Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Biochem Pharmacol ; 226: 116398, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944395

RESUMO

Glioblastoma (GBM) is a primary intracranial malignant tumor with the highest mortality and morbidity among all malignant central nervous system tumors. Tanshinone IIA is a fat-soluble active ingredient obtained from Salvia miltiorrhiza, which has an inhibitory effect against various cancers. We designed and synthesized a novel L-shaped ortho-quinone analog TE5 with tanshinone IIA as the lead compound and tested its antitumor activity against GBM. The results indicated that TE5 effectively inhibited the proliferation, migration, and invasion of GBM cells, and demonstrated low toxicity in vitro. We found that TE5 may bind to androgen receptors and promote their degradation through the proteasome. Inhibition of the PI3K/AKT signaling pathway was also observed in TE5 treated GBM cells. Additionally, TE5 arrested the cell cycle at the G2/M phase and induced mitochondria-dependent apoptosis. In vivo experiments further confirmed the anti-tumor activity, safety, and effect on androgen receptor level of TE5 in animal models of GBM. Our results suggest that TE5 may be a potential therapeutic drug to treat GBM.


Assuntos
Glioblastoma , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Receptores Androgênicos , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Abietanos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinonas/farmacologia , Quinonas/síntese química , Quinonas/química , Receptores Androgênicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
2.
Oncol Lett ; 28(1): 316, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38807667

RESUMO

Cholangiocarcinoma (CCA) is a lethal cancer originating from the epithelial cells within the bile duct and ranks as the second most prevalent form of liver cancer in Thailand. Polo-like kinase 1 (PLK1), a protein serine/threonine kinase, regulates a number of steps in cell mitosis and is upregulated in several types of cancer, including CCA. Our previous study identified PLK1 as a biomarker of the C1 subtype, correlating with poor prognosis in intrahepatic CCA. The present study aimed to examine the effect of PLK1 inhibition on CCA cells. Different CCA cell lines developed from Thai patients, HuCCA1, KKU055, KKU100 and KKU213A, were treated with two PLK1 inhibitors, BI2536 and BI6727, and were transfected with small interfering RNA, followed by analysis of cell proliferation, cell cycle distribution and cell apoptosis. It was discovered that BI2536 and BI6727 inhibited cell proliferation and caused G2/M-phase arrest in CCA cells. Furthermore, the number of total apoptotic cells was increased in PLK1 inhibitor-treated CCA cells. The expression levels of mitotic proteins, aurora kinase A, phosphorylated PLK1 (T210) and cyclin B1, were augmented in PLK1-inhibited CCA cells. Additionally, inhibition of PLK1 led to increased DNA damage, as determined by the upregulated levels of γH2AX and increased cleavage of poly (ADP-ribose) polymerase, an apoptotic marker. These results suggested that inhibiting PLK1 prolonged mitotic arrest and subsequently triggered cell apoptosis. Validation of the antiproliferative effects of PLK1 inhibition was accomplished through silencing of the PLK1 gene. In conclusion, targeting PLK1 provided promising results for further study as a potential candidate for targeted therapy in CCA.

3.
Phytomedicine ; 127: 155440, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452691

RESUMO

BACKGROUND: The high metastasis and mortality rates of head and neck squamous cell carcinoma (HNSCC) urgently require new treatment targets and drugs. A steroidal component of ChanSu, telocinobufagin (TBG), was verified to have anti-cancer effects in various tumors, but its activity and mechanism in anti-HNSCC were still unknown. PURPOSE: This study tried to demonstrate the anti-tumor effect of TBG on HNSCC and verify its potential mechanism. METHODS: The effect of TBG on cell proliferation and metastasis were performed and the TBG changed genes were detected by RNA-seq analysis in HNSCC cells. The GSEA and PPI analysis were used to identify the pathways targeted for TBG-regulated genes. Meanwhile, the mechanism of TBG on anti-proliferative and anti-metastasis were investigated in vitro and in vivo. RESULTS: The in vitro and in vivo experiments confirmed that TBG has favorable anti-tumor effects by induced G2/M phase arrest and suppressed metastasis in HNSCC cells. Further RNA-seq analysis demonstrated the genes regulated by TBG were enriched at the G2/M checkpoint and PLK1 signaling pathway. Then, the bioinformatic analysis of clinical data found that high expressed PLK1 were closely associated with poor overall survival in HNSCC patients. Furthermore, PLK1 directly and indirectly modulated G2/M phase and metastasis (by regulated CTCF) in HNSCC cells, simultaneously. TBG significantly inhibited the protein levels of PLK1 in both phosphorylated and non-phosphorylated forms and then, in one way, inactivated PLK1 failed to activate G2/M phase-related proteins (including CDK1, CDC25c, and cyclin B1). In another way, be inhibited PLK1 unable promote the nuclear translocation of CTCF and thus suppressed HNSC cell metastasis. In contrast, the anti-proliferative and anti-metastasis effects of TBG on HNSCC cell were vanished when cells high-expressed PLK1. CONCLUSION: The present study verified that PLK1 mediated TBG induced anti-tumor effect by modulated G2/M phase and metastasis in HNSCC cells.


Assuntos
Bufanolídeos , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Pontos de Checagem da Fase G2 do Ciclo Celular , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Linhagem Celular Tumoral
4.
J Cancer ; 15(8): 2318-2328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495493

RESUMO

Aim of the study: To investigate the anti-tumor effects of Lasiokaurin on breast cancer and explore its underlying molecular mechanism. Materials and methods: In this study, MTT assay, plate colony formation assays, soft agar assay, and EdU assay were employed to evaluate the anti-proliferation effects of LAS. Apoptosis and cell cycle distribution were detected by flow cytometry. The molecular mechanism was predicted by performing RNA sequencing and verified by using immunoblotting assays. Breast cancer organiods derived from patient-derived xenografts model and MDA-MB-231 xenograft mouse model were established to assess the effect of LAS. Results: Our study showed that LAS treatment significantly suppressed cell viability of 5 breast cancer cell lines, with the IC50 value of approximately 1-5 µM. LAS also inhibitied the clonogenic ability and DNA synthesis of breast cancer cells, Moreover, LAS induced apoptosis and G2/M cell cycle arrest in SK-BR-3 and MDA-MB-231 cells. Notably, transcriptomic analysis predicted the mechanistic involvement of PLK1 in LAS-suppressed breast cancer progression. Our experiment data further verified that LAS reduced PLK1 mRNA and protein expression in breast cancer, accompanied by downregulating CDC25C and AKT phosphorylation. Ultimately, we confirmed that LAS inhibit breast cancer growth via inhibiting PLK1 pathway in vivo. Conclusions: Collectively, our findings revealed that LAS inhibits breast cancer progression via regulating PLK1 pathway, which provids scientific evidence for the use of traditional Chinese medicine in cancer therapy.

5.
Res Sq ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464014

RESUMO

The Survivin protein has roles in repairing incorrect microtubule-kinetochore attachments at prometaphase, and the faithful execution of cytokinesis, both as part of the chromosomal passenger complex (CPC) (1). In this context, errors frequently lead to aneuploidy, polyploidy and cancer (1). Adding to these well-known roles of this protein, this paper now shows for the first time that Survivin is required for cancer cells to enter mitosis, and that, in its absence, HeLa cells accumulate at early prophase, or prior to reported before (2, 3). This early prophase blockage is demonstrated by the presence of an intact nuclear lamina and low Cdk1 activity (4). Importantly, escaping the arrest induced by Survivin abrogation leads to multiple mitotic defects, or mitotic catastrophe, and eventually cell death. Mechanistically, Cdk1 does not localize at the centrosome in the absence of Survivin pointing at an impairment in signaling through the Cdc25B-Cdk1 axis. In agreement, even though Survivin directly interacts with Cdc25B, both in vitro and in vivo, in its absence, an inactive cytosolic Cdc25B-Cdk1-Cyclin B1 complex accumulates. This flaw in Cdc25B activation can however be reversed in Survivin-depleted HeLa cell extracts to which the recombinant Survivin protein is added back. Finally, a role for Survivin in the Cdc25B-mediated activation of Cdk1 is confirmed by overriding the early prophase blockage induced in cells lacking Survivin through the expression of a gain-of-function Cdc25B mutant.

6.
Acta Biochim Biophys Sin (Shanghai) ; 56(2): 223-238, 2024 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-38143380

RESUMO

Glioma is characterized by rapid cell proliferation, aggressive invasion, altered apoptosis and a poor prognosis. ß-Sitosterol, a kind of phytosterol, has been shown to possess anticancer activities. Our current study aims to investigate the effects of ß-sitosterol on gliomas and reveal the underlying mechanisms. Our results show that ß-sitosterol effectively inhibits the growth of U87 cells by inhibiting proliferation and inducing G2/M phase arrest and apoptosis. In addition, ß-sitosterol inhibits migration by downregulating markers of epithelial-mesenchymal transition (EMT). Mechanistically, network pharmacology and transcriptomics approaches illustrate that the EGFR/MAPK signaling pathway may be responsible for the inhibitory effect of ß-sitosterol on glioma. Afterward, the results show that ß-sitosterol effectively suppresses the EGFR/MAPK signaling pathway. Moreover, ß-sitosterol significantly inhibits tumor growth in a U87 xenograft nude mouse model. ß-Sitosterol inhibits U87 cell proliferation and migration and induces apoptosis and cell cycle arrest in U87 cells by blocking the EGFR/MAPK signaling pathway. These results suggest that ß-sitosterol may be a promising therapeutic agent for the treatment of glioma.


Assuntos
Glioma , Farmacologia em Rede , Sitosteroides , Animais , Camundongos , Humanos , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Transdução de Sinais , Proliferação de Células , Receptores ErbB/genética , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica , Apoptose , Movimento Celular
7.
Cancer Genomics Proteomics ; 20(6suppl): 754-762, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38035711

RESUMO

BACKGROUND/AIM: Hepatocellular carcinoma (HCC) is a prevalent type of cancer worldwide. Although sorafenib is the only chemotherapy agent used for HCC, there is a need to discover a more potent anticancer agent with reduced side-effects. The compound, (S)-3-(3-fluoro-4-methoxybenzyl)-5,6,7-trimethoxychroman-4-one (FMTC), was designed to inhibit tubulin assembly but its specific mechanisms of action have not been previously investigated. Herein, we investigated the regulation mechanisms by which FMTC affects the proliferation of the HCC cell line, Huh7. MATERIALS AND METHODS: The effects of FMTC on cell viability and growth were analyzed in the HCC cell line, Huh7. Cell cycle and apoptosis regulated by FMTC were analyzed using flow cytometry. To verify the regulation of mRNA and protein expression of cell proliferation-related factors by FMTC in Huh7 cells, RT-qPCR and western blot analyses were employed. RESULTS: FMTC suppressed cell division dose-dependently by triggering cell cycle arrest at the G2/M phase via p21 up-regulation. The increased phosphorylation of histone H3 on Ser-10 and the condensation of chromatin in FMTC-treated cells indicated mitotic arrest. Prolonged FMTC-induced cell cycle arrest triggered apoptosis. CONCLUSION: FMTC inhibits the proliferation of human liver cancer cells by up-regulating p21, thereby inducing cell cycle arrest at the G2/M phase. These findings highlight FMTC as a novel agent for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Divisão Celular , Apoptose
8.
Hum Cell ; 36(5): 1672-1688, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37306883

RESUMO

The behavior of vascular smooth muscle cells (VSMCs) contributes to the formation of neointima. We previously found that EHMT2 suppressed autophagy activation in VSMCs. BRD4770, an inhibitor of EHMT2/G9a, plays a critical role in several kinds of cancers. However, whether and how BRD4770 regulates the behavior of VSMCs remain unknown. In this study, we evaluate the cellular effect of BRD4770 on VSMCs by series of experiments in vivo and ex vivo. We demonstrated that BRD4770 inhibited VSMCs' growth by blockage in G2/M phase in VSMCs. Moreover, our results demonstrated that the inhibition of proliferation was independent on autophagy or EHMT2 suppression which we previous reported. Mechanistically, BRD4770 exhibited an off-target effect from EHMT2 and our further study reveal that the proliferation inhibitory effect by BRD4770 was associated with suppressing on SUV39H2/KTM1B. In vivo, BRD4770 was also verified to rescue VIH. Thus, BRD4770 function as a crucial negative regulator of VSMC proliferation via SUV39H2 and G2/M cell cycle arrest and BRD4770 could be a molecule for the therapy of vascular restenosis.


Assuntos
Músculo Liso Vascular , Neointima , Humanos , Neointima/metabolismo , Proliferação de Células , Movimento Celular , Células Cultivadas , Histona-Lisina N-Metiltransferase
9.
Biochem Biophys Res Commun ; 665: 98-106, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37149988

RESUMO

Zebrafish have the ability to fully regenerate their hearts after injury since cardiomyocytes subsequently dedifferentiate, re-enter cell cycle, and proliferate to replace damaged myocardial tissue. Recent research identified the reactivation of dormant developmental pathways during cardiac regeneration in adult zebrafish, suggesting pro-proliferative pathways important for developmental heart growth to be also critical for regenerative heart growth after injury. Histone deacetylase 1 (Hdac1) was recently shown to control both, embryonic as well as adult regenerative cardiomyocyte proliferation in the zebrafish model. Nevertheless, regulatory pathways controlled by Hdac1 are not defined yet. By analyzing RNA-seq-derived transcriptional profiles of the Hdac1-deficient zebrafish mutant baldrian, we here identified DNA damage response (DDR) pathways activated in baldrian mutant embryos. Surprisingly, although the DDR signaling pathway was transcriptionally activated, we found the complete loss of protein expression of the known DDR effector and cell cycle inhibitor p21. Consequently, we observed an upregulation of the p21-downstream target Cdk2, implying elevated G1/S phase transition in Hdac1-deficient zebrafish hearts. Remarkably, Cdk1, another p21-but also Cdc25-downstream target was downregulated. Here, we found the significant downregulation of Cdc25 protein expression, explaining reduced Cdk1 levels and suggesting impaired G2/M phase progression in Hdac1-deficient zebrafish embryos. To finally prove defective cell cycle progression due to Hdac1 loss, we conducted Cytometer-based cell cycle analyses in HDAC1-deficient murine HL-1 cardiomyocytes and indeed found impaired G2/M phase transition resulting in defective cardiomyocyte proliferation. In conclusion, our results suggest a critical role of Hdac1 in maintaining both, regular G1/S and G2/M phase transition in cardiomyocytes by controlling the expression of essential cell cycle regulators such as p21 and Cdc25.


Assuntos
Miócitos Cardíacos , Peixe-Zebra , Animais , Camundongos , Ciclo Celular/genética , Divisão Celular , Proliferação de Células , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Miócitos Cardíacos/metabolismo , Peixe-Zebra/metabolismo , Fosfatases cdc25/metabolismo , Proteína Quinase CDC2/metabolismo
10.
Methods Mol Biol ; 2660: 295-310, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37191806

RESUMO

DEPDC1B (aliases BRCC3, XTP8, XTP1) is a DEP (Dishevelled, Egl-1, Pleckstrin) and Rho-GAP-like domains containing predominately membrane-associated protein. Earlier, we and others have reported that DEPDC1B is a downstream effector of Raf-1 and long noncoding RNA lncNB1, and an upstream positive effector of pERK. Consistently, DEPDC1B knockdown is associated with downregulation of ligand-stimulated pERK expression. We demonstrate here that DEPDC1B N-terminus binds to the p85 subunit of PI3K, and DEPDC1B overexpression results in decreased ligand-stimulated tyrosine phosphorylation of p85 and downregulation of pAKT1. Collectively, we propose that DEPDC1B is a novel cross-regulator of AKT1 and ERK, two of the prominent pathways of tumor progression. Our data showing high levels of DEPDC1B mRNA and protein during the G2/M phase have significant implications in cell entry into mitosis. Indeed, DEPDC1B accumulation during the G2/M phase has been associated with disassembly of focal adhesions and cell de-adhesion, referred to as a DEPDC1B-mediated de-adhesion mitotic checkpoint. DEPDC1B is a direct target of transcription factor SOX10, and SOX10-DEPDC1B-SCUBE3 axis has been associated with angiogenesis and metastasis. The Scansite analysis of the DEPDC1B amino acid sequence shows binding motifs for three well-established cancer therapeutic targets CDK1, DNA-PK, and aurora kinase A/B. These interactions and functionalities, if validated, may further implicate DEPDC1B in regulation of DNA damage-repair and cell cycle progression processes. Finally, a survey of the publicly available datasets indicates that high DEPDC1B expression is a viable biomarker in breast, lung, pancreatic and renal cell carcinomas, and melanoma. Currently, the systems and integrative biology of DEPDC1B is far from comprehensive. Future investigations are necessary in order to understand how DEPDC1B might impact AKT, ERK, and other networks, albeit in a context-dependent manner, and influence the actionable molecular, spatial, and temporal vulnerabilities within these networks in cancer cells.


Assuntos
Proteínas de Ciclo Celular , Mitose , Linhagem Celular Tumoral , Ligantes , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo
11.
BMC Cancer ; 23(1): 266, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959566

RESUMO

BACKGROUND: Our previous studies have identified CA916798 as a chemotherapy resistance-associated gene in lung cancer. However, the histopathological relevance and biological function of CA916798 in lung adenocarcinoma (LUAD) remains to be delineated. In this study, we further investigated and explored the clinical and biological significance of CA916798 in LUAD. METHODS: The relationship between CA916798 and clinical features of LUAD was analyzed by tissue array and online database. CCK8 and flow cytometry were used to measure cell proliferation and cell cycle of LUAD after knockdown of CA916798 gene. qRT-PCR and western blotting were used to detect the changes of cell cycle-related genes after knockdown or overexpression of CA916798. The tumorigenesis of LUAD cells was evaluated with or without engineering manipulation of CA916798 gene expression. Response to Gefitinib was evaluated using LUAD cells with forced expression or knockdown of CA916798. RESULTS: The analysis on LUAD samples showed that high expression of CA916798 was tightly correlated with pathological progression and poor prognosis of LUAD patients. A critical methylation site in promoter region of CA916798 gene was identified to be related with CA916798 gene expression. Forced expression of CA916798 relieved the inhibitory effects of WEE1 on CDK1 and facilitated cell cycle progression from G2 phase to M phase. However, knockdown of CA916798 enhanced WEE1 function and resulted in G2/M phase arrest. Consistently, chemical suppression of CDK1 dramatically inhibited G2/M phase transition in LUAD cells with high expression of CA916798. Finally, we found that CA916798 was highly expressed in Gefitinib-resistant LUAD cells. Exogenous expression of CA916798 was sufficient to endow Gefitinib resistance with tumor cells, but interference of CA916798 expression largely rescued response of tumor cells to Gefitinib. CONCLUSIONS: CA916798 played oncogenic roles and was correlated with the development of Gefitinib resistance in LUAD cells. Therefore, CA916798 could be considered as a promising prognostic marker and a therapeutic target for LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Western Blotting , Proliferação de Células , Prognóstico , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
12.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166701, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36990128

RESUMO

Hypoxia-regulated proximal tubular epithelial cells (PTCs) G2/M phase arrest/delay was involved in production of renal tubulointerstitial fibrosis (TIF). TIF is a common pathological manifestation of progression in patients with chronic kidney disease (CKD), and is often accompanied by lipid accumulation in renal tubules. However, cause-effect relationship between hypoxia-inducible lipid droplet-associated protein (Hilpda), lipid accumulation, G2/M phase arrest/delay and TIF remains unclear. Here we found that overexpression of Hilpda downregulated adipose triglyceride lipase (ATGL) promoted triglyceride overload in the form of lipid accumulation, leading to defective fatty acid ß-oxidation (FAO), ATP depletion in a human PTC cell line (HK-2) under hypoxia and in mice kidney tissue treated with unilateral ureteral obstruction (UUO) and unilateral ischemia-reperfusion injury (UIRI). Hilpda-induced lipid accumulation caused mitochondrial dysfunction, enhanced expression of profibrogenic factors TGF-ß1, α-SMA and Collagen I elevation, and reduced expression of G2/M phase-associated gene CDK1, as well as increased CyclinB1/D1 ratio, resulted in G2/M phase arrest/delay and profibrogenic phenotypes. Hilpda deficiency in HK-2 cell and kidney of mice with UUO had sustained expression of ATGL and CDK1 and reduced expression of TGF-ß1, Collagen I and CyclinB1/D1 ratio, resulting in the amelioration of lipid accumulation and G2/M arrest/delay and subsequent TIF. Expression of Hilpda correlated with lipid accumulation, was positively associated with tubulointerstitial fibrosis in tissue samples from patients with CKD. Our findings suggest that Hilpda deranges fatty acid metabolism in PTCs, which leads to G2/M phase arrest/delay and upregulation of profibrogenic factors, and consequently promote TIF which possibly underlie pathogenesis of CKD.


Assuntos
Insuficiência Renal Crônica , Obstrução Ureteral , Animais , Humanos , Camundongos , Apoptose , Linhagem Celular Tumoral , Colágeno Tipo I/metabolismo , Regulação para Baixo , Ácidos Graxos , Fibrose , Pontos de Checagem da Fase G2 do Ciclo Celular , Hipóxia/patologia , Rim/patologia , Lipídeos , Insuficiência Renal Crônica/patologia , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/metabolismo
13.
Viruses ; 15(2)2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36851618

RESUMO

This study focuses on clarifying the regulation of chicken 14-3-3σ protein on the fibrous histiocyte proliferation caused by ALV-J-SD1005 strain infection. DF-1 cells were inoculated with 102 TCID50 of ALV-J-SD1005 strain; the cell proliferation viability was dramatically increased and 14-3-3σ expressions were dramatically decreased within 48 h after inoculation. Chicken 14-3-3σ over-expression could significantly decrease the cell proliferation and the ratio of S-phase cells, but increase the ratio of G2/M-phase cells in ALV-J-infected DF-1 cells; by contrast, chicken 14-3-3σ knockdown expression could cause the opposite effects. Additionally, chicken 14-3-3σ over-expression could also dramatically down-regulate the expressions of CDK2/CDC2, but up-regulate p53 expressions in the DF-1 cells; in contrast, the knockdown expression could significantly increase the expressions of CDK2/CDC2 and decrease p53 expressions. It can be concluded that chicken 14-3-3σ can inhibit cell proliferation and cell cycle by regulating CDK2/CDC2/p53 expressions in ALV-J-infected DF1 cells. ALV-J-SD1005 strain can promote cell proliferation by reducing 14-3-3σ expressions. This study helps to clarify the forming mechanism of acute fibrosarcoma induced by ALV-J infection.


Assuntos
Vírus da Leucose Aviária , Animais , Vírus da Leucose Aviária/genética , Galinhas , Proteína Supressora de Tumor p53/genética , Proliferação de Células , Fibroblastos
14.
Molecules ; 28(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36838936

RESUMO

In this study, 2-benzyl-10a-(1H-pyrrol-2-yl)-2,3-dihydropyrazino[1,2-a]indole-1,4,10(10aH)-trione (DHPITO), a previously identified inhibitor against hepatocellular carcinoma cells, is shown to exert its cytotoxic effects by suppressing the proliferation and growth of CRC cells. An investigation of its molecular mechanism confirmed that the cytotoxic activity of DHPITO is mediated through the targeting of microtubules with the promotion of subsequent microtubule polymerisation. With its microtubule-stabilising ability, DHPITO also consistently arrested the cell cycle of the CRC cells at the G2/M phase by promoting the phosphorylation of histone 3 and the accumulation of EB1 at the cell equator, reduced the levels of CRC cell migration and invasion, and induced cellular apoptosis. Furthermore, the compound could suppress both tumour size and tumour weight in a CRC xenograft model without any obvious side effects. Taken together, the findings of the present study reveal the antiproliferative and antitumour mechanisms through which DHPITO exerts its activity, indicating its potential as a putative chemotherapeutic agent and lead compound with a novel structure.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Linhagem Celular Tumoral , Tubulina (Proteína)/metabolismo , Pontos de Checagem do Ciclo Celular , Apoptose , Moduladores de Tubulina/farmacologia , Microtúbulos , Antineoplásicos/farmacologia , Neoplasias Colorretais/metabolismo , Proliferação de Células
15.
Cancers (Basel) ; 15(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36672439

RESUMO

Colorectal cancer (CRC) is the third most deadly type of cancer in the world and continuous investigations are required to discover novel therapeutics for CRC. Induction of apoptosis is one of the promising strategies to inhibit cancers. Here, we have identified a novel compound, Libertellenone T (B), isolated from crude extracts of the endolichenic fungus from Pseudoplectania sp. (EL000327) and investigated the mechanism of action. CRC cells treated by B were subjected to apoptosis detection assays, immunofluorescence imaging, and molecular analyses such as immunoblotting and QRT-PCR. Our findings revealed that B induced CRC cell death via multiple mechanisms including G2/M phase arrest caused by microtubule stabilization and caspase-dependent apoptosis. Further studies revealed that B induced the generation of reactive oxygen species (ROS) attributed to activating the JNK signaling pathway by which apoptosis and autophagy was induced in Caco2 cells. Moreover, B exhibited good synergistic effects when combined with the well-known anticancer drug, 5-FU, and another cytotoxic novel compound D, which was isolated from the same crude extract of EL000327. Overall, Libertellenone T induces G2/M phase arrest, apoptosis, and autophagy via activating the ROS/JNK pathway in CRC. Thus, B may be a potential anticancer therapeutic against CRC that is suitable for clinical applications.

16.
Environ Toxicol Pharmacol ; 98: 104060, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36610522

RESUMO

Previous studies have associated bisphenol A (BPA) with malignant tumor formation, infertility, and atherosclerosis in vitro and in vivo. However, the precise mechanisms through which BPA affects the cardiovascular system under normal conditions remain unclear. Therefore, this study investigated the biological mechanisms through which BPA affects the responses of aortic vascular smooth muscle cells (VSMCs). BPA treatment inhibited the proliferative activity of VSMCs and induced G2/M-phase cell cycle arrest via stimulation of the ATM-CHK2-Cdc25C-p21WAF1-Cdc2 cascade in VSMCs. Furthermore, BPA treatment upregulated the phosphorylation of mitogen-activated protein kinase (MAPK) pathways such as ERK, JNK, and p38 MAPK in VSMCs. However, the phosphorylation level of AKT was down-regulated by BPA treatment. Additionally, the phosphorylation of ERK, JNK, and p38 MAPK was suppressed when the cells were treated with their respective inhibitors (U0126, SP600125, and SB203580). BPA suppressed MMP-9 activity by reducing the binding activity of AP-1, Sp-1, and NF-κB, thus inhibiting the invasive and migratory ability of VSMCs. These data demonstrate that BPA interferes with the proliferation, migration, and invasion capacities of VSMCs. Therefore, our findings suggest that overexposure to BPA can lead to cardiovascular damage due to dysregulated VSMC responses.


Assuntos
Músculo Liso Vascular , Proteínas Quinases p38 Ativadas por Mitógeno , Proliferação de Células , Células Cultivadas , Fosforilação , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Miócitos de Músculo Liso/metabolismo , Movimento Celular
17.
Mini Rev Med Chem ; 23(1): 33-52, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35657044

RESUMO

Cancer is the leading cause of death and the most significant determinant of life expectancy in almost every country in this twenty-first century. According to the World Health Organization (WHO), cancer is responsible for the leading cause of death globally. Benzophenone derivatives are found in a variety of naturally occurring compounds which are known to be pharmacologically efficacious against a variety of diseases, including cancer. Microtubules are thought to be a good target for cancer chemotherapies. Microtubule polymerization and depolymerization are induced by a variety of natural, synthetic, and semisynthetic chemicals having a benzophenone nucleus, affecting tubulin dynamics. Several medications that affect microtubule dynamics are in various stages of clinical trials, including Combretastatins (phase II), Vincristine (clinically approved), Paclitaxel (in clinical usage), and epothilone (phase III), and only a few have been patented. Benzophenone derivatives target the colchicine binding site of microtubules, damage them and cause cell cycle arrest in the G2-M phase. Belonging to this class of molecules, phenstatin, a potent inhibitor of tubulin polymerization, has shown strongly inhibit cancer cell growth and arrest the G2/M phase of the cell cycle by targeting the colchicine binding site of microtubules. In the present manuscript, we described the benzophenone as tubulin polymerization inhibitors, their Structure-Activity Relationships (SARs) and molecular docking studies that reveal its binding affinity with the colchicine binding site.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Tubulina (Proteína)/química , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Colchicina/química , Colchicina/metabolismo , Colchicina/farmacologia , Neoplasias/tratamento farmacológico , Benzofenonas/farmacologia
18.
Molecules ; 27(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35268683

RESUMO

The effective treatment of cervical intraepithelial neoplasia (CIN) can prevent cervical cancer. Salvia miltiorrhiza is a medicinal and health-promoting plant. To identify a potential treatment for CIN, the effect of S. miltiorrhiza extract and its active components on immortalized cervical epithelial cells was studied in vitro. The H8 cell was used as a CIN model. We found that S. miltiorrhiza extract effectively inhibited H8 cells through the CCK8 method. An HPLC-MS analysis revealed that S. miltiorrhiza extract contained salvianolic acid H, salvianolic acid A, salvianolic acid B, monomethyl lithospermate, 9‴-methyl lithospermate B, and 9‴-methyl lithospermate B/isomer. Salvianolic acid A had the best inhibitory effect on H8 cells with an IC50 value of 5.74 ± 0.63 µM. We also found that the combination of salvianolic acid A and oxysophoridine had a synergistic inhibitory effect on H8 cells at molar ratios of 4:1, 2:1, 1:1, 1:2, and 1:4, with salvianolic acid A/oxysophoridine = 1:2 having the best synergistic effect. Using Hoechst33342, flow cytometry, and Western blotting analysis, we found that the combination of salvianolic acid A and oxysophoridine can induce programmed apoptosis of H8 cells and block the cell cycle in the G2/M phase, which was correlated with decreased cyclinB1 and CDK1 protein levels. In conclusion, S. miltiorrhiza extract can inhibit the growth of H8 cells, and the combination of salvianolic acid A (its active component) and oxysophoridine has a synergistic inhibitory effect on H8 cells and may be a potential treatment for cervical intraepithelial neoplasia.


Assuntos
Salvia miltiorrhiza
19.
Molecules ; 27(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35056723

RESUMO

Triple negative breast cancer (TNBC) is a breast cancer subtype characterized by the absence of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 expression. TNBC cells respond poorly to targeted chemotherapies currently in use and the mortality rate of TNBC remains high. Therefore, it is necessary to identify new chemotherapeutic agents for TNBC. In this study, the anti-cancer effects of 7-α-hydroxyfrullanolide (7HF), derived from Grangea maderaspatana, on MCF-7, MDA-MB-231 and MDA-MB-468 breast cancer cells were assessed using MTT assay. The mode of action of 7HF in TNBC cells treated with 6, 12 and 24 µM of 7HF was determined by flow cytometry and propidium iodide (PI) staining for cell cycle analysis and annexin V/fluorescein isothiocyanate + PI staining for detecting apoptosis. The molecular mechanism of action of 7HF in TNBC cells was investigated by evaluating protein expression using proteomic techniques and western blotting. Subsequently, 7HF exhibited the strongest anti-TNBC activity toward MDA-MB-468 cells and a concomitantly weak toxicity toward normal breast cells. The molecular mechanism of action of low-dose 7HF in TNBC cells primarily involved G2/M-phase arrest through upregulation of the expression of Bub3, cyclin B1, phosphorylated Cdk1 (Tyr 15) and p53-independent p21. Contrastingly, the upregulation of PP2A-A subunit expression may have modulated the suppression of various cell survival proteins such as p-Akt (Ser 473), FoxO3a and ß-catenin. The concurrent apoptotic effect of 7HF on the treated cells was mediated via both intrinsic and extrinsic modes through the upregulation of Bax and active cleaved caspase-7-9 expression and downregulation of Bcl-2 and full-length caspase-7-9 expression. Notably, the proteomic approach revealed the upregulation of the expression of pivotal protein clusters associated with G1/S-phase arrest, G2/M-phase transition and apoptosis. Thus, 7HF exhibits promising anti-TNBC activity and at a low dose, it modulates signal transduction associated with G2/M-phase arrest and apoptosis.


Assuntos
Neoplasias de Mama Triplo Negativas
20.
Acta Pharm Sin B ; 11(11): 3465-3480, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34900530

RESUMO

Glioblastoma multiforme (GBM) in the central nervous system is the most lethal advanced glioma and currently there is no effective treatment for it. Studies of sinomenine, an alkaloid from the Chinese medicinal plant, Sinomenium acutum, showed that it had inhibitory effects on several kinds of cancer. Here, we synthesized a sinomenine derivative, sino-wcj-33 (SW33), tested it for antitumor activity on GBM and explored the underlying mechanism. SW33 significantly inhibited proliferation and colony formation of GBM and reduced migration and invasion of U87 and U251 cells. It also arrested the cell cycle at G2/M phase and induced mitochondria-dependent apoptosis. Differential gene enrichment analysis and pathway validation showed that SW33 exerted anti-GBM effects by regulating PI3K/AKT and AMPK signaling pathways and significantly suppressed tumorigenicity with no obvious adverse effects on the body. SW33 also induced autophagy through the PI3K/AKT/mTOR and AMPK/mTOR pathways. Thus, SW33 appears to be a promising drug for treating GBM effectively and safely.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA