Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Cell Transplant ; 33: 9636897241273689, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39180383

RESUMO

Immune rejection presents a significant challenge in xenogenic meniscal transplantation. Pigs are widely regarded as an advantageous tissue source for such transplants, with porcine GGTA1, CMAH, and B4GALNT2 being among the most common xenoreactive antigen (Ag) genes. While some studies have suggested that allogeneic meniscus (AM) transplants may exhibit immunoprivileged properties, our study observed slight immunological rejection has been observed following contact between human meniscal cells (HMCs) and human peripheral blood mononuclear cells (PBMCs). Given the limited systematic research on immune responses following xenograft meniscus transplantation, we established porcine meniscus transplantation (PMT) models to comprehensively assess the immunogenicity of porcine meniscus (PM) from both innate and adaptive immune perspectives. Our investigations confirmed that PMT beneath the epidermis led to innate cell infiltration into the xenografts and T-cell activation in local lymph nodes. T-cell activation upregulated the interleukin (IL)-17 signaling pathway, disrupting collagen organization and metabolic processes, thereby hindering PM regeneration. Using freeze-thaw treatment on PM alleviated T-cell activation post-transplantation by eliminating xenogenic DNA. In vitro findings demonstrated that gene editing in porcine meniscal cells (PMCs) suppressed human T-cell activation by downregulating the expression of xenoreactive Ag genes. These results suggest that GGTA1/CMAH/B4GALNT2 knockout (KO) pigs hold significant promise for advancing the field of meniscal transplantation.


Assuntos
Galactosiltransferases , Rejeição de Enxerto , Menisco , Linfócitos T , Animais , Suínos , Humanos , Rejeição de Enxerto/imunologia , Galactosiltransferases/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/metabolismo , Regulação para Baixo , Antígenos Heterófilos/imunologia , Transplante Heterólogo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia , Congelamento , Oxigenases de Função Mista
2.
Nutrients ; 16(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38999895

RESUMO

Excessive alcohol consumption has led to the prevalence of gastrointestinal ailments. Alleviating gastric disorders attributed to alcohol-induced thinning of the mucus layer has centered on enhancing mucin secretion as a pivotal approach. In this study, foxtail millet bran polyphenol BPIS was divided into two components with MW < 200 D and MW > 200 D by molecular interception technology. Combined with MTT, cell morphology observation, and trypan blue staining, isoferulic acid (IFA) within the MW < 200 D fraction was determined as the effective constituent to mitigate ethanol-induced damage of gastric epithelial cells. Furthermore, a Wistar rat model with similar clinical features to alcohol-induced gastric mucosal injury was established. Then, gastric morphological observation, H&E staining, and assessments of changes in gastric hexosamine content and gastric wall binding mucus levels were carried out, and the results revealed that IFA (10 mg/Kg) significantly ameliorated alcohol-induced gastric mucosal damage. Finally, we applied techniques including Co-IP, molecular docking, and fluorescence spectroscopy and found that IFA inhibited the alcohol-induced downregulation of N-acetylgalactosamintransferase 2 (GALNT2) activity related to mucus synthesis through direct interaction with GALNT2 in gastric epithelial cells, thus promoting mucin synthesis. Our study lays a foundation for whole grain dietary intervention tailored to individuals suffering from alcoholic gastric mucosal injury.


Assuntos
Etanol , Mucosa Gástrica , Ratos Wistar , Animais , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/patologia , Ratos , Masculino , Setaria (Planta) , Extratos Vegetais/farmacologia , Humanos , Células Epiteliais/efeitos dos fármacos , Simulação de Acoplamento Molecular , Modelos Animais de Doenças
3.
Acta Diabetol ; 61(8): 1007-1013, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38627282

RESUMO

AIMS: Aim of this study was to investigate in type 2 diabetes whether expression level of GALNT2, a positive modulator of insulin sensitivity, is associated with a metabolic signature. METHODS: Five different metabolite families, including acylcarnitines, aminoacids, biogenic amines, phospholipids and sphingolipids were investigated in fasting serum of 70 patients with type 2 diabetes, by targeted metabolomics. GALNT2 expression levels were measured in peripheral white blood cells by RT-PCR. The association between GALNT2 expression and serum metabolites was assessed using false discovery rate followed by stepwise selection and, finally, multivariate model including several clinical parameters as confounders. The association between GALNT2 expression and the same clinical parameters was also investigated. RESULTS: GALNT2 expression was independently correlated with HbA1c levels (P value = 0.0052), a finding that is the likely consequence of the role of GALNT2 on insulin sensitivity. GALNT2 expression was also independently associated with serum levels of the aminoacid glycine (P value = 0.014) and two biogenic amines phenylethylamine (P value = 0.0065) and taurine (P value = 0.0011). The association of GALNT2 expression with HbA1c was not mediated by these three metabolites. CONCLUSIONS: Our data indicate that in type 2 diabetes the expression of GALNT2 is associated with several serum metabolites. This association needs to be further investigated to understand in depth its role in mediating the effect of GALNT2 on insulin sensitivity, glucose control and other clinical features in people with diabetes.


Assuntos
Glicemia , Diabetes Mellitus Tipo 2 , N-Acetilgalactosaminiltransferases , Polipeptídeo N-Acetilgalactosaminiltransferase , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Hemoglobinas Glicadas/análise , Hemoglobinas Glicadas/metabolismo , Controle Glicêmico , Resistência à Insulina , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/metabolismo , N-Acetilgalactosaminiltransferases/sangue
4.
Clin Case Rep ; 12(4): e8691, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38585583

RESUMO

An encephalocele is a congenital malformation characterized by protrusion of the intracranial contents through a cranial defect. We report that a fetus of a pregnant mother who had two consecutive pregnancies with ultrasound-detected encephalocele carried compound heterozygous variants in B3GALNT2 NM_152490.5:c.[1423C > T (p.Gln475Ter)]; [261-2A > G] of maternal and paternal origins, respectively, as confirmed by exome sequencing followed by Sanger sequencing validation. The present case implies that mutations in B3GALNT2, a well-known dystroglycanopathy causative gene, may result in a phenotype of neural tube defect, providing new insights into the clinical spectrum of B3GALNT2-related disorders. Our study may contribute to prenatal screening/diagnosis and genetic counseling of congenital brain malformations.

5.
Front Immunol ; 15: 1366096, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596689

RESUMO

Background: The tumor microenvironment (TME) plays a pivotal role in the progression and metastasis of lung adenocarcinoma (LUAD). However, the detailed characteristics of LUAD and its associated microenvironment are yet to be extensively explored. This study aims to delineate a comprehensive profile of the immune cells within the LUAD microenvironment, including CD8+ T cells, CD4+ T cells, and myeloid cells. Subsequently, based on marker genes of exhausted CD8+ T cells, we aim to establish a prognostic model for LUAD. Method: Utilizing the Seurat and Scanpy packages, we successfully constructed an immune microenvironment atlas for LUAD. The Monocle3 and PAGA algorithms were employed for pseudotime analysis, pySCENIC for transcription factor analysis, and CellChat for analyzing intercellular communication. Following this, a prognostic model for LUAD was developed, based on the marker genes of exhausted CD8+ T cells, enabling effective risk stratification in LUAD patients. Our study included a thorough analysis to identify differences in TME, mutation landscape, and enrichment across varying risk groups. Moreover, by integrating risk scores with clinical features, we developed a new nomogram. The expression of model genes was validated via RT-PCR, and a series of cellular experiments were conducted, elucidating the potential oncogenic mechanisms of GALNT2. Results: Our study developed a single-cell atlas for LUAD from scRNA-seq data of 19 patients, examining crucial immune cells in LUAD's microenvironment. We underscored pDCs' role in antigen processing and established a Cox regression model based on CD8_Tex-LAYN genes for risk assessment. Additionally, we contrasted prognosis and tumor environments across risk groups, constructed a new nomogram integrating clinical features, validated the expression of model genes via RT-PCR, and confirmed GALNT2's function in LUAD through cellular experiments, thereby enhancing our understanding and approach to LUAD treatment. Conclusion: The creation of a LUAD single-cell atlas in our study offered new insights into its tumor microenvironment and immune cell interactions, highlighting the importance of key genes associated with exhausted CD8+ T cells. These discoveries have enabled the development of an effective prognostic model for LUAD and identified GALNT2 as a potential therapeutic target, significantly contributing to the improvement of LUAD diagnosis and treatment strategies.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Prognóstico , Linfócitos T CD8-Positivos , Nomogramas , Neoplasias Pulmonares/genética , Microambiente Tumoral , Lectinas Tipo C
6.
Genes (Basel) ; 15(3)2024 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-38540389

RESUMO

ß-1,4-N-acetylgalactosamine transferase 2 (B4GALNT2) is a vital candidate gene that affects the growth traits in sheep. However, whether it has the same function in goats remains to be investigated further. This study selected 348 Nanjiang Yellow goats, screened all exons, and conserved non-coding regions of the B4GALNT2 gene for single-nucleotide polymorphisms (SNPs). Our results revealed the presence of a synonymous mutation, rs672215506, within the exon of the B4GALNT2 gene in the Nanjiang Yellow goat population. The mutation resulted in a decrease in the mRNA stability of the B4GALNT2 gene. The results of SNP detection of the conserved non-coding region of the B4GALNT2 gene showed five potential regulatory SNPs in the Nanjiang Yellow goat population. Except for rs66095343, the ~500 bp fragments of the other four SNPs (rs649127714, rs649573228, rs652899012, and rs639183528) significantly increased the luciferase activity both in goat skeletal muscle satellite cells (MuSCs) and 293T cells. The genetic diversity indexes indicated low or intermediate levels for all six SNPs analyzed, and the genotype frequencies were in Hardy-Weinberg equilibrium. Association analysis showed that rs660965343, rs649127714, and rs649573228 significantly correlate with growth traits in the later stage of growth and development of Nanjiang Yellow goats. The haplotype combinations of H2H3 and H2H2 had higher body weight and greater body size. Moreover, H2H2 haplotype combinations significantly correlated with the litter size of the Nanjiang Yellow goats. The results of our study demonstrate the potential role of the B4GALNT2 gene as a functional genetic marker in the breeding programs of Nanjiang Yellow goats.


Assuntos
Cabras , Polimorfismo de Nucleotídeo Único , Gravidez , Feminino , Animais , Ovinos , Cabras/genética , Polimorfismo de Nucleotídeo Único/genética , Genótipo , Haplótipos , Tamanho da Ninhada de Vivíparos/genética
7.
Front Neurol ; 14: 1287032, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37885477

RESUMO

[This corrects the article DOI: 10.3389/fneur.2022.1054704.].

8.
Mol Biol Rep ; 50(10): 8589-8601, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37644368

RESUMO

BACKGROUND: We aimed to evaluate the various clinicopathodemographical, epidemiological, and molecular contributors to cumulatively worldwide metastatic colorectal cancer (CRC) in CRC patients from a highly populated area in northeastern Iran to pinpoint metastasis risk. METHODS: A retrospective clinical material-based cohort including a total of 6260 registered CRC patients, of whom 3829 underwent surgery, from regional university hospitals, during 2006-2016, were analyzed for the clinicopathodemographical aspects of age, sex, stage of CRC, history of smoking, type 2 diabetes (T2D), hypertension, body mass index (BMI), familial/occupational status, post-surgery survival period and mRNA/protein expression of mucin stabilizer (B3GALNT2), mucin I (MUC1), key cell cycle molecules (i.e., P53 and Ki67), and MMR-related genes. Factors were set to estimate the risk of metastatic CRC and mortality. RESULTS: Predominant adenocarcinomatous CRCs were found in colon. Post-surgery survival period of metastatic CRC patients was remarkably longer in patients aged > 50 compared to those aged < 50 years, and worse in females than males. B3GALNT2high, MUChigh, P53low, and Ki67high mRNA/protein expression in the metastatic stage III CRC along with T2D and hypertension were associated with increased metastasis/mortality, with more worsening in males, older, BMI > 25, urban residing, and employed individuals, indicative of non-genetic attributable factors. CONCLUSION: B3GALNT2, MUC1, and "Ki67" can be used as promising biomarkers for prognosis and early diagnosis of increasingly/predominantly non-genetic/environmental originated metastatic CRCs.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Diabetes Mellitus Tipo 2 , N-Acetilgalactosaminiltransferases , Feminino , Masculino , Humanos , Mucinas/genética , Antígeno Ki-67/genética , Estudos Retrospectivos , Proteína Supressora de Tumor p53 , Ciclo Celular , Neoplasias Colorretais/genética
9.
Cell Biol Toxicol ; 39(6): 3159-3174, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37597090

RESUMO

Radioresistance is the primary reason for radiotherapy failure in non-small cell lung cancer (NSCLC) patients. Glycosylation-related alterations are critically involved in tumor radioresistance. However, the relationship between glycosylation and NSCLC radioresistance is unclear. Here, we generated radioresistant NSCLC cell models by using fractionated irradiation. The aberrant glycosylation involved in NSCLC-related radioresistance was elucidated by transcriptomic, proteomic, and glycomic analyses. We conducted in vitro and in vivo investigations for determining the biological functions of glycosylation. Additionally, its downstream pathways and upstream regulators were inferred and verified. We demonstrated that mucin-type O-glycosylation and the O-glycosylating enzyme GALNT2 were highly expressed in radioresistant NSCLC cells. GALNT2 was found to be elevated in NSCLC tissues; this elevated level showed a remarkable association with response to radiotherapy treatment as well as overall survival. Functional experiments showed that GALNT2 knockdown improved NSCLC radiosensitivity via inducing apoptosis. By using a lectin pull-down system, we revealed that mucin-type O-glycans on IGF1R were modified by GALNT2 and that IGF1R could affect the expression of apoptosis-related genes. Moreover, GALNT2 knockdown-mediated in vitro radiosensitization was enhanced by IGF1R inhibition. According to a miRNA array analysis and a luciferase reporter assay, miR-30a-5p negatively modulated GALNT2. In summary, our findings established GALNT2 as a key contributor to the radioresistance of NSCLC. Therefore, targeting GALNT2 may be a promising therapeutic strategy for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/metabolismo , Multiômica , Proteômica , MicroRNAs/genética , MicroRNAs/metabolismo , Mucinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células
10.
Front Vet Sci ; 10: 1160600, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483287

RESUMO

Introduction: Infectious viruses in poultry, such as avian influenza virus (AIV) and Newcastle disease virus (NDV), are one of the most major threats to the poultry industry, resulting in enormous economic losses. AIVs and NDVs preferentially recognize α-2,3-linked sialic acid to bind to target cells. The human beta-1,4-N-acetyl-galactosaminyltransferase 2 (B4GALNT2) modifies α-2,3-linked sialic acid-containing glycan by transferring N-acetylgalactosamine to the sub-terminal galactose of the glycan, thus playing a pivotal role in preventing viruses from binding to cell surfaces. However, chickens lack a homolog of the B4GALNT2 gene. Methods: Here, we precisely tagged the human B4GALNT2 gene downstream of the chicken GAPDH so that the engineered cells constitutively express the human B4GALNT2. We performed a lectin binding assay to analyze the modification of α-2,3-linked sialic acid-containing glycan by human B4GALNT2. Additionally, we infected the cells with AIV and NDV and compared cell survivability, viral gene transcription, and viral titer using the WST-1 assay, RT-qPCR and TCID50 assay, respectively. Results: We validated human B4GALNT2 successfully modified α-2,3-linked sialic acid-containing glycan in chicken DF-1 cells. Following viral infection, we showed that human B4GALNT2 reduced infection of two AIV subtypes and NDV at 12-, 24-, and 36-hours post-infection. Moreover, cells expressing human B4GALNT2 showed significantly higher cell survivability compared to wild-type DF-1 cells, and viral gene expression was significantly reduced in the cells expressing human B4GALNT2. Discussion: Collectively, these results suggest that artificially expressing human B4GALNT2 in chicken is a promising strategy to acquire broad resistance against infectious viruses with a preference for α-2,3-linked sialic acids such as AIV and NDV.

11.
Heliyon ; 9(6): e16873, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484385

RESUMO

Background: The efficacy of therapy in cervical cancer (CESC) is blocked by high molecular heterogeneity. Thus, the sub-molecular characterization remains primarily explored for personalizing the treatment of CESC patients. Methods: Datasets with 741 CESC patients were obtained from TCGA and GEO databases. The NMF algorithm, random forest algorithm, and multivariate Cox analysis were utilized to construct a classifier for defining the sub-molecular characterization. Then, the biological characteristics, genomic variations, prognosis, and immune landscape in molecular subtypes were explored. The significance of classifier genes was validated by quantitative Real-Time PCR, cell transfection, cell colony formation assay, wound healing assay, cell proliferation assay, and Western blot. Results: The CESC patients were classified into two subtypes, and the high classifier-score patients with significant differences in ECM-receptor interaction, PI3K-Akt signaling pathway, and MAPK signaling pathway showed a poorer prognosis in OS (p < 0.001), DFI (p = 0.016), PFI (p < 0.001) and DSS (p < 0.001), and with high the M0 Macrophage and resting Mast cells infiltration and low HLA family gene expression. Moreover, the constructed classifier owns a high identified accuracy in the tumor/normal groups (AUC: 0.993), the tumor/CIN1-CIN3 groups (AUC: 0.963), and normal/CIN1-CIN3 groups (AUC: 0.962), and the total prediction performance is better than currently published signatures in CESC (C-index: 0,763). The combined prediction performance further indicated that Nomogram (AUC = 0.837) is superior to the classifier (AUC = 0.835) and Stage (AUC = 0.568), and the C-index of calibration curves is 0.784. The potential biological function of classifier genes indicated that silencing GALNT2 inhibited the cancer cell's proliferation, migration, and colony formation; Conversely, the cancer cell's proliferation, migration, and colony formation were increased after the upregulation of GALNT2. The Epithelial-Mesenchymal Transition Experiment showed that GALNT2 knockdown might reduce the levels of Snail and Vimentin proteins and increase E-cadherin; Conversely, the levels of Snail and Vimentin proteins were increased, E-cadherin was reduced by GALNT2 upregulation. Conclusion: The classifier we constructed may help improve our understanding of subtype characteristics and provide a new strategy for developing CESC therapeutics. Remarkably, GALNT2 may be an option to directly target drivers in CESC cancer therapy.

12.
J Pediatr Endocrinol Metab ; 36(6): 530-538, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37042760

RESUMO

OBJECTIVES: Congenital Glycosylation Disorders (CDG) are a large group of inherited metabolic diseases with multi-organ involvement. Herein, we aimed to expand the clinical characteristics of patients with CDG based on our experience with diagnoses and follow-up of CDG patients from different subtypes. METHODS: The clinical and laboratory findings from the last 15 years were reviewed retrospectively in Ege University Child Metabolism and Nutrition Department. RESULTS: There were 8 (57.2 %) females and 6 (42.8 %) males. Diagnoses of the patients were PMM2-CDG (n=4), PGM1-CDG (n=2), DPAGT1-CDG (n=2), SRD5A3-CDG (n=2), MPI-CDG (n=1), POMT2-CDG (n=1), B3GALNT2-CDG (n=1), DPM1-CDG (n=1). The clinical findings of the patients were dysmorphia (85.7 %), developmental delay (85.7 %), intellectual disability (85.7 %), ocular abnormalities (64.2 %), skeletal malformations (64.2 %), failure to thrive (57.1 %), microcephaly (57.1 %), hepatomegaly (35.7 %), hearing loss (35.7 %), seizures (28.5 %), gastrointestinal symptoms (21.4 %), endocrine abnormalities (21.4 %), and cardiac abnormalities (7.1 %). Laboratory findings were abnormal TIEF (92.8 %), abnormal liver enzymes (64.2 %), decreased protein C (64.2 %), decreased antithrombin III (64.2 %), decreased protein S (42.8 %), hypogammaglobulinemia (35.7 %), cerebellar hypoplasia (28.5 %), CK elevation (7.1 %), and hypoglycemia (7.1 %). CONCLUSIONS: This study contributes to the literature by sharing our ultra-rare DPM1-CDG case with less than 20 cases in the literature and expanding the clinical and molecular characteristics of other CDG patients. Hyperinsulinemic hypoglycemia, short stature, hypothyroidism, growth hormone deficiency, hypogammaglobulinemia, pericardial effusion, elevated CK, congenital myasthenia, and anorectal malformation were unique findings that were observed. Cerebello-ocular findings accompanying multi-organ involvement were an essential clue for a possible CDG.


Assuntos
Agamaglobulinemia , Defeitos Congênitos da Glicosilação , Hipoglicemia , N-Acetilgalactosaminiltransferases , Masculino , Criança , Feminino , Humanos , Seguimentos , Estudos Retrospectivos , Glicosilação , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/genética , Proteínas de Membrana/genética , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase , N-Acetilgalactosaminiltransferases/metabolismo
13.
Vet Sci ; 10(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37104413

RESUMO

Prolificacy is a crucial characteristic of livestock, particularly for species such as sheep that have many births. The objectives of this study were as follows: (1) to investigate the genetic diversity of the 13 new and 7 known variants in the BMPRIB, GDF9, BMP15, LEPR, and B4GALNT2 genes in Ujimqin (UM), the F1 population of Dorper × Ujimqin crossbred (DPU), the F1 population of Suffolk × Ujimqin crossbred (SFKU), Sonid sheep (SN), Tan sheep (Tan), Hu sheep (Hu), and Small-tailed Han sheep (STH) sheep breeds/populations; (2) to perform an association analysis of the above 20 variants with litter size in 325 UM, 304 DPU, and 66 SFKU sheep populations; (3) to compare the frequencies of the litter-size-related alleles of these 20 variants among 8 sheep breeds/populations (the above seven sheep breeds + Mongolia sheep breed). With the use of the Sequenom MassARRAY®SNP assay technology, these 20 mutations were genotyped. The association analysis results showed that the c.746A>G (FecB) mutation in BMPR1B was significantly associated with the litter size of UM and DPU, the c.994A>G (FecGA) in GDF9 was significantly associated with the litter size of SFKU, and the c.31_33CTTinsdel (B1) in BMP15 was significantly associated with the litter size of UM. Our findings might provide valuable genetic markers for expanding sheep litter sizes.

14.
Aging (Albany NY) ; 15(6): 2208-2220, 2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-37000153

RESUMO

Glioblastoma (GBM) is the most prevalent and malignant brain tumor and is highly resistant to currently available treatment. In this study, we reveal that polypeptide N-acetylgalactosaminyltransferase 5 (GALNT2) expression level was elevated in GBM, IDH1 wildtype glioma, and GBM stem cells (GSCs). GALNT2 increased expression correlated with GBM patients' unfavorable clinical outcomes. Functionally, targeting GALNT2 blocks GSCs cell proliferation, self-renewal, and malignant invasion through repressing CD44 expression. Most importantly, we first provide evidence suggesting that STAT3 activates GALNT2 expression at the transcriptional level by directly binding to the GALNT2 promoter. Through a rational screening, we found a GALNT2 inhibitor that dramatically suppresses GSCs self-maintenance in vitro and in vivo. Collectively, we uncovered the critical function of GALNT2 in promoting GSCs self-maintenance and GBM progression and may provide a new potential drug for GBM clinical therapy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Glioblastoma/metabolismo , Glioma/patologia , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Células-Tronco Neoplásicas/metabolismo , Polipeptídeo N-Acetilgalactosaminiltransferase
15.
Adv Biol (Weinh) ; 7(9): e2200319, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36861373

RESUMO

Several studies have shown that downregulation of GALNT2 (Polypeptide N-Acetylgalactosaminyltransferase 2), encoding polypeptide N-acetylgalactosaminyltransferase 2, decreases high-density lipoprotein cholesterol (HDL-C) and increases triglycerides levels by glycosylating key enzymes of lipid metabolism, such as angiopoietin like 3, apolipoprotein C-III, and phospholipid transfer protein. GALNT2 is also a positive modulator of insulin signaling and action, associated with in vivo insulin sensitivity and during adipogenesis strongly upregulates adiponectin. Thus, the hypothesis that GALNT2 affects HDL-C and triglycerides levels also through insulin sensitivity and/or circulating adiponectin, is tested. In 881 normoglycemic individuals the G allele of rs4846914 SNP at the GALNT2 locus, known to associate with GALNT2 downregulation, is associated with low HDL-C and high values of triglycerides, triglycerides/HDL-C ratio, and theHomeostatic Model Assessment of insulin resistance HOMAIR (p-values = 0.01, 0.027, 0.002, and 0.016, respectively). Conversely, no association is observed with serum adiponectin levels (p = 0.091). Importantly, HOMAIR significantly mediates a proportion of the genetic association with HDL-C (21%, 95% CI: 7-35%, p = 0.004) and triglyceride levels (32%, 95% CI: 4-59%, p = 0.023). The results are compatible with the hypothesis that, besides the effect on key lipid metabolism enzymes, GALNT2 alters HDL-C and triglyceride levels also indirectly through a positive effect on insulin sensitivity.


Assuntos
Aterosclerose , Dislipidemias , Resistência à Insulina , Humanos , Adiponectina , Aterosclerose/genética , Aterosclerose/complicações , HDL-Colesterol/genética , Dislipidemias/genética , Dislipidemias/complicações , Resistência à Insulina/genética , Triglicerídeos , Polipeptídeo N-Acetilgalactosaminiltransferase
16.
Int J Mol Sci ; 24(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36835549

RESUMO

The Sda carbohydrate epitope and its biosynthetic B4GALNT2 enzyme are expressed in the healthy colon and down-regulated to variable extents in colon cancer. The human B4GALNT2 gene drives the expression of a long and a short protein isoform (LF-B4GALNT2 and SF-B4GALNT2) sharing identical transmembrane and luminal domains. Both isoforms are trans-Golgi proteins and the LF-B4GALNT2 also localizes to post-Golgi vesicles thanks to its extended cytoplasmic tail. Control mechanisms underpinning Sda and B4GALNT2 expression in the gastrointestinal tract are complex and not fully understood. This study reveals the existence of two unusual N-glycosylation sites in B4GALNT2 luminal domain. The first atypical N-X-C site is evolutionarily conserved and occupied by a complex-type N-glycan. We explored the influence of this N-glycan using site-directed mutagenesis and showed that each mutant had a slightly decreased expression level, impaired stability, and reduced enzyme activity. Furthermore, we observed that the mutant SF-B4GALNT2 was partially mislocalized in the endoplasmic reticulum, whereas the mutant LF-B4GALNT2 was still localized in the Golgi and post-Golgi vesicles. Lastly, we showed that the formation of homodimers was drastically impaired in the two mutated isoforms. An AlphaFold2 model of the LF-B4GALNT2 dimer with an N-glycan on each monomer corroborated these findings and suggested that N-glycosylation of each B4GALNT2 isoform controlled their biological activity.


Assuntos
Retículo Endoplasmático , Complexo de Golgi , N-Acetilgalactosaminiltransferases , Humanos , Retículo Endoplasmático/metabolismo , Glicosilação , Complexo de Golgi/metabolismo , Polissacarídeos/metabolismo , Isoformas de Proteínas/metabolismo , N-Acetilgalactosaminiltransferases/genética
17.
Gut Microbes ; 15(1): 2164448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36683151

RESUMO

Infectious disease is widely considered to be a major driver of evolution. A preponderance of signatures of balancing selection at blood group-related genes is thought to be driven by inherent trade-offs in susceptibility to disease. B4galnt2 is subject to long-term balancing selection in house mice, where two divergent allele classes direct alternative tissue-specific expression of a glycosyltransferase in the intestine versus blood vessels. The blood vessel allele class leads to prolonged bleeding times similar to von Willebrand disease in humans, yet has been maintained for millions of years. Based on in vivo functional studies in inbred lab strains, it is hypothesized that the cost of prolonged bleeding times may be offset by an evolutionary trade-off involving susceptibility to a yet unknown pathogen(s). To identify candidate pathogens for which resistance could be mediated by B4galnt2 genotype, we here employed a novel "pathometagenomic" approach in a wild mouse population, which combines bacterial 16S rRNA gene-based community profiling with histopathology of gut tissue. Through subsequent isolation, genome sequencing and controlled experiments in lab mice, we show that the presence of the blood vessel allele is associated with resistance to a newly identified subspecies of Morganella morganii, a clinically important opportunistic pathogen. Given the increasing importance of zoonotic events, the approach outlined here may find useful application in the detection of emerging diseases in wild animal populations.


Assuntos
Antígenos de Grupos Sanguíneos , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Morganella , RNA Ribossômico 16S , Genótipo
18.
Glycoconj J ; 40(1): 123-133, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36287346

RESUMO

The structure Siaα2,3(GalNAcß1,4)Gal- is the epitope of the Sda antigen, which is expressed on the erythrocytes and secretions of the vast majority of Caucasians, carried by N- and O-linked chains of glycoproteins, as well as by glycolipids. Sda is very similar, but not identical, to ganglioside GM2 [Siaα2,3(GalNAcß1,4)Galß1,4Glc-Cer]. The Sda synthase ß1,4 N-acetylgalactosaminyl transferase 2 (B4GALNT2) exists in a short and a long form, diverging in the aminoterminal domain. The latter has a very long cytoplasmic tail and displays a Golgi- as well as a post-Golgi localization. The biosynthesis of Sda is mutually exclusive with that of the cancer-associated sialyl Lewis antigens, whose structure is Siaα2,3Galß1,3/4(Fucα1,4/3)GlcNAc-. B4GALNT2 is down-regulated in colon cancer but patients with higher expression survive longer. In experimental systems, B4GALNT2 inhibits colon cancer progression,not only through inhibition of sialyl Lewis antigen biosynthesis. By contrast, in breast cancer B4GALNT2 is associated with malignancy. In colon cancer, the B4GALNT2 gene is regulated by multiple mechanisms, which include miRNA and transcription factor expression, as well as CpG methylation. In addition, Sda/B4GALNT2 regulates the susceptibility to infectious agents, the protection from muscle dystrophy, the activity of immune system in pregnancy and the immune rejection in xenotransplantation.


Assuntos
Antígenos de Grupos Sanguíneos , Neoplasias do Colo , Humanos , Antígenos do Grupo Sanguíneo de Lewis , Fucosiltransferases/metabolismo , Neoplasias do Colo/patologia
19.
Cell Mol Biol Lett ; 27(1): 71, 2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36058918

RESUMO

BACKGROUND: N-Acetylgalactosaminyltransferases (GALNTs), the enzymes that initiate mucin-type O-glycosylation, are closely associated with tumor occurrence and progression. However, a comprehensive analysis of GALNTs in non-small cell lung cancer (NSCLC) is lacking. METHODS: The expression profiles and prognostic values of the GALNT family members in NSCLC were analyzed using publicly available databases. Gain- and loss-of-function experiments were applied to assess the biological function of GALNT2 in NSCLC. High-throughput sequencing and bioinformatics approaches were employed to uncover the regulatory mechanism of GALNT2. RESULTS: Among the family members of GALNTs, only GALNT2 was frequently overexpressed in NSCLC tissues and was positively correlated with poor prognosis. In vitro assays showed that GALNT2 knockdown repressed NSCLC cell proliferation, migration, and invasion, but induced apoptosis and cell cycle arrest. Correspondently, GALNT2 overexpression exerted the opposite effects. In vivo experiments demonstrated that knockdown of GALNT2 restrained tumor formation in nude mice. Mechanistic investigations revealed that GALNT2 modified the O-glycosylation of ITGA5 and affected the activation of the PI3K/Akt and MAPK/ERK pathways. Further studies showed that miR-30d was a negative regulator of GALNT2. CONCLUSIONS: These findings suggest that GALNT2 is an oncogene in NSCLC and has the potential as a target for NSCLC therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , N-Acetilgalactosaminiltransferases/metabolismo , Animais , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Oncogenes , Fosfatidilinositol 3-Quinases/metabolismo , Polipeptídeo N-Acetilgalactosaminiltransferase
20.
Pathol Oncol Res ; 28: 1610554, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110252

RESUMO

Identification of novel biomarkers is helpful for the diagnosis and treatment of cervical cancer. Mucin glycosylating enzyme GALNT2 modulates mucin O-glycosylation, and has been revealed as a regulator of tumorigenesis in various cancers. However, the expression pattern of GALNT2 in cervical cancer is still unclear. In this study, we demonstrated that the mRNA expression and protein level of GALNT2 were increased in cervical high-grade intraepithelial neoplasia and tumor tissues compared with normal cervix tissues. Kaplan-Meier plotter showed that overexpression of GALNT2 was associated with worse overall survival in TCGA cohort (p < 0.001, HR = 2.65, 95% CI = 1.62-4.34) and poor disease free survival in GSE44001 cohort (p = 0.0218, HR = 2.15, 95% CI = 1.14-4.06). In addition, GSEA analysis showed that various immune-related pathways were closely related to the expression of GALNT2 in cervical cancer. Moreover, co-expression of GALNT2 and IL1A, IL1B, IL11, CXCL1, CXCL2, CXCL5, CXCL6, CXCR1, or CCR3 predicted poor overall survival, and the expression of GALNT2 also affected the prognostic value of CD47, CD274, CD276, CSF1R, TNFSF9, and TNFSF11 in cervical cancer patients. These findings suggest that GALNT2 might be used as a prognostic biomarker in cervical cancer.


Assuntos
Neoplasias do Colo do Útero , Antígenos B7 , Antígeno CD47 , Feminino , Humanos , Interleucina-11 , Mucinas/metabolismo , N-Acetilgalactosaminiltransferases/genética , Prognóstico , RNA Mensageiro/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Polipeptídeo N-Acetilgalactosaminiltransferase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA