activity, with the exceptions of titratable acidity and total anthocyanins, which did not vary. The results demonstrated that SA application might be used as an agronomic strategy to improve fruit yield and quality, representing a saving of 40% regarding water use.

5.
Front Plant Sci ; 14: 1241267, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662177

RESUMO

To examine the physiological change in the growth suppression and abortion of parthenocarpic cucumber fruit, the expression of candidate marker genes of sugar starvation in relation to growth activity was examined. Fruits that failed to start exponential growth seemed to eventually abort. Hexose concentration of fruits was low in growth-suppressed fruit and increased in normally growing fruit consistent with the vacuolization. The correlation matrix indicated that the transcript levels of the genes, except CsaV3_6G046050 and CsaV3_5G032930, had a highly significant negative correlation with the relative growth rate in fruit length and had highly significant mutual positive correlations, suggesting that the asparagine synthetase gene, Cucumis sativus putative CCCH-type zinc finger protein CsSEF1, C. sativus BTB/POZ domain-containing protein At1g63850-like, CsaV3_3G000800, CsaV3_3G041280, and CsaV3_7G032930 are good markers of sugar starvation in cucumber fruit. The expression of candidate marker genes together with the hexose analysis strongly suggests that severe sugar starvation is occurring in growth-suppressed fruit.

6.
Plants (Basel) ; 12(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176971

RESUMO

The weather variations around the world are already having a profound impact on agricultural production. This impacts apple production and the quality of the product. Through agricultural precision, growers attempt to optimize both yield and fruit size and quality. Two experiments were conducted using field-grown "Gala" apple trees in Geneva, NY, USA, in 2021 and 2022. Mature apple trees (Malus × domestica Borkh. cv. Ultima "Gala") grafted onto G.11 rootstock planted in 2015 were used for the experiment. Our goal was to establish a relationship between stem water potential (Ψtrunk), which was continuously measured using microtensiometers, and the growth rate of apple fruits, measured continuously using dendrometers throughout the growing season. The second objective was to develop thresholds for Ψtrunk to determine when to irrigate apple trees. The economic impacts of different irrigation regimes were evaluated. Three different water regimes were compared (full irrigation, rainfed and rain exclusion to induce water stress). Trees subjected the rain-exclusion treatment were not irrigated during the whole season, except in the spring (April and May; 126 mm in 2021 and 100 mm in 2022); that is, these trees did not receive water during June, July, August and half of September. Trees subjected to the rainfed treatment received only rainwater (515 mm in 2021 and 382 mm in 2022). The fully irrigated trees received rain but were also irrigated by drip irrigation (515 mm in 2021 and 565 mm in 2022). Moreover, all trees received the same amount of water out of season in autumn and winter (245 mm in 2021 and 283 mm in 2022). The microtensiometer sensors detected differences in Ψtrunk among our treatments over the entire growing season. In both years, experimental trees with the same trunk cross-section area (TCSA) were selected (23-25 cm-2 TCSA), and crop load was adjusted to 7 fruits·cm-2 TCSA in 2021 and 8.5 fruits·cm-2 TCSA in 2022. However, the irrigated trees showed the highest fruit growth rates and final fruit weight (157 g and 70 mm), followed by the rainfed only treatment (132 g and 66 mm), while the rain-exclusion treatment had the lowest fruit growth rate and final fruit size (107 g and 61 mm). The hourly fruit shrinking and swelling rate (mm·h-1) measured with dendrometers and the hourly Ψtrunk (bar) measured with microtensiometers were correlated. We developed a logistic model to correlate Ψtrunk and fruit growth rate (g·h-1), which suggested a critical value of -9.7 bars for Ψtrunk, above which there were no negative effects on fruit growth rate due to water stress in the relatively humid conditions of New York State. A support vector machine model and a multiple regression model were developed to predict daytime hourly Ψtrunk with radiation and VPD as input variables. Yield and fruit size were converted to crop value, which showed that managing water stress with irrigation during dry periods improved crop value in the humid climate of New York State.

7.
Front Plant Sci ; 14: 1122397, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123845

RESUMO

Fruit growth and development are physiological processes controlled by several internal and external factors. This complex regulatory mechanism comprises a series of events occurring in a chronological order over a growing season. Understanding the underlying mechanism of fruit development events, however, requires consideration of the events occurring prior to fruit development such as flowering, pollination, fertilization, and fruit set. Such events are interrelated and occur in a sequential order. Recent advances in high-throughput sequencing technology in conjunction with improved statistical and computational methods have empowered science to identify some of the major molecular components and mechanisms involved in the regulation of fruit growth and have supplied encouraging successes in associating genotypic differentiation with phenotypic observations. As a result, multiple approaches have been developed to dissect such complex regulatory machinery and understand the genetic basis controlling these processes. These methods include transcriptomic analysis, quantitative trait loci (QTLs) mapping, whole-genome approach, and epigenetics analyses. This review offers a comprehensive overview of the molecular, genomic and epigenetics perspective of apple fruit growth and development that defines the final fruit size and provides a detailed analysis of the mechanisms by which fruit growth and development are controlled. Though the main emphasis of this article is on the molecular, genomic and epigenetics aspects of fruit growth and development, we will also deliver a brief overview on events occurring prior to fruit growth.

8.
PeerJ ; 11: e14900, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846450

RESUMO

Several factors influence the quality of melon fruits and foliar fertilizer application is one method for improving their quality. The objectives of this study were: (1) to investigate the response of commercial melon varieties to a soilless culture system in Nakhon Si Thammarat Province, Thailand, and (2) to evaluate the quality of melon fruit under various foliar fertilizer treatments. The experiment was arranged as a completely randomized block design with four replications. Eight commercial melon varieties, including four orange pulp melons (Sandee, Baramee, Sanwan, and Melon cat 697) and four green pulp melons (Kissme, Snowgreen, Melon Princess, and Kimoji), were used in this study. At 1-5 weeks after planting, the growth of the melons was measured using agronomic traits. Four foliar fertilizers (distilled water, micronutrients, secondary nutrients + micronutrients, and amino acid + micronutrients) were sprayed on the melon leaves at 1-5 weeks after pollination, and the growth of the melons, using fruit traits, was recorded. After harvesting, the melons were assessed for the quality of the fruit. This study was conducted at the School of Agricultural Technology and Food Industry's greenhouse and the Food Chemistry Laboratory of the Center for Scientific and Technological Equipment, Walailak University. In nearly all of the observed growth weeks, the data demonstrate that most agronomic and fruit traits were significantly different between the melon varieties. Sandee, Baramee, Melon cat 697, and Melon Princess are recommended for planting under Nakhon Si Thammarat's climate, based on fruit size and quality. Foliar fertilizer application impacted the shape, skin color, and quality of the melon. Melons treated with micronutrients, secondary nutrients and micronutrients, and amino acids and micronutrients exhibited better measures of fruit quality than those treated with non-foliar treatments. There was also an interaction observed between melon variety and foliar fertilizer application. Based on measures of fruit quality, Baramee, Melon cat 697, Kissme, and Melon Princess were more responsive to foliar fertilizer application than other melon varieties tested.


Assuntos
Cucurbitaceae , Frutas , Fertilizantes , Micronutrientes , Tailândia
9.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674474

RESUMO

In the olive (Olea europaea L.), an economically leading oil crop worldwide, fruit size and yield are determined by the early stages of fruit development. However, few detailed analyses of this stage of fruit development are available. This study offers an extensive characterization of the various processes involved in early olive fruit growth (cell division, cell cycle regulation, and cell expansion). For this, cytological, hormonal, and transcriptional changes characterizing the phases of early fruit development were analyzed in olive fruit of the cv. 'Picual'. First, the surface area and mitotic activity (by flow cytometry) of fruit cells were investigated during early olive fruit development, from 0 to 42 days post-anthesis (DPA). The results demonstrate that the cell division phase extends up to 21 DPA, during which the maximal proportion of 4C cells in olive fruits was reached at 14 DPA, indicating that intensive cell division was activated in olive fruits at that time. Subsequently, fruit cell expansion lasted as long as 3 weeks more before endocarp lignification. Finally, the molecular mechanisms controlling the early fruit development were investigated by analyzing the transcriptome of olive flowers at anthesis (fruit set) as well as olive fruits at 14 DPA (cell division phase) and at 28 DPA (cell expansion phase). Sequential induction of the cell cycle regulating genes is associated with the upregulation of genes involved in cell wall remodeling and ion fluxes, and with a shift in plant hormone metabolism and signaling genes during early olive fruit development. This occurs together with transcriptional activity of subtilisin-like protease proteins together with transcription factors potentially involved in early fruit growth signaling. This gene expression profile, together with hormonal regulators, offers new insights for understanding the processes that regulate cell division and expansion, and ultimately fruit yield and olive size.


Assuntos
Olea , Transcriptoma , Olea/metabolismo , Frutas/metabolismo , Fatores de Transcrição/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
10.
Plants (Basel) ; 11(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36559651

RESUMO

Endocarp development in olive trees includes three periods: growth (Period I), massive sclerification (Period II) and maximum hardening (Period III). The two first are strongly related to yield and irrigation management. Period I was reported to coincide with mesocarp cell division and thus with final fruit size. Period II was considered to be the most drought-resistant phenological stage. However, little is known in olive trees about the length of these periods and their capacity for predicting fruit size at harvest. The aim of this work was to evaluate the length of both periods in different cultivars and different location of full irrigated orchards. We also aimed to study the fruit feature impact on harvest at the end of Period I. Data from full irrigated olive orchards of cv Cornicabra, Arbequina and Manzanilla in two different locations (Ciudad Real, Central Spain, and Seville, South Spain) were used. The pattern of pit-breaking pressure throughout the season was measured with fruit samples for several years (2006 to 2022). These data and climatic data were used to compare different estimation methods for the length of Period I and II of endocarp development. Then, fruit volume and dry weight at the end of Period I were used to estimate fruit features at harvest. Results suggest that the Period I length was less temperature- and cultivar-dependent than expected. The duration of this period was almost constant at around 49 days after full bloom. Thermal time was negatively correlated with fruit size at the end of Period I. On the contrary, a lineal thermal model presented the lowest variability when estimating the Period II length, which was also affected by the cultivar. The best fit between fruit dry weight and volume at Period I vs. harvest was unique for oil cultivars (Cornicabra and Arbequina), while cv Manzanilla presented a different relationship. A temperature increase in the future would not affect the Period I length but would reduce the fruit size at the end of this period and at harvest.

11.
Plants (Basel) ; 11(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36297771

RESUMO

The peel essential oil (PEO) of sweet orange is used for flavoring liquors or foods and in the perfumery and cosmetics industry. The fruit maturity stage can modify the essential oil composition and aromatic properties, but little information is available on the evolution of PEO during the entire time set of fruit development. In this study, the yield, chemical composition and aromatic profile over the three phases of orange development were monitored. Four fruit traits (peel color, weight, acidity and sweetness) were recorded to characterize fruit development. Fruits of two sweet orange cultivars were sampled every two weeks from June to May of the next year. PEO was obtained by hydrodistillation and analyzed by gas chromatography coupled with a flame ionization detector (GC-FID). Compounds were identified with GC coupled with mass spectrometry (GC/MS). Ten expert panelists using the descriptor intensity method described the aromatic profile of PEO samples. The PEO composition was richer in oxygenated compounds at early fruit development stages, with an aromatic profile presenting greener notes. During fruit growth (Phases I and II), limonene's proportion increased considerably as a few aliphatic aldehydes brought the characteristic of orange aroma. During fruit maturation (from November to March), the PEO composition and aromatic profile were relatively stable. Later, some modifications were observed. Regardless of the fruit development stage, the two sweet oranges presented distinct PEO compositions and aromatic profiles. These results constitute a temporal reference for the chemical and aromatic evolution of sweet orange PEO in the fruit development process under Mediterranean conditions. During the first two phases of fruit development, many changes occur in the PEO composition and aroma, suggesting that their exploitation could create new products.

12.
Pest Manag Sci ; 78(6): 2679-2692, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35365948

RESUMO

BACKGROUND: Limited understanding of the fate of pesticides in apple orchards may lead to recurring pests or pose risks to food safety. In this study, through a field experiment conducted in an apple orchard, a dynamic plant uptake model, coupled with a soil water model, was developed to simulate measured pesticide concentrations in soil and different plant compartments. RESULTS: Results showed that the overall model could adequately describe the data set of four pesticides in the apple orchard. An estimated 15%-24.7% of applied pesticides were deposited on leaves and 0.37%-0.58% on fruits. Decreasing pesticide concentrations in fruits were observed after pesticide application, with 9.6%-64.8% of this decrease explained by biodegradation, 29.8%-75.8% by fruit growth dilution and 11.3%-47.6% by wash-off. Furthermore, a first estimation of dietary risks indicated that ingestion of the apples may not represent an acute or chronic risk to human health. CONCLUSION: The dynamic plant uptake model, coupled with the tipping buckets soil water model, could successfully be fitted to describe to the data set for the fate of four pesticides applied in an apple orchard. The contribution of different pathways to pesticide concentration was highly influenced by precipitation, fruit growth dilution and the characteristics of different pesticides. This model can improve our understanding of pesticide fate in apple orchards and has great potential for supporting food safety assessment and decision-making to minimize impacts arising from pesticide applications. © 2022 Society of Chemical Industry.


Assuntos
Malus , Resíduos de Praguicidas , Praguicidas , Humanos , Resíduos de Praguicidas/análise , Praguicidas/análise , Solo/química , Água
13.
Plants (Basel) ; 11(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35270158

RESUMO

The role of melatonin during the growth and ripening of apple fruit was studied using local varieties. The evolution of the growth and ripening parameters, including fruit size and weight, firmness, color change, sugar content, and ethylene production, was different in the five varieties studied, with yellow apples (Reineta and Golden) initiating the ripening process earlier than reddish ones (Teórica, Sanroqueña, and Caguleira). Changes in the melatonin and melatonin isomer 2 contents during growth and ripening were studied in Golden apples, as was the effect of the melatonin treatment (500 µM, day 124 post-anthesis) on the apple tree. Melatonin content varied greatly, with higher value in the skin than in the flesh. In the skin, melatonin increased at day 132 post-anthesis, when ethylene synthesis started. In the flesh, melatonin levels were high at the beginning of the growth phase and at the end of ripening. Melatonin isomer 2 was also higher once the ripening started and when ethylene began to increase. The melatonin treatment significantly advanced the ethylene production and increased the fruit size, weight, sugar content, and firmness. The data suggest that melatonin stimulates fruit ripening through the induction of ethylene synthesis, while melatonin treatments before ripening improve the final fruit quality.

14.
ACS Appl Mater Interfaces ; 14(4): 5983-5994, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35043613

RESUMO

Conventional methods for measuring the various dimensions of a fruit vary from vernier calipers to machine vision systems. This accounts for system bulkiness, high installation charges, and miscellaneous difficulties in continuous and precise monitoring. Considering the limitations, this paper reveals an inventive liquid-state stretchable strain sensor by incorporating poly(ethylene glycol) (PEG) and silver nitrate into an indigenous transparent polymer band. The combination of poly(dimethylsiloxane) (PDMS) and Ecoflex having an optimal mixing ratio (20:80) realized the equilibrium between a large strain, low stress, and less stickiness. The inclusion of a liquid polymer promoted high viscosity and chemical stability, while the addition of a metallic salt enhanced the electrical conductivity of the sensor. The correlation between strain and resistance showed high sensitivity and good repeatability of the PEG-silver nitrate composite. Linear resistance changes were noted with high coefficients of determination (R2 > 0.99) at least up to the strain of 30%. The performance test as a dendrometer on fruits of two different species demonstrated excellent stability of the sensor with increasing ratios from 1.7 to 3.9 kΩ/mm. This tunable elastic band sensor opened up a route toward long-term evaluation-targeted versatile applications such as fruit growth monitoring.


Assuntos
Citrus/crescimento & desenvolvimento , Elastômeros/química , Passiflora/crescimento & desenvolvimento , Dispositivos Eletrônicos Vestíveis , Dimetilpolisiloxanos/química , Módulo de Elasticidade , Condutividade Elétrica , Fenômenos Fisiológicos Vegetais , Poliésteres/química , Polietilenoglicóis/química , Nitrato de Prata/química , Viscosidade
15.
J Exp Bot ; 73(5): 1499-1515, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34849721

RESUMO

Cell wall modifications are of pivotal importance during plant development. Among cell wall components, xyloglucans are the major hemicellulose polysaccharide in primary cell walls of dicots and non-graminaceous monocots. They can connect the cellulose microfibril surface to affect cell wall mechanical properties. Changes in xyloglucan structure are known to play an important role in regulating cell growth. Therefore, the degradation of xyloglucan is an important modification that alters the cell wall. The α-XYLOSIDASE1 (XYL1) gene encodes the only α-xylosidase acting on xyloglucans in Arabidopsis thaliana. Here, we showed that mutation of XYL1 strongly influences seed size, seed germination, and fruit elongation. We found that the expression of XYL1 is directly regulated in developing seeds and fruit by the MADS-box transcription factor SEEDSTICK. We demonstrated that XYL1 complements the stk smaller seed phenotype. Finally, by atomic force microscopy, we investigated the role of XYL1 activity in maintaining cell stiffness and growth, confirming the importance of cell wall modulation in shaping organs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Frutas/genética , Frutas/metabolismo , Sementes
16.
Plant Physiol Biochem ; 171: 14-25, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34968988

RESUMO

Although Macauba (Acrocomia aculeata) has been highlighted by its high-quality oil to fit edible and nonedible purposes, data addressing carbon and nitrogen metabolism underlying development and ripening of fruits remain scarce. In addition, accessions of Macauba exibit varied oil yield in fruits, including during the fruit development stages. Here, we monitored contents of carbohydrates, proteins, amino acids and lipids in the mesocarp and endosperm of Macauba fruits until ripening. We selected three accessions from different Brazilian regions (southeast, MG; northeast, PE; and central-west, MS) that differ in the mesocarp lipid content of ripe fruits. Despite the anatomical differences, mesocarp and endosperm exhibited similar trends of metabolite accumulation for most of the analyzed compounds. In the mesocarp, total soluble protein, free amino acids, sucrose, starch and total lipids accumulate towards ripening, while glucose and fructose declined in all accessions. Endosperm differed from mesocarp solely in the amino acid content, which decreased in ripe fruits. In the endosperm, accessions accumulated carbohydrates differently. Accession PE showed comparable fructose and starch contents in the endosperm between the beginning of fruit development and ripening, while in accessions MG and MS, both compounds decreased and increased, respectively, towards ripening. Accession MG was highlighted by its highest lipid content in the two tissues indicating its potential for energy and cosmetic industries. Our results provide novel insights into metabolic changes underlying development and ripening of Macauba fruits and variability in oil content among accessions, indicating new targets for breeding programs.


Assuntos
Arecaceae , Frutas , Carboidratos , Endosperma , Lipídeos
17.
Sci Total Environ ; 803: 150109, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34525761

RESUMO

To maintain the viability of citrus farms in a scenario of scarce water supplies for irrigation purposes, such as in south-eastern Spain, it is necessary to detect the maximum threshold of crop water status and vegetative growth, both of which are vulnerable to the combined effect of water and salinity stress. With this aim, adult late mandarin trees were subjected to a gradual increase in salinity of the irrigation water for four consecutive growing seasons, accompanied by a water deficit for the first three seasons, while the fourth season counted as a recovery period. The treatments tested were: i) control (CTL), irrigated at 100% of the ETc in the first season followed by an additional 33% water leaching requirement in the second and third seasons; (ii) a regulated deficit irrigation (RDI100) treatment, irrigated as the CTL except in phase I and until mid-phase II, coinciding with the beginning of the slowdown in trunk growth, where irrigation was set at 65 and 50% CTL in the first and last two seasons, respectively, and 80% in phase III; (iii) RDI50, irrigated as the CTL during the first season, and from the second season onwards, at 50% RDI100 during the deficit period; (iv) FARMER, irrigated in accordance with the farmer's criteria. A moderate saline water stress combined with the application of RDI100 treatment did not reduce crop yield after one growing season, but did reduce plant growth. However, after two consecutive seasons (in both RDI strategies) water stress drastically reduced both yield and plant growth, mainly due to a high accumulation of sodium and chloride in the leaves. Gas exchange parameters were also greatly reduced. Furthermore, it was found that the water deficit could be prolonged until the trunk growth slowed down during the second fruit growth stage in mandarin trees, leading to a substantial increase in water productivity values.


Assuntos
Citrus , Árvores , Frutas , Águas Salinas , Salinidade , Estresse Salino , Estações do Ano
18.
Front Plant Sci ; 12: 725479, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490023

RESUMO

Pomegranate (Punica granatum L.) fruit is well known for its health-beneficial metabolites. The pomegranate peel consists of an inner thick spongy white tissue, and an outer smooth skin layer that accumulates anthocyanins in red cultivars when ripe. The skin is made up of epidermis cells covered by a cuticle, the latter being the first target of cracking and russeting. The present study focuses on the effect of Israel's hot and dry climate on pomegranate growth, to elucidate the derived effects on fruit skin characteristics and its putative resistance to the building pressure from fruit expansion. Experiments were conducted for four years, in four orchards located in different regions of the country, each with a different typical microclimate. Fruit-growth parameters were followed using remote-sensing tools, microscopic study, and mineral analysis of the skin, followed by determination of the peel's elastic modulus. Fruit expanded in two phases: a short rapid phase followed by a gradual phase with a sigmoidal growth-rate pattern. Extreme hot and dry climate during the period of maximal growth rate was associated with restricted growth and a high proportion of small-size fruit. Anatomical study indicated that the skin of mature pomegranate fruit is made up of epidermal cells that are relatively flat and spaced apart, and is expected to be less durable against internal pressure. In contrast, skin of early immature fruit has two layers of dense and rounded epidermis, and is expected to be more resistant to cracking. Tensile strength studies confirmed this trend-skin of mature fruit had a lower elastic modulus than young fruit. However, restrained growth due to extreme environmental cues may result in better resistance of the mature pomegranate fruit to cracking, and in better skin quality and appearance, albeit small fruits. On the other hand, temperate climate at the beginning of the growth period, which allows high growth rate and high daily shrinkage, leads to pomegranate skin disorders.

19.
Plant J ; 107(6): 1788-1801, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34250661

RESUMO

Despite the importance of understanding plant growth, the mechanisms underlying how plant and fruit growth declines during drought remain poorly understood. Specifically, it remains unresolved whether carbon or water factors are responsible for limiting growth as drought progresses. We examine questions regarding the relative importance of water and carbon to fruit growth depending on the water deficit level and the fruit growth stage by measuring fruit diameter, leaf photosynthesis, and a proxy of cell turgor in olive (Olea europaea). Flow cytometry was also applied to determine the fruit cell division stage. We found that photosynthesis and turgor were related to fruit growth; specifically, the relative importance of photosynthesis was higher during periods of more intense cell division, while turgor had higher relative importance in periods where cell division comes close to ceasing and fruit growth is dependent mainly on cell expansion. This pattern was found regardless of the water deficit level, although turgor and growth ceased at more similar values of leaf water potential than photosynthesis. Cell division occurred even when fruit growth seemed to stop under water deficit conditions, which likely helped fruits to grow disproportionately when trees were hydrated again, compensating for periods with low turgor. As a result, the final fruit size was not severely penalized. We conclude that carbon and water processes are able to explain fruit growth, with importance placed on the combination of cell division and expansion. However, the major limitation to growth is turgor, which adds evidence to the sink limitation hypothesis.


Assuntos
Frutas/crescimento & desenvolvimento , Olea/fisiologia , Fotossíntese , Folhas de Planta/fisiologia , Carbono/metabolismo , Desidratação , Frutas/citologia , Olea/citologia , Células Vegetais , Espanha , Água/metabolismo
20.
BMC Genomics ; 22(1): 341, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980145

RESUMO

BACKGROUND: Summer squash (Cucurbita pepo: Cucurbitaceae) are a popular horticultural crop for which there is insufficient genomic and transcriptomic information. Gene expression atlases are crucial for the identification of genes expressed in different tissues at various plant developmental stages. Here, we present the first comprehensive gene expression atlas for a summer squash cultivar, including transcripts obtained from seeds, shoots, leaf stem, young and developed leaves, male and female flowers, fruits of seven developmental stages, as well as primary and lateral roots. RESULTS: In total, 27,868 genes and 2352 novel transcripts were annotated from these 16 tissues, with over 18,000 genes common to all tissue groups. Of these, 3812 were identified as housekeeping genes, half of which assigned to known gene ontologies. Flowers, seeds, and young fruits had the largest number of specific genes, whilst intermediate-age fruits the fewest. There also were genes that were differentially expressed in the various tissues, the male flower being the tissue with the most differentially expressed genes in pair-wise comparisons with the remaining tissues, and the leaf stem the least. The largest expression change during fruit development was early on, from female flower to fruit two days after pollination. A weighted correlation network analysis performed on the global gene expression dataset assigned 25,413 genes to 24 coexpression groups, and some of these groups exhibited strong tissue specificity. CONCLUSIONS: These findings enrich our understanding about the transcriptomic events associated with summer squash development and ripening. This comprehensive gene expression atlas is expected not only to provide a global view of gene expression patterns in all major tissues in C. pepo but to also serve as a valuable resource for functional genomics and gene discovery in Cucurbitaceae.


Assuntos
Cucurbita , Cucurbita/genética , Flores/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Polinização , RNA-Seq
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA