Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Sci Total Environ ; 948: 174620, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-38992381

RESUMO

Organophosphate esters (OPEs) have proven to be pervasive in aquatic environments globally. However, understanding their partitioning behavior and mechanisms at the sediment-water interface remains limited. This study elucidated the spatial heterogeneity, interfacial exchange, and diffusion mechanisms of 14 OPEs (∑14OPEs) from river to coastal aquatic system. The transport tendencies of OPEs at the sediment-water interface were quantitatively assessed using fugacity methods. The total ∑14OPEs concentrations in water and sediments ranged from 154 ng/L to 528 ng/L and 2.41 ng/g dry weight (dw) to 230 ng/g dw, respectively. This result indicated a descending spatial tendency with moderate variability. OPE distribution was primarily influenced by temperature, pH, and dissolved oxygen levels. As the carbon atom number increased, alkyl and chlorinated OPEs transitioned from diffusion towards the aqueous phase to equilibrium. In contrast, aryl OPEs and triphenylphosphine oxide, which had equivalent carbon atom counts, maintained equilibrium throughout. Diffusion trends of individual OPE congener at the sediment-water interface varied at the same total organic carbon contents (foc). As the foc increased, the fugacity fraction values for all OPE homologs showed a declining trend. The distinct molecular structure of each OPE monomer might lead to unique diffusive behaviors at the sediment-water interface. Higher soot carbon content had a more pronounced effect on the distribution patterns of OPEs. The sediment-water distribution of OPEs was primarily influenced by total organic carbon, sediment particle size, dry density, and moisture content. OPEs displayed the highest sensitivity to fluctuations in ammonium and dissolved organic carbon. This study holds significant scientific and theoretical implications for elucidating the interfacial transport and driving forces of OPEs and comprehending their fate and endogenous release in aquatic ecosystems.

2.
Mar Pollut Bull ; 205: 116692, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38972219

RESUMO

Phytoplankton blooms are common along the Chinese coast in the East China Sea, driven by various nutrient sources including river discharge, bottom water regeneration, and Kuroshio subsurface water intrusion. A notable 2014 summer bloom off the Zhejiang coast, exhibiting a Chl a concentration of 20.1 µg L-1, was significantly influenced by Changjiang River discharge, and high nutrient concentrations are often observed in the region's surface water. During blooms, primary production peaks at 1686.3 mg C m-3 d-1, indicating substantial CO2 absorption, with surface water fCO2 declining to 299.5 µatm, closely linked to plankton activities. Hypoxia often coincides with these frequent bloom occurrences, implicating marine-derived organic matter decomposition as a pivotal factor. Elevated particulate organic carbon concentrations further support this assumption, alongside increased nutrient levels, fCO2, and low pH in hypoxic waters. These findings underscore the intricate interplay between phytoplankton, nutrient cycling, and hypoxia formation, essential for effective coastal ecosystem management.


Assuntos
Monitoramento Ambiental , Eutrofização , Fitoplâncton , Água do Mar , China , Clorofila A , Ecossistema , Nutrientes/análise , Oceanos e Mares , Estações do Ano , Água do Mar/química
3.
Water Res ; 261: 122043, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38981351

RESUMO

The bioaccumulation and trophic transfer of organophosphate flame retardants (OPFRs) in marine ecosystems have attracted great attention in recent research, but our understanding of the trophic transfer mechanisms involved is limited. In this study, we investigated the trophodynamics of OPFRs and their metabolites in a subtropical coastal food web collected from the northern Beibu Gulf, China, and characterized their trophodynamics using fugacity- and biotransformation-based approaches. Eleven OPFRs and all seven metabolites were simultaneously quantified in the shellfish, crustacean, pelagic fish, and benthic fish samples, with total concentrations ranging from 164 to 4.11 × 104 and 4.56-4.28 × 103 ng/g lipid weight, respectively. Significant biomagnification was observed only for tris (phenyl) phosphate (TPHP) and tris (2-ethylhexyl) phosphate (TEHP), while other compounds except for tris(2-chloroethyl) phosphate (TCEP) displayed biomagnification trends based on Monte Carlo simulations. Using a fugacity-based approach to normalize the accumulation of OPFRs in biota to their relative biological phase composition, storage lipid is the predominant biological phase for the mass distribution of 2-ethylhexyl diphenyl phosphate (EHDPHP) and TPHP. The water content and structure protein are equally important for TCEP, whereas lipid and structure protein are the two most important phases for other OPFRs. The mass distribution of these OPFRs along with TLs can explain their trophodynamics in the food web. The organophosphate diesters (as OPFR metabolites) also displayed biomagnification trends based on bootstrapped estimation. The correlation analysis and Korganism-water results jointly suggested the metabolites accumulation in high-TL organisms was related to biotransformation processes. The metabolite-backtracked trophic magnification factors for tri-n­butyl phosphate (TNBP) and TPHP were both greater than the values that accounted for only the parent compounds. This study highlights the incorporation of fugacity and biotransformation analysis to characterize the trophodynamic processes of OPFRs and other emerging pollutants in food webs.


Assuntos
Biotransformação , Retardadores de Chama , Cadeia Alimentar , Organofosfatos , Poluentes Químicos da Água , Retardadores de Chama/metabolismo , Organofosfatos/metabolismo , Animais , China , Poluentes Químicos da Água/metabolismo , Peixes/metabolismo , Monitoramento Ambiental
4.
J Hazard Mater ; 474: 134799, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838527

RESUMO

Estuaries and coasts are located at the land-sea interface, where sediment liquefaction due to strong wave action results in significant material exchange at the sediment-seawater system. Polycyclic aromatic hydrocarbons (PAHs), as organic pollutants, are distributed across various media. Herein, the impact of wave was studied on the release of PAHs through indoor microcosmic experiments combined with a level IV fugacity model. Comparison revealed that the release amount and rate of PAHs during static consolidation stage were minimal, whereas wave action substantially enhanced the release. Particularly the sediments in a liquefied state, the PAHs release in Stage III was 1.55-1.86 times that in Stage II, reaching 84.73 µg/L. The loss of soil strength and strong hydrodynamic effects resulted in a substantial release of PAHs into seawater along with suspended solids. Due to volatility of 2-ring PAHs and difficult desorption of 6-ring PAHs, 3-5-ring PAHs are the main contributors to releases into seawater. The model results also indicated that the three PAHs had different fates in the sediment-seawater system, with sediment serving as an important "reservoir" for benzo[a]pyrene entering seawater, while functioning as both a "sink" and a "source" for pyrene.

5.
Environ Sci Technol ; 58(24): 10504-10514, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38838208

RESUMO

Some persistent hydrophobic pollutants biomagnify, i.e., achieve higher contaminant levels in a predator than in its prey (Cpredator/Cprey > 1). This ratio is called the biomagnification factor (BMF) and is traditionally determined using tissues from carcasses or biopsies. Using a noninvasive method that relies on equilibrium sampling in silicone-film-coated vessels and chemical analysis of paired diet and feces, we determined on three occasions the thermodynamic biomagnification limit (BMFlim) and feces-based biomagnification factor (BMFF) for three zoo-housed polar bears who experience seasonal periods of hyperphagia and hypophagia. All bears had high biomagnification capabilities (BMFlim was up to 200) owing to very efficient lipid assimilation (up to 99.5%). The bears differed up to a factor of 3 in their BMFlim. BMFlim and BMFF of a bear increased by up to a factor of 4 during the hypophagic period, when the ingestion rate was greatly reduced. Much of that variability can be explained by differences in the lipid assimilation efficiency, even though this efficiency ranged only from 98.1 to 99.5%. A high BMFlim was associated with a high abundance of Bacteroidales and Lachnospirales in the gut microbiome. Biomagnification varies to a surprisingly large extent between individuals and within the same individual over time. Future work should investigate whether this can be attributed to the influence of the gut microbiome on lipid assimilation by studying more individual bears at different key physiological stages.


Assuntos
Microbioma Gastrointestinal , Ursidae , Animais , Fezes/microbiologia , Dieta
6.
Sci Rep ; 14(1): 12110, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802473

RESUMO

Copper mineralization in the Pulang (PL) porphyry deposit, Langdu (LD) porphyry-skarn deposit and Songnuo (SN) porphyry prospect in northwestern Yunnan, China, is closely related to the emplacement of quartz monzonite porphyries. The chemical compositions of biotite and apatite from those porphyries were analyzed to calculate the halogen fugacity and to constrain mineralized and barren porphyries. Our data show that biotites from the PL deposit have higher MgO, SiO2, TiO2 and F contents than those from the LD deposit or SN prospect. Compared to those in the LD deposit and SN prospect, the Mg (atoms per formula unit (apfu)) and AlVI (apfu) value in biotite is greater, and the F content is greater and the SO3 and Ce2O3/Y2O3 ratio in apatite are lower in the PL deposit. Ti-biotite thermometry and apatite-biotite geothermometry show that the crystallization temperature of biotite from the PL deposit is higher than that from the SN prospect or LD deposit. The results suggest that oxygen fugacity, magmatic sulfur, and H2O contents cannot be used to efficiently distinguish the PL deposit from the LD deposit and SN prospect. However, the halogen chemistry of biotite from the PL deposit is distinctly different from that of the LD deposit or SN prospect according to the lower IV (F), indicating that mineralized quartz monzonite porphyries in the PL deposit formed during the late magmatic stage, which is in contrast to those in the LD deposit and SN prospect. The mineralized porphyries display a remarkable negative linear relationship (r = - 0.96) with the log (f HF/f HCl) and log (f H2O/f HF) ratio, which can be used to distinguish the mineralized and barren porphyries. Compared with other typical porphyry Cu systems, there is a remarkable positive linear relationship between IV (Cl) and log (f H2O/f HCl). In addition, the linear slope and intercept for log (f H2O/f HCl) ratios and the IV (Cl) of biotite from the potassic and phyllic alteration zones are significantly greater than those from other porphyries.

7.
Sci Total Environ ; 942: 173541, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38802002

RESUMO

The organic carbon normalized partition coefficient, KOC, describes the equilibrium distribution of a chemical between water and organic carbon in soil or sediment. It is a key parameter in evaluating chemical persistence, mass distribution, and transport using multimedia fate and transport models. Considerable uncertainty remains about the KOC values of cyclic volatile methylsiloxane (cVMS) compounds, and in particular the dependence of KOC on temperature. In this study, we used a batch equilibrium (BE) method to measure KOC values and their temperature dependence between ∼5 and 25 °C for octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) with soil and sediments. Approximate log KOC values at 25 °C were 4.5-5.0 for D4 and 5.5-6.1 for D5 with different sorbents, and decreased by 0.3 log units or less at 4-5 °C. Enthalpies of sorption, ΔHOC, obtained for the different sorbents ranged from +7.2 to +16 kJ mol-1, with average values of +7.9 and +13 kJ mol-1 for D4 and D5, respectively. These values differ in magnitude and direction from those reported elsewhere based on KOC values determined by a novel dynamic purge-and-trap (PnT) method, but are consistent with predictions based on their solvation properties. A new fugacity-based multimedia model incorporating sorption/desorption kinetics was developed and used to predict concentrations in the phases of BE and PnT systems during desorption of cVMS under different experimental and ideal conditions. Model simulations suggested that KOC values for cVMS compounds derived from the PnT systems could be influenced by sorption disequilibrium between water and solids controlled by desorption rates from the particle phase to water, and subsequent losses due to volatilization and degradation. This has the potential to result in overestimation of KOC values when fitting the experimental data of cVMS mass remaining in a PnT system over time, which could explain the observed differences between the methods.

8.
Sci Bull (Beijing) ; 69(10): 1495-1505, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38553345

RESUMO

Lunar materials are overall more reducing compared with their terrestrial counterparts, but the mechanism remains to be elucidated. In this study, we present a possible explanation for the changes in redox state of the lunar regolith caused by impact events, based on our investigations of the impact glass beads from Chang'e-5 mission. These glass beads contain iron metal grains and show concentration gradients of FeO and K2O (with or without Na2O) from their rims to centers. The compositional profiles exhibit error-function-like shapes, which indicates a diffusion-limited mechanism. Our numerical modeling results suggest that the iron metal grains on the surface of the glass beads were generated through the reduction of FeO by elemental K and (or) Na produced during the impact events. Meanwhile, the iron metal grains inside the bead may have formed due to oxygen diffusion driven by redox potential gradients. Furthermore, our study suggests that impact processes intensify the local reducing conditions, as evidenced by the presence of calcium sulfide particles within troilite grains that coexist with iron metal grains on the surface of the glass beads. This study provides insights into the oxygen diffusion kinetics during the formation of iron metal spherules and sheds light on the changes in redox conditions of lunar materials caused by impact events.

9.
Sci Total Environ ; 922: 171294, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38417503

RESUMO

This study analyzed polybrominated diphenyl ethers (PBDEs) in Zhelin Bay, China, investigating their occurrence, sources, and environmental behavior. PBDE congeners were detected in all sampled media. The Σ13PBDE concentrations in the dissolved phase ranged from 1.04 to 41.40 ng/L, while the concentrations ranged in suspended particulate matter from 0.02 to 12.56 ng/L. In sediments, PBDE concentrations ranged from 1.41 to 8.57 ng/g. The higher proportion of PBDEs in the dissolved phase in the bay than in the estuary is attributable to the type of PBDE products used in the aquacultural process in Zhelin Bay. Moreover, correlation analysis between PBDE concentrations and environmental parameters showed that the primary factor influencing PBDE concentrations in Zhelin Bay sediments may shift from riverine inputs to aquaculture. Principal component analysis and positive matrix factorization revealed that PBDEs in the water of Zhelin Bay primarily originated from the degradation of octa-BDE, deca-BDE, and penta-BDE products employed in aquaculture. In contrast, the PBDEs in Zhelin Bay sediments mainly originated from riverine inputs. In addition, a level IV dynamic fugacity-based multimedia model was used to simulate the temporal variation of PBDE concentrations in Zhelin Bay. Modeled short-term trends showed a relatively swift transport of PBDE congeners in the water column to the atmosphere and sediments. Over the long term, sediment concentrations gradually decreased, in contrast to the less rapid declines observed in the atmosphere and water. Furthermore, this study revealed that the transport and transformation processes of PBDEs in the Zhelin Bay environment were considerably influenced by the diffusion coefficient in water, the water-side mass transfer coefficient at the water-sediment interface, the sediment resuspension rate, and the organic carbon-water partition coefficient.

10.
Sci Total Environ ; 915: 170084, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38224886

RESUMO

Due to intensive industrial production and living activities, urban areas are the main anthropogenic mercury (Hg) emission sources. After entering the environment through exhaust gases, wastewater or waste residues, Hg can migrate and transform among different environmental compartments in various species, such as elemental mercury (Hg0), divalent mercury (Hg2+) and methylmercury (MeHg). Studies have yet to report on the multimedia behaviors of Hg in urban areas due to the complexity of the processes involved. In this study, the atmospheric Hg emission in Dalian, a coastal city in Northeast China, was estimated by an anthropogenic emission inventory, and a Level III multimedia model was constructed based on the fugacity/aquivalence method to simulate the fate of Hg in air, water, soil, sediment, vegetation and film. The total annual atmospheric emission was 9.91 t, of which coal combustion and non-coal sources accounted for 70.1 % and 29.9 %, respectively. Atmospheric emission and advection were dominated by Hg0, and aquatic emission and advection were dominated by Hg2+. The migration of air-vegetation, vegetation-soil and soil-air were three important pathways of Hg in urban areas. The model was validated by collecting local soil and vegetation samples and regional air, seawater and sediment monitoring data. The scenario simulation indicated that the local load would decrease to different extents with a 21.0 % reduction in atmospheric Hg emission by implementing the "coal-to-gas" measures. Our developed model can characterize the fate of Hg in coastal urban areas and provide a reference for control strategies.

11.
Sci Total Environ ; 921: 170495, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38296070

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) and their oxygenated and nitrated derivatives, OPAHs and NPAHs, are semivolatile air pollutants which are distributed and cycling regionally. Subsequent to atmospheric deposition to and accumulation in soils they may re-volatilise, a secondary source which is understudied. We studied the direction of air-soil mass exchange fluxes of 12 OPAHs, 17 NPAHs, 25 PAHs and one alkylated PAH in two rural environments being influenced by the pollutant concentrations in soil and air, by season, and by land cover. The OPAHs and NPAHs in samples of topsoil, of ambient air particulate and gas phases and in the gas-phase equilibrated with soil were analysed by GC-APCI-MS/MS. The pollutants soil burdens show a pronounced seasonality, a winter maximum for NPAHs and PAHs and a summer maximum for OPAHs. One order of magnitude more OPAH and parent PAH are found stored in forest soil than in nearby grassland soil. Among a number of 3-4 ring PAHs, the OPAHs benzanthrone and 6H-benzo(c,d)pyren-6-one, and the NPAHs 1- and 2-nitronaphthalene, 9-nitrophenanthrene and 7-nitrobenz(a)anthracene are found to re-volatilise from soils at a rural background site in central Europe in summer. At a receptor site in northern Europe, net deposition of polycyclic aromatic compounds (PACs) prevails and re-volatilisation occurs only sporadic. Re-volatilisation of a number of PACs, including strong mutagens, from soils in summer and even in winter indicates that long-range atmospheric transport of primary PAC emissions from central Europe to receptor areas might be enhanced by secondary emissions from soils.

12.
Environ Res ; 245: 118053, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38160976

RESUMO

The middle reaches of the Yellow River are rich in energy resources, with the Kuye River, a first-class river in this region, serving as a vital hub for the coal chemical industry within China. This study investigated the occurrence patterns, environmental trends, and ecological risks associated with polycyclic aromatic hydrocarbons (PAHs) in the Kuye River Basin, offering insights into the environmental dynamics of regions. The findings indicated that the river sediments primarily contained PAHs with medium to high-molecular weights, exhibiting levels ranging from 402.92 ng/g dw to 16,783.72 ng/g dw, while water bodies predominantly featured PAHs with low to medium molecular weights, ranging from 299.34 ng/L to 10,930.9 ng/L. The source analysis of PAHs indicated that industrial and traffic exhaust emissions were the primary contributors to PAHs in the Kuye basin, with sediments serving as a secondary release source based on fugacity fraction. The content of PAHs in sediment correlated closely with the environmental factors, and the PAHs inventory of the basin was 19.97 tons. The increased overall PAH concentration in the basin posed significant ecological and public health concerns, necessitating urgent attention.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Sedimentos Geológicos/análise , Poluentes Químicos da Água/análise , Rios/química , China , Medição de Risco , Água
13.
Chemosphere ; 350: 141036, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38151061

RESUMO

This study was performed to evaluate the variable indicators of polycyclic aromatic hydrocarbons (PAHs) source apportionment by using an unsteady-state multimedia model. The identical indicators have been used in different environmental bulks for more than 20 years, which resulted in huge errors in source apportionment. Generated through four emission arrays, the diagnostic ratios for indicators revealed dimensionless OR, in air/soil and seawater/sediment reached ∼3.63 and ∼0.24 for Fla/Pyr, and for Ant/Phe the ratio was ∼0.31 and ∼0.18, and coastal OR for air/seawater was higher than the offshore, suggesting both compartmental and spatial divergences. The PCA indicated similar loading distribution and primary factors, shared by emission, atmosphere, and seawater arrays, whereas the slow transport between air/water and soil/sediment, weak degradation, and original concentration level might result in factors in soil and sediment separated or merged in dynamic conditions. The physicochemical divergence of indicators could be intensified after long-term environmental transport, misleading the source apportionment. Therefore, the result elucidated the essential evaluation of additional inorganic indicators and necessary verification by simultaneous sampling measurement on vertical compartments.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/análise , Multimídia , Monitoramento Ambiental/métodos , Água do Mar , Solo , China
14.
Environ Pollut ; 343: 123222, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38145639

RESUMO

Widespread occurrences of various poly- and perfluoroalkyl substances (PFAS) in terrestrial environment calls for the growing interest in their transport behaviors. However, limited studies detected PFAS with structural diversity in tree barks, which reflect the long-term contamination in atmosphere and play a vital role in air-soil exchange behaviors. In this study, 26 PFAS congeners and typical branched isomers were investigated in surface soils and tree barks at 28 sites along the Taihu Lake, Taipu River, and Huangpu River. Concentrations of total PFAS in soils and tree barks were 0.991-29.4 and 7.99-188 ng/g dw, with PFPeA and PFDoA were the largest contributors in the two matrices. The highest PFAS levels were found in the Taihu Lake watershed, where textile manufacturing and metal plating activities highly prosper. With regard to the congener and isomer signatures, short-chain homologs dominated in soils (65.5%), whereas long-chain PFAS showed a major proportion in barks (41.9%). The composition of linear isomers of PFOS, PFOA and PFHxS implied that precursor degradation might be an important source of PFAS in addition to the 3M electrochemical fluorination (ECF). Additionally, the distance from the emission source, total organic carbon (TOC), logKOA and logKOW were considered potential influencing factors in PFAS distributions. Based on the multi-media fugacity model, about 71% of the fugacity fraction (ffs) values of the PFAS were below 0.3, indicating the dominant deposition from the atmosphere to the soil. The average fluxes of air-soil exchange for PFAS were -0.700 ± 11.0 ng/(m2·h). Notably, the estimated daily exposure to PFAS ranged from 9.57 × 10-2 to 8.59 × 10-1 ng/kg·bw/day for children and 3.31 × 10-2 to 3.09 × 10-1 ng/kg·bw/day for adults, suggesting low risks from outdoor inhalation and dermal uptake. Overall, results from distribution with structural diversity, air-soil exchange and preliminary risk assessment. This study provided in-depth insight of PFAS in multi-medium environment and bridged gaps between field data and policy-making for pollution control.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Criança , Humanos , Solo , Fluorocarbonos/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Rios/química , Ácidos Alcanossulfônicos/análise
15.
Environ Pollut ; 343: 123187, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38123113

RESUMO

The widespread presence of thiacloprid (THI), a neonicotinoid, raises concerns for human health and the aquatic environment due to its persistence, toxicity, and bioaccumulation. The fate of THI in paddy multimedia systems is mainly governed by irrigation practices, but the potential impacts remain poorly documented. This study investigated the effects of water management practices on THI spatiotemporal dynamics in paddy multimedia systems by combining soil column experiments and a non-steady-state multimedia model. The results indicated the wetting-drying cycle (WDC) irrigation reduced THI occurrences in environmental phases (i.e., soil, interstitial water, and overlying water) and accelerated the THI loss through the THI aerobic degradation process. THI occurrences in the soil and water phases decreased from 18.8% for conventional flooding (CF) treatment to 9.2% for severe wetting-drying cycle (SW) treatment after 29 days, while the half-lives shortened from 11.1 days to 7.3 days, respectively. Meanwhile, the WDC decreased THI outflow from leakage water, which reduced the THI risk of leaching. There was no significant difference in THI plant uptake and volatilization between CF and WDC treatments. The mean proportions of THI fate in paddy multimedia systems followed the order: THI degradation (57.7%), outflow from leakage water (25.5%), occurrence in soil (12.4%), plant uptake (3.4%), occurrence in interstitial water (0.7%), occurrence in overlying water (0.3%), volatilization (<0.1%) after 29 days. The sensitivity analysis identified the soil organic carbon partition coefficient (KOC) as the most sensitive parameter affecting THI's fate. In addition, the topsoil layers of 0-4 cm were the main sink of THI, holding 67% of THI occurrence in the soil phase. The THI occurrence in interstitial water was distributed evenly throughout the soil profile. These findings made beneficial theoretical supplements and provided valuable empirical evidence for water management practices to reduce the THI ecological risk.


Assuntos
Oryza , Solo , Tiazinas , Humanos , Multimídia , Carbono , Água , Neonicotinoides
16.
J Hazard Mater ; 465: 133247, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38141293

RESUMO

Antibiotics have attracted global attention because of their potential ecological and health risks. The emission, multimedia fate and risk of 18 selected antibiotics in the entire Yangtze River basin were evaluated by using a level Ⅳ fugacity model. High antibiotic emissions were found in the middle and lower reaches of the Yangtze River basin. The total antibiotic emissions in the Yangtze River basin exceeded 1600 tons per year between 2013 and 2021. The spatial distribution of antibiotics concentration was the upper Yangtze River > middle Yangtze River > lower Yangtze River, which is positively correlated with animal husbandry size in the basin. Temperature and precipitation increases may decrease the antibiotic concentrations in the environment. Transfer fluxes showed that source emission inputs, advection processes, and degradation fluxes contributed more to the total input and output. High ecological risks in the water environment were found in 2018, 2019, 2020, and 2021. The comprehensive health risk assessment through drinking water and fish consumption routes showed that a small part of the Yangtze River basin is at medium risk, and children have a relatively high degree of health risk. This study provides a scientific basis for the pollution control of antibiotics at the basin scale.


Assuntos
Rios , Poluentes Químicos da Água , Animais , Criança , Humanos , Antibacterianos/análise , Multimídia , Monitoramento Ambiental , China , Medição de Risco , Poluentes Químicos da Água/análise
17.
J Pestic Sci ; 48(4): 187-201, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38090221

RESUMO

Fugacity models are used widely to predict the time-dependent behaviors of chemicals in environments containing several media (e.g., air, sediment, soil, and water). However, these fugacity models work on the assumption that the concentration of a chemical in each medium is uniform, so they cannot describe the spatial distribution of the chemical. We developed a new fugacity model, termed InPestCFD, incorporating computational fluid dynamics to describe both the time-dependent distribution and the spatial distribution of a chemical in a medium. InPestCFD was used to calculate the behavior of an insecticide released from an aerosol canister in a room. Indoor airflow and aerosol particle behavior were calculated via computational fluid dynamics and using a Lagrangian dispersion model. Transport of the insecticide among media (aerosol particles, air, ceiling, floor, and walls) was calculated using the fugacity model. The time-dependent distributions and spatial distributions of the insecticide in the media agreed well with real measurements.

18.
Environ Res ; 238(Pt 2): 117238, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37783324

RESUMO

The potential human health risks associated with soil vapor intrusion and volatile organic compounds (VOCs) exposure were characterized at an industrialized site by the quantification of gaseous VOCs in soil pores using a passive sampling technique. The gaseous tetrachloroethene (PCE) in soil pores varied between 12 and 5,400 µg m-3 showing 3 orders of magnitude variation with dependence on groundwater PCE concentrations. Though the PCE concentration in the air only varied between 0.45 and 1.5 µg m-3 showing negligible variations compared to the variation observed in soil pores. The PCE concentration in the air varied between 0.45 and 1.5 µg m-3. The calculation of fugacity suggested that the PCE in the test site originated from groundwater. Measured PCE in groundwater ranged from 14 to 2,400 times higher than PCE in soil gas. This indicates that conducting a vapor intrusion risk assessment using passive soil gas sampling is critical for accurate risk characterization and assessment. Estimated PCE inhalation cancer risks for street cleaners and indoor residents varied between 10-6 and 10-4 with a low plausible hazard, and between 10-3 and 10-2 with a high risk, respectively. The results of this study demonstrate that passive sampling offers a significantly lower cost and labor-intensive approach compared to traditional methods for assessing pollution distribution in contaminated sites and characterizing risks. This highlights the potential for wider application of passive sampling techniques in environmental studies.


Assuntos
Poluição do Ar em Ambientes Fechados , Água Subterrânea , Poluentes do Solo , Tetracloroetileno , Compostos Orgânicos Voláteis , Humanos , Poluição do Ar em Ambientes Fechados/análise , Solo , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Gases , Compostos Orgânicos Voláteis/análise
19.
Ecotoxicol Environ Saf ; 266: 115541, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37806132

RESUMO

Precipitation can lead to significant leaching of heavy metals from abandoned tailings,resulting in a decline in the quality of the surrounding environment. This study aimed to simulate and quantify the migration patterns and fate of heavy metals in tailings caused by precipitation in various environmental media (tailings, air, water, soil, and sediments) using leaching tests, source apportionment, and a fugacity model. Results revealed that the average contents of Cd, Cu, As, Pb, Zn, and Cr in the un-weathered tailings were 3.43, 495.56, 160.70, 138.94, 536.57, and 69.52 mg/kg, respectively. The ecological risk factors in the tailings as well as in sediments and soils, were in the following order: Cd >Cu >As >Pb >Zn >Cr. A fugacity model based on the mass-balance methods was established, achieving a good agreement between simulation and measured values. The total amounts of Cd, Cu, As, Pb, and Zn leached from abandoned tailings over the 30-year evaluation period were estimated to be 1.09, 62.44, 0.16, 0.94, and 102.12 t, respectively. Soil and sediments are important reservoirs for heavy metals. The sum of the As, Cd, Cu, Pb, and Zn storage capacities in the soil and sediment accounted for 77.28%, 75.63%, 73.94%, 69.39%, and 57.80% of the total storage capacity, respectively. This study could provide the means for the establishment of a targeted pollution control plan, a guide for restoration projects, and will aid in controlling pollution risk and improving the surrounding environment.


Assuntos
Metais Pesados , Poluentes do Solo , Monitoramento Ambiental , Cádmio , Chumbo , Medição de Risco , Poluentes do Solo/análise , Metais Pesados/análise , Solo , China
20.
Environ Res ; 238(Pt 2): 117225, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37788759

RESUMO

Antibiotics have been heavily used over the past decades, resulting in their frequent detections in rivers and increasing ecological risks. Recognizing characteristics of antibiotic ecological risks (AERs) and making effective strategies to mitigate the AERs are essential to ensure the safety of aquatic ecosystem and public health. In this study, an integrated technological framework has been proposed toward identifying management options for reducing AERs by jointly utilizing multimedia fugacity modelling and ecotoxicological risk assessment, and applied to characterize the AERs in a peri-urban river in Beijing. Specifically, a level III fugacity model has been successfully established to simulate the fate of antibiotics in the environment, and the manageable parameters have been screened out via sensitivity analysis of the model. Then the validated fugacity model has been used for scenario modellings to optimize mitigation strategies of AERs. Results show most of the antibiotics considered are frequently detected in the river, and pose medium or high risks to aquatic organisms. Relatively, the macrolides and fluoroquinolones present higher ecotoxicological risks than sulfonamides and tetracyclines. Furthermore, the mixture risk quotient and predictive equation of concentration addition suggest joint and synergistic/antagonistic effects of AERs for multiple or binary antibiotics in the environment. Largely, the concentrations of antibiotics in the river are determined by the source emissions into water and soil. Scenario modellings show the improvement of antibiotic removal rates would be considered preferentially to mitigate the AERs. Also, controlling human consumption is conducive to reducing the risks posed by tetracyclines, macrolides and trimethoprim, while controlling animal consumption would benefit the reduction for sulfonamides. Overall, the joint strategy presents the greatest reduction of AERs by reducing antibiotic consumption and together improving sewage treatment rate and antibiotic removal rate. The study provides us a useful guideline to make ecological risk-based mitigation strategy for reducing AERs in environment.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Animais , Humanos , Antibacterianos/análise , Rios , Multimídia , Ecossistema , Sulfanilamida , Macrolídeos/análise , Tetraciclinas/análise , China , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA