Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 13(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673466

RESUMO

Gadolinium-based contrast agents (GBCAs) have helped to improve the role of magnetic resonance imaging (MRI) for the diagnosis and treatment of diseases. There are currently nine different commercially available gadolinium-based contrast agents (GBCAs) that can be used for body MRI cases, and which are classifiable according to their structures (cyclic or linear) or biodistribution (extracellular-space agents, target/specific-agents, and blood-pool agents). The aim of this review is to illustrate the commercially available MRI contrast agents, their effect on imaging, and adverse reaction on the body, with the goal to lead to their proper selection in different clinical contexts. When we have to choose between the different GBCAs, we have to consider several factors: (1) safety and clinical impact; (2) biodistribution and diagnostic application; (3) higher relaxivity and better lesion detection; (4) higher stability and lower tissue deposit; (5) gadolinium dose/concentration and lower volume injection; (6) pulse sequences and protocol optimization; (7) higher contrast-to-noise ratio at 3.0 T than at 1.5 T. Knowing the patient's clinical information, the relevant GBCAs properties and their effect on body MRI sequences are the key features to perform efficient and high-quality MRI examination.

2.
Med Phys ; 51(7): 4888-4897, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38421681

RESUMO

BACKGROUND: Gadolinium-based contrast agents are commonly used in brain magnetic resonance imaging (MRI), however, they cannot be used by patients with allergic reactions or poor renal function. For long-term follow-up patients, gadolinium deposition in the body can cause nephrogenic systemic fibrosis and other potential risks. PURPOSE: Developing a new method of enhanced image synthesis based on the advantages of multisequence MRI has important clinical value for these patients. In this paper, an end-to-end synthesis model structure similarity index measure (SSIM)-based Dual Constrastive Learning with Attention (SDACL) based on contrastive learning is proposed to synthesize contrast-enhanced T1 (T1ce) using three unenhanced MRI images of T1, T2, and Flair in patients with glioma. METHODS: The model uses the attention-dilation generator to enlarge the receptive field by expanding the residual blocks and to strengthen the feature representation and context learning of multisequence MRI. To enhance the detail and texture performance of the imaged tumor area, a comprehensive loss function combining patch-level contrast loss and structural similarity loss is created, which can effectively suppress noise and ensure the consistency of synthesized images and real images. RESULTS: The normalized root-mean-square error (NRMSE), peak signal-to-noise ratio (PSNR), and SSIM of the model on the independent test set are 0.307  ± $\pm$  0.12, 23.337  ± $\pm$  3.21, and 0.881  ± $\pm$  0.05, respectively. CONCLUSIONS: Results show this method can be used for the multisequence synthesis of T1ce images, which can provide valuable information for clinical diagnosis.


Assuntos
Meios de Contraste , Gadolínio , Glioma , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Glioma/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Encefálicas/diagnóstico por imagem
3.
Birth Defects Res ; 116(1): e2284, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38158745

RESUMO

INTRODUCTION: Seven gadolinium-based contrast agents (GBCAs), four linear and three macrocyclic, were evaluated for potential effects on development, including behavior of juvenile CD-1 mice. METHODS: The GBCAs were administered via intravenous injection once daily on postnatal day (PND) 9, 12, 15, 18, and 21 (PND 1 was the day of delivery) at doses up to twice the human equivalent clinical dose (i.e., 0.63 mmol Gd/kg for gadoxetate disodium and 2.5 mmol Gd/kg for the other GBCAs). Mice were bled for evaluation of exposure (plasma) to gadolinium (Gd) on PND 9, 12, and 70. At scheduled euthanasia, the liver, spleen, brain, skin (dorsal surface), bone (left femur), and kidneys were excised from up to six mice/sex/group on PND 10, 22, or 70 for the determination of Gd levels and histopathological analysis. All mice were monitored for toxicity, growth and survival, sexual maturation, and behavior. CONCLUSION: Gd was quantifiable in the brain tissues with levels declining over time. There was no long-term effect on the growth and development for mice exposed to any of the GBCAs. There was no impact on neurodevelopment as assessed by brain histology and validated neurobehavioral tests, including a functional observational battery, motor activity, and learning and memory as evaluated in the Morris water maze. For all GBCAs, the highest dose tested represented the no-observable-adverse-effect level in juvenile mice.


Assuntos
Meios de Contraste , Compostos Organometálicos , Camundongos , Humanos , Animais , Meios de Contraste/farmacologia , Gadolínio/farmacologia , Compostos Organometálicos/farmacologia , Imageamento por Ressonância Magnética , Encéfalo
4.
Birth Defects Res ; 116(1): e2291, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38158716

RESUMO

INTRODUCTION: The offspring of CD-1 mice exposed during pregnancy to one of seven gadolinium-based contrast agents (GBCAs) were evaluated for potential effects on postnatal development and behavior. The GBCAs, comprising four linear (gadopentetate dimeglumine, gadodiamide, gadobenate dimeglumine, and gadoxetate disodium) and three macrocyclic (gadoterate meglumine, gadoteridol, and gadobutrol), were administered via intravenous injection once daily from Gestation Day 6 through 17 following confirmed mating (Day 0) at doses of at least twice the human equivalent recommended clinical dose (i.e., 0.63 mmol Gd/kg for gadoxetate disodium and 2.5 mmol Gd/kg for the other GBCAs). All dams were allowed to deliver naturally. F0 generation females were monitored for maternal toxicity and gadolinium (Gd) levels in blood and brain. Offspring were evaluated for Gd levels in blood and brain at birth and on Day 70 postpartum. F1 generation mice were evaluated for survival and growth preweaning. Selected pups/litter were evaluated postweaning for sexual maturation, growth, and behavior. Gd was quantifiable in the brain of the F1 offspring on PND 1, with levels declining over time. There was no long-term effect of any GBCA on the growth and development of any offspring. There was no impact on neurodevelopment, as assessed by brain histology and validated neurobehavioral tests, including a battery of functional observational tests, motor activity, and learning and memory as evaluated in the Morris water maze. CONCLUSION: At the end of the postweaning period, the highest dose tested was considered the no-observable-adverse-effect level (NOAEL) in the F0 and F1 offspring for all tested GBCAs.


Assuntos
Meios de Contraste , Gadolínio DTPA , Gadolínio , Gravidez , Feminino , Camundongos , Humanos , Animais , Meios de Contraste/efeitos adversos , Gadolínio/toxicidade , Imageamento por Ressonância Magnética , Encéfalo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA