Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 678
Filtrar
1.
Cells ; 13(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38920687

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) is among the strongest dopamine neuron function- and survival-promoting factors known. Due to this reason, it has clinical relevance in dopamine disorders such as Parkinson's disease and schizophrenia. In the striatum, GDNF is exclusively expressed in interneurons, which make up only about 0.6% of striatal cells. Despite clinical significance, histological analysis of striatal GDNF system arborization and relevance to incoming dopamine axons, which bear its receptor RET, has remained enigmatic. This is mainly due to the lack of antibodies able to visualize GDNF- and RET-positive cellular processes; here, we overcome this problem by using knock-in marker alleles. We find that GDNF neurons chemoattract RET+ axons at least seven times farther in distance than medium spiny neurons (MSNs), which make up 95% of striatal neurons. Furthermore, we provide evidence that tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, is enriched towards GDNF neurons in the dopamine axons. Finally, we find that GDNF neuron arborizations occupy approximately only twelve times less striatal volume than 135 times more abundant MSNs. Collectively, our results improve our understanding of how endogenous GDNF affects striatal dopamine system function.


Assuntos
Axônios , Corpo Estriado , Neurônios Dopaminérgicos , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Proteínas Proto-Oncogênicas c-ret , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Axônios/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/citologia , Camundongos , Proteínas Proto-Oncogênicas c-ret/metabolismo , Proteínas Proto-Oncogênicas c-ret/genética , Neurônios Dopaminérgicos/metabolismo , Dopamina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios Espinhosos Médios
2.
J Agric Food Chem ; 72(26): 14653-14662, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38860840

RESUMO

The damage to the mechanical barrier of the intestinal mucosa is the initiating factor and the core link of the progression of ulcerative colitis (UC). Protecting the mechanical barrier of the intestinal mucosa is of great significance for improving the health status of UC patients. ZO-1 is a key scaffold protein of the mechanical barrier of the intestinal mucosa, and its fusion with the membrane of the intestinal epithelium is a necessary condition to maintain the integrity of the mechanical barrier of the intestinal mucosa. Enteric glial cells (EGCs) play an important role in the maintenance of intestinal homeostasis and have become a new target for regulating intestinal health in recent years. In this study, we found that glycyrol (GC), a representative coumarin compound isolated from Licorice (Glycyrrhiza uralensis Fisch, used for medicine and food), can alleviate UC by promoting the production of neurotrophic factor GDNF in mice EGCs. Specifically, we demonstrated that GC promotes the production of GDNF, then activates its receptor RET, promotes ZO-1 fusion with cell membranes, and protects the intestinal mucosal mechanical barrier. The results of this study can provide new ideas for the prevention and treatment of UC.


Assuntos
Colite Ulcerativa , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Mucosa Intestinal , Neuroglia , Proteína da Zônula de Oclusão-1 , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Camundongos , Humanos , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-1/genética , Masculino , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-ret/metabolismo , Proteínas Proto-Oncogênicas c-ret/genética , Camundongos Endogâmicos C57BL , Cumarínicos/farmacologia , Cumarínicos/química , Transdução de Sinais/efeitos dos fármacos , Glycyrrhiza/química
3.
Diseases ; 12(5)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38785754

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is an incurable disease. There are vigorous attempts to develop treatments to reduce the effects of this disease, and among these treatments is the transplantation of stem cells. This study aimed to retrospectively evaluate a mesenchymal stem cell (MSC) therapy cohort as a promising novel treatment modality by estimating some additional new parameters, such as immunological and biochemical factors. METHODS: This study was designed as an open-label, one-arm cohort retrospective study to evaluate potential diagnostic biomarkers of repeated infusions of autologous-bone marrow-derived mesenchymal stem cells (BM-MSCs) in 15 confirmed patients with ALS, administered at a dose of 1 × 106 cells/kg BW with a one-month interval, in equal amounts in both an intravenous (IV) and intrathecal (IT) capacity simultaneously, via various biochemical (iron (Fe), ferritin, total-iron-binding capacity (TIBC), transferrin, and creatine kinase (CK)) and immunological parameters (tumor necrosis factor-alpha (TNF-α), neurofilament light chain (NFL), and glial-cell-derived neurotrophic factor (GDNF) levels, evaluated during the three-month follow-up period in serum and cerebrospinal fluid (CSF). RESULTS: Our study indicated that, in the case of immunological biomarkers, TNF-α levels in the CSF showed a significant decrease at month three after transplantation compared with levels at month zero, and the p-value was p < 0.01. No statistically significant changes were observed for other immunological as well as biochemical parameters and a p-value of p > 0.05. CONCLUSIONS: These results can indicate the potential benefit of stem cell transfusion in patients with ALS and suggest some diagnostic biomarkers. Several studies are required to approve these results.

4.
Mov Disord ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718138

RESUMO

OBJECTIVE: Gene therapy by convection-enhanced delivery of type 2 adeno-associated virus-glial cell derived neurotrophic factor (AAV2-GDNF) to the bilateral putamina seeks to increase GDNF gene expression and treat Parkinson's disease (PD). METHODS: A 63-year-old man with advanced PD received AAV2-GDNF in a clinical trial. He died from pneumonia after anterior cervical discectomy and fusion 45 months later. An autopsy included brain examination for GDNF transgene expression. Putaminal catecholamine concentrations were compared to in vivo 18F-Fluorodopa (18F-FDOPA) positron emission tomography (PET) scanning results before and 18 months after AAV2-GDNF infusion. RESULTS: Parkinsonian progression stabilized clinically. Postmortem neuropathology confirmed PD. Bilateral putaminal regions previously infused with AAV2-GDNF expressed the GDNF gene. Total putaminal dopamine was 1% of control, confirming the striatal dopaminergic deficiency suggested by baseline 18F-DOPA-PET scanning. Putaminal regions responded as expected to AAV2-GDNF. CONCLUSION: After AAV2-GDNF infusion, infused putaminal regions showed increased GDNF gene expression, tyrosine hydroxylase immunoreactive sprouting, catechol levels, and 18F-FDOPA-PET signal, suggesting the regenerative potential of AAV2-GDNF in PD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

5.
Neurol Sci ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795270

RESUMO

Parkinson's disease (PD) is a chronic neurological disorder that is identified by a characteristic combination of symptoms such as bradykinesia, resting tremor, rigidity, and postural instability. It is the second most common neurodegenerative disease after Alzheimer's disease and is characterized by the progressive loss of dopamine-producing neurons in the brain. Currently, available treatments for PD are symptomatic and do not prevent the disease pathology. There is growing interest in developing disease-modifying therapy that can reduce disease progression and improve patients' quality of life. One of the promising therapeutic approaches under evaluation is gene therapy utilizing a viral vector, adeno-associated virus (AAV), to deliver transgene of interest into the central nervous system (CNS). Preclinical studies in small animals and nonhuman primates model of PD have shown promising results utilizing the gene therapy that express glial cell line-derived neurotrophic factor (GDNF), cerebral dopamine neurotrophic factor (CDNF), aromatic L-amino acid decarboxylase (AADC), and glutamic acid decarboxylase (GAD). This study provides a comprehensive review of the current state of the above-mentioned gene therapies in various phases of clinical trials for PD treatment. We have highlighted the rationale for the gene-therapy approach and the findings from the preclinical and nonhuman primates studies, evaluating the therapeutic effect, dose safety, and tolerability. The challenges associated with gene therapy for heterogeneous neurodegenerative diseases, such as PD, have also been described. In conclusion, the review identifies the ongoing promising gene therapy approaches in clinical trials and provides hope for patients with PD.

6.
Neurotherapeutics ; : e00369, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38744625

RESUMO

Constipation symptoms of Parkinson's disease (PD) seriously reduce the quality of life of patients and aggravate the development of the disease, but current treatment options still cannot alleviate the progress of constipation. Electroacupuncture (EA) is a new method for the treatment of constipation, which can effectively treat the symptoms of constipation in PD patients. However, the specific regulatory mechanisms of EA in the treatment of constipation symptoms in PD remain unclear. The aim of this study is to investigate the therapeutic effect of EA on PD constipation rats and its regulatory mechanism. A rotenone (ROT)-induced gastrointestinal motility disorder model was used to simulate the pathological process of constipation in PD. The results showed that EA could effectively promote gastrointestinal peristalsis, reduce α-synuclein accumulation in substantia nigra and colon and colonic injury in rats after ROT administration. Mechanistically, EA activation of the central-cholinergic pathway increases acetylcholine release in the colon. At the same time, EA up-regulated the co-expression of enteric glial cells (EGCs) and α7 nicotinic acetylcholine receptor (α7nAChR). EA increased the expression of choline acetyltransferase (ChAT), neuronal nitric oxide synthase (nNOS), and tyrosine hydroxylase (TH) in the colon of PD rats. Further mechanistic studies showed that EA increased the expression of glial cell-derived neurotrophic factor (GDNF), GFRa1 and p-AKT in colon tissues. The present study confirmed that EA upregulates α7nAChR through a central-cholinergic mechanism to promote GDNF release from EGCs, thereby protecting intestinal neurons and thereby improving gastrointestinal motility.

7.
J Med Biochem ; 43(2): 250-256, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38699694

RESUMO

Background: To investigate the expression levels and diagnostic value of glial cell line-derived neurotrophic factor (GDNF), carcinoembryonic antigen (CEA) and carbohydrate antigen199 (CA199) in patients with colorectal carcinoma (CRC). Methods: 50 CRC patients at our hospital from Feb. 2020 to Feb. 2021 were chosen as the malignant group, another 50 patients with benign colonic diseases were chosen as the benign group, and 50 healthy people who came to our hospital for physical examination during the same period were considered as the control group. Fasting peripheral venous blood was taken from all research subjects in the morning and tested by a fully-automated electrochemiluminometer to determine the GDNF, CEA and CA199 levels. The sensitivity and specificity of the combined detection of the three indexes for CRC were analyzed, and the receiver operating characteristic (ROC) curve was plotted to record the area under the curve (AUC). Results: The malignant group had remarkably higher CEA and CA199 levels (P<0.001) and a lower GDNF level (P<0.001) when compared with the benign and control groups. The sensitivity, specificity, positive predictive value and negative predictive value of the combined detection were 96.0%, 94.0%, 88.9% and 97.9%, respectively. Under combined detection, AUC (95% CI) = 0.950 (0.909-0.991), standard error = 0.021, and P<0.001. Conclusions: The combined diagnosis of serum GDNF, CEA and CA199 is a reliable method to improve the diagnostic accuracy of CRC, and this strategy can effectively reduce the missed diagnosis rate and has high application value in clinic.

8.
Acta Biomater ; 180: 308-322, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38615813

RESUMO

Motor functional improvement represents a paramount treatment objective in the post-spinal cord injury (SCI) recovery process. However, neuronal cell death and axonal degeneration following SCI disrupt neural signaling, impeding the motor functional recovery. In this study, we developed a multifunctional decellularized spinal cord-derived extracellular matrix (dSECM), crosslinked with glial cell-derived neurotrophic factor (GDNF), to promote differentiation of stem cells into neural-like cells and facilitate axonogenesis and remyelination. After decellularization, the immunogenic cellular components were effectively removed in dSECM, while the crucial protein components were retained which supports stem cells proliferation and differentiation. Furthermore, sustained release of GDNF from the dSECM facilitated axonogenesis and remyelination by activating the PI3K/Akt and MEK/Erk pathways. Our findings demonstrate that the dSECM-GDNF platform promotes neurogenesis, axonogenesis, and remyelination to enhance neural signaling, thereby yielding promising therapeutic effects for motor functional improvement after SCI. STATEMENT OF SIGNIFICANCE: The dSECM promotes the proliferation and differentiation of MSCs or NSCs by retaining proteins associated with positive regulation of neurogenesis and neuronal differentiation, while eliminating proteins related to negative regulation of neurogenesis. After crosslinking, GDNF can be gradually released from the platform, thereby promoting neural differentiation, axonogenesis, and remyelination to enhance neural signaling through activation of the PI3K/Akt and MEK/Erk pathways. In vivo experiments demonstrated that dSECM-GDNF/MSC@GelMA hydrogel exhibited the ability to facilitate neuronal regeneration at 4 weeks post-surgery, while promoting axonogenesis and remyelination at 8 weeks post-surgery, ultimately leading to enhanced motor functional recovery. This study elucidates the ability of neural regeneration strategy to promote motor functional recovery and provides a promising approach for designing multifunctional tissue for SCI treatment.


Assuntos
Matriz Extracelular , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Neurogênese , Remielinização , Traumatismos da Medula Espinal , Animais , Feminino , Ratos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Neurogênese/efeitos dos fármacos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Remielinização/efeitos dos fármacos , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/patologia
9.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674063

RESUMO

Plasma levels of glial cell line-derived neurotrophic factor (GDNF), a pivotal regulator of differentiation and survival of dopaminergic neurons, are reportedly decreased in schizophrenia. To explore the involvement of GDNF in the pathogenesis of the disease, a case-control association analysis was performed between five non-coding single nucleotide polymorphisms (SNP) across the GDNF gene and schizophrenia. Of them, the 'G' allele of the rs11111 SNP located in the 3' untranslated region (3'-UTR) of the gene was found to associate with schizophrenia. In silico analysis revealed that the rs11111 'G' allele might create binding sites for three microRNA (miRNA) species. To explore the significance of this polymorphism, transient co-transfection assays were performed in human embryonic kidney 293T (HEK293T) cells with a luciferase reporter construct harboring either the 'A' or 'G' allele of the 3'-UTR of GDNF in combination with the hsa-miR-1185-1-3p pre-miRNA. It was demonstrated that in the presence of the rs11111 'G' (but not the 'A') allele, hsa-miR-1185-2-3p repressed luciferase activity in a dose-dependent manner. Deletion of the miRNA binding site or its substitution with the complementary sequence abrogated the modulatory effect. Our results imply that the rs11111 'G' allele occurring more frequently in patients with schizophrenia might downregulate GDNF expression in a miRNA-dependent fashion.


Assuntos
Regiões 3' não Traduzidas , Fator Neurotrófico Derivado de Linhagem de Célula Glial , MicroRNAs , Polimorfismo de Nucleotídeo Único , Esquizofrenia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Alelos , Sítios de Ligação , Estudos de Casos e Controles , Regulação da Expressão Gênica , Predisposição Genética para Doença , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Células HEK293 , MicroRNAs/genética , Esquizofrenia/genética , Esquizofrenia/metabolismo
10.
Front Psychiatry ; 15: 1320650, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645418

RESUMO

Aim: Schizophrenia involves complex interactions between biological and environmental factors, including childhood trauma, cognitive impairments, and premorbid adjustment. Predicting its severity and progression remains challenging. Biomarkers like glial cell line-derived neurotrophic factor (GDNF) and miRNA-29a may bridge biological and environmental aspects. The goal was to explore the connections between miRNAs and neural proteins and cognitive functioning, childhood trauma, and premorbid adjustment in the first episode of psychosis (FEP). Method: This study included 19 FEP patients who underwent clinical evaluation with: the Childhood Trauma Questionnaire (CTQ), the Premorbid Adjustment Scale (PAS), the Positive and Negative Syndrome Scale (PANSS), and the Montreal Cognitive Assessment Scale (MoCA). Multiplex assays for plasma proteins were conducted with Luminex xMAP technology. Additionally, miRNA levels were quantitatively determined through RNA extraction, cDNA synthesis, and RT-qPCR on a 7500 Fast Real-Time PCR System. Results: Among miRNAs, only miR-29a-3p exhibited a significant correlation with PAS-C scores (r = -0.513, p = 0.025) and cognitive improvement (r = -0.505, p = 0.033). Among the analyzed proteins, only GDNF showed correlations with MoCA scores at the baseline and after 3 months (r = 0.533, p = 0.0189 and r = 0.598, p = 0.007), cognitive improvement (r = 0.511, p = 0.025), and CTQ subtests. MIF concentrations correlated with the PAS-C subscale (r = -0.5670, p = 0.011). Conclusion: GDNF and miR-29a-3p are promising as biomarkers for understanding and addressing cognitive deficits in psychosis. This study links miRNA and MIF to premorbid adjustment and reveals GDNF's unique role in connection with childhood trauma.

11.
J Orthop Surg Res ; 19(1): 196, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515135

RESUMO

BACKGROUND: The lack of effective understanding of the pain mechanism of McCune-Albright syndrome (MAS) has made the treatment of pain in this disease a difficult clinical challenge, and new therapeutic targets are urgently needed to address this dilemma. OBJECTIVE: This paper summarizes the novel mechanisms, targets, and treatments that may produce pain in MAS and fibrous dysplasia (polyfibrous dysplasia, or FD). METHODS: We conducted a systematic search in the PubMed database, Web of Science, China Knowledge Network (CNKI) with the following keywords: "McCune-Albright syndrome (MAS); polyfibrous dysplasia (FD); bone pain; bone remodeling; G protein coupled receptors; GDNF family receptors; purinergic receptors and glycogen synthase kinase", as well as other keywords were systematically searched. Papers published between January 2018 and May 2023 were selected for finding. Initial screening was performed by reading the titles and abstracts, and available literature was screened against the inclusion and exclusion criteria. RESULTS: In this review, we systematically analyzed the cutting-edge advances in this disease, synthesized the findings, and discussed the differences. With regard to the complete mechanistic understanding of the pain condition in FD/MAS, in particular, we collated new findings on new pathways, neurotrophic factor receptors, purinergic receptors, interferon-stimulating factors, potassium channels, protein kinases, and corresponding hormonal modulation and their respective strengths and weaknesses. CONCLUSION: This paper focuses on basic research to explore FD/MAS pain mechanisms. New nonneuronal and molecular mechanisms, mechanically loaded responsive neurons, and new targets for potential clinical interventions are future research directions, and a large number of animal experiments, tissue engineering techniques, and clinical trials are still needed to verify the effectiveness of the targets in the future.


Assuntos
Displasia Fibrosa Óssea , Displasia Fibrosa Poliostótica , Animais , Displasia Fibrosa Poliostótica/diagnóstico , Dor/etiologia , Remodelação Óssea , China
12.
Arch Biochem Biophys ; 753: 109893, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309681

RESUMO

Adipose tissue-derived stem cells (ADSCs) are a kind of stem cells with multi-directional differentiation potential, which mainly restore tissue repair function and promote cell regeneration. It can be directionally differentiated into Schwann-like cells to promote the repair of peripheral nerve injury. Glial cell line-derived neurotrophic factor (GDNF) plays an important role in the repair of nerve injury, but the underlying mechanism remains unclear, which seriously limits its further application.The study aimed to identify the molecular mechanism by which overexpression of glial cell line-derived neurotrophic factor (GDNF) facilitates the differentiation of ADSCs into Schwann cells, enhancing nerve regeneration after injury. In vitro, ADSCs overexpressing GDNF for 48 h exhibited changes in their morphology, with 80% of the cells having two or more prominences. Compared with that of ADSCs, GDNF-ADSCs exhibited increased expression of the Schwann cell marker S100, nerve damage repair-related factors.ADSC cells in normal culture and ADSC cells were overexpressing GDNF(GDNF-ADSCs) were analysed using TMT-Based Proteomic Analysis and revealed a significantly higher expression of MTA1 in GDNF-ADSCs than in control ADSCs. Hes1 expression was significantly higher in GDNF-ADSCs than in ADSCs and decreased by MTA1 silencing, along with a simultaneous decrease in the expression of S100 and nerve damage repair factors. These findings indicate that GDNF promotes the differentiation of ADSCs into Schwann cells and induces factors that accelerate peripheral nerve damage repair.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Proteômica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Regeneração Nervosa , Tecido Adiposo , Diferenciação Celular , Células de Schwann
13.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339124

RESUMO

Peripheral nerve injury denervates muscle, resulting in muscle paralysis and atrophy. This is reversible if timely muscle reinnervation occurs. With delayed reinnervation, the muscle's reparative ability declines, and muscle-resident fibro-adipogenic progenitor cells (FAPs) proliferate and differentiate, inducing fibro-fatty muscle degradation and thereby physical disability. The mechanisms by which the peripheral nerve regulates FAPs expansion and differentiation are incompletely understood. Using the rat tibial neve transection model, we demonstrated an increased FAPs content and a changing FAPs phenotype, with an increased capacity for adipocyte and fibroblast differentiation, in gastrocnemius muscle post-denervation. The FAPs response was inhibited by immediate tibial nerve repair with muscle reinnervation via neuromuscular junctions (NMJs) and sensory organs (e.g., muscle spindles) or the sensory protection of muscle (where a pure sensory nerve is sutured to the distal tibial nerve stump) with reinnervation by muscle spindles alone. We found that both procedures reduced denervation-mediated increases in glial-cell-line-derived neurotrophic factor (GDNF) in muscle and that GDNF promoted FAPs adipogenic and fibrogenic differentiation in vitro. These results suggest that the peripheral nerve controls FAPs recruitment and differentiation via the modulation of muscle GDNF expression through NMJs and muscle spindles. GDNF can serve as a therapeutic target in the management of denervation-induced muscle injury.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Músculo Esquelético , Ratos , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Músculo Esquelético/metabolismo , Diferenciação Celular , Nervo Tibial/lesões , Adipogenia , Denervação
14.
Methods Cell Biol ; 181: 17-32, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38302238

RESUMO

Dopaminergic neurons in the brain are an important source of dopamine, which is a crucial neurotransmitter for wellbeing, memory, reward, and motor control. Deficiency of dopamine due to advanced age and accumulative dopaminergic neuron defects can lead to movement disorders such as Parkinson's disease. Glial cell-derived neurotrophic factor (GDNF) is one of many factors involved in dopaminergic neuron development and/or survival. However, other endogenous GDNF functions in the brain await further investigation. Zebrafish is a well-established genetic model for neurodevelopment and neurodegeneration studies. Importantly, zebrafish shares approximately 70% functional orthologs with human genes including GDNF. To gain a better understanding on the precise functional role of gdnf in dopaminergic neurons, our laboratory devised a targeted knockdown of gdnf in the zebrafish larval brain using vivo morpholino. Here, detailed protocols on the generation of gdnf morphants using vivo morpholino are outlined. This method can be applied for targeting of genes in the brain to determine specific spatiotemporal gene function in situ.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Morfolinos/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Dopamina , Microinjeções
15.
J Chem Neuroanat ; 136: 102391, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38219812

RESUMO

BACKGROUND: Maternal diabetes during pregnancy can affect the neurological development of offspring. Glial cell-derived neurotrophic factor (GDNF), neurturin (NRTN), and neural cell adhesion molecules (NCAM) are three important proteins for brain development. Therefore, this study aimed to investigate the impacts of the mentioned neurotrophic factors in the hippocampal dentate gyrus (DG) of rat offspring born to diabetic mothers. METHODS: Wistar female rats were randomly allocated into diabetic (STZ-D) [(45 mg/kg BW, STZ (Streptozotocin), i.p)], diabetic + NPH insulin (STZ-INS) [(4-6 unit/kg/day SC)], and control groups. The animals in all groups were mated by non-diabetic male rats. Two weeks after birth, male pups from each group were sacrificed and then protein contents of GDNF, NRTN, and NCAM were evaluated using immunohistochemistry. RESULTS: The study found that the expression of GDNF and NRTN in the hippocampus of diabetic rat offspring was significantly higher compared to the diabetic+ insulin and control groups, respectively (P < 0.01, P < 0.001). Additionally, the expression of NCAM was significantly higher in the diabetic group the diabetic+ insulin and control groups (P < 0.01, P < 0.001). CONCLUSIONS: The results of the study revealed that diabetes during pregnancy significantly impacts the distribution pattern of GDNF, NRTN, and NCAM in the hippocampus of rat neonates.


Assuntos
Diabetes Gestacional , Insulinas , Humanos , Gravidez , Ratos , Animais , Masculino , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Neurturina/metabolismo , Neurturina/farmacologia , Ratos Wistar , Moléculas de Adesão de Célula Nervosa/metabolismo , Giro Denteado/metabolismo
16.
Anim Reprod Sci ; 260: 107385, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056175

RESUMO

Cattleyak is a typically male sterile species. The meiosis process is blocked and the scarcity of spermatogenic stems cells are both contributing factors to the inability of male cattleyak to produce sperm. While Glial cell line-derived neurotrophic factor (GDNF) is the first discovered growth factor known to promote the proliferation and self-renewal of spermatogenic stem cells, its relationship to the spermatogenesis arrest of cattleyak remains unclear. In this report, we studied the differential expression of GDNF in the testis of yak and cattleyak, and discussed the optimal concentration of GDNF in the culture medium of undifferentiated spermatogonia (UDSPG) of cattleyak in vitro and the effect of GDNF on the proliferation of cattleyak UDSPG. The results indicated that GDNF expression in the testicular tissue of cattleyak was inferior to that of yak. Moreover, the optimum value for the UDSPG in vitro culture was determined to be 20-30 ng/mL for cattleyak. In vitro, the proliferation activity of UDSPG was observed to increase with additional GDNF due to the up-regulation of proliferation-related genes and the down-regulation of differentiation-related genes. We hereby report that the scarcity of cattleyak UDSPG is due to insufficient expression of GDNF, and that the addition of GDNF in vitro can promote the proliferation of cattleyak UDSPG by regulating the expression of genes related to proliferation and differentiation. This work provides a new insight to solve the issue of spermatogenic arrest in cattleyak.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Espermatogônias , Masculino , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Sêmen/metabolismo , Testículo , Proliferação de Células
17.
J Pediatr Urol ; 20(1): 46.e1-46.e8, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37858511

RESUMO

AIMS: GDNF plays a crucial role in the stimulation of recovery, neuroplasticity and synaptic reorganization after spinal cord injury providing neuroprotection and neuroregeneration. Plasma GDNF levels are upregulated in cases of spina bifida owing to the intrauterine damage of the exposed spinal cord. Our aim was to compare the plasma GDNF levels in patients of spina bifida with non-spina bifida cases and assess the correlation with neurological impairment at one year of follow up. METHODS: Single centre prospective analysis of cases of spina bifida from 2020 to 2022 at presentation and after one year of follow up post-surgery. Cases with hernia and hydrocele without any other disorders were recruited into the control group. Plasma GDNF levels were assessed with immunoassay kits and compared with neurological involvement. RESULTS: 85 cases were included in the study. GDNF levels were elevated in cases compared to controls (mean 6.62 vs 1.76) with significant p value (<0.01). Same was observed for open and closed defects (mean 7.63 vs 4.86: p < 0.01). At follow up of 52 cases post-surgery cases with neurogenic bladder with abnormal urodynamic studies, sphincter involvement and motor impairment had significantly elevated baseline levels of GDNF compared with those who did not have this neurological impairment (p < 0.01). DISCUSSION: The neurotrophic factor up-regulation can reflect an endogenous attempt at neuroprotection against the biochemical and molecular cascades triggered by the spinal cord damage. This upregulation can be represented as important biochemical markers of severe spinal cord damage and can be associated with severity of spine injury in MMC patients. Our results are in keeping with these findings, that, there were increased levels of plasma GDNF levels in cases of spinal dysraphism compared to control population. Also, the type of lesion reflecting the severity whether a closed or an open dysraphism, showed significant difference in levels between them suggesting, yet again, more damage in open defect as expected. The levels were higher with involvement of bladder, sphincter and lower limb power. CONCLUSION: There is significant elevation of plasma GDNF levels in cases of spina bifida and this elevation is proportional to the degree of spinal damage and hence the neurological impairment. GDNF levels are a good predictor for assessing the severity of the lesion and thus the outcome in these cases. Additional prospective and long-term studies with a larger cohort are needed for a better understanding of neurotrophin pattern modulation in MMC.


Assuntos
Defeitos do Tubo Neural , Disrafismo Espinal , Bexiga Urinaria Neurogênica , Criança , Humanos , Masculino , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Defeitos do Tubo Neural/cirurgia , Sistemas Automatizados de Assistência Junto ao Leito , Disrafismo Espinal/complicações , Disrafismo Espinal/cirurgia , Bexiga Urinária , Bexiga Urinaria Neurogênica/cirurgia , Urodinâmica/fisiologia
18.
CNS Neurosci Ther ; 30(3): e14461, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37718594

RESUMO

AIM: Aberrations in brain connections are implicated in the pathogenesis of Parkinson's disease (PD). We previously demonstrated that Glial cell-derived neurotrophic factor (GDNF) reduction is associated with cognition decline. Nonetheless, it is elusive if the pattern of brain topological connectivity differed across PD with divergent serum GDNF levels, and the accompanying profile of cognitive deficits has yet to be determined. METHODS: We collected data on the participants' cognition, demographics, and serum GDNF levels. Participants underwent 3.0T magnetic resonance imaging, and we assessed the degree centrality, brain network topology, and cortical thickness of the healthy control (HC) (n = 25), PD-high-GDNF (n = 19), and PD-low-GDNF (n = 19) groups using graph-theoretic measures of resting-state functional MRI to reveal how much brain connectivity varies and its clinical correlates, as well as to determine factors predicting the cognitive status in PD. RESULTS: The results show different network properties between groups. Degree centrality abnormalities were found in the right inferior frontal gyrus and right parietal lobe postcentral gyrus, linked with cognition scores. The two aberrant clusters serve as a potentially powerful signal for determining whether a patient has PD and the patient's cognition level after integrating with GDNF, duration, and dopamine dosage. Moreover, we found a significant positive relationship between the thickness of the left caudal middle frontal lobe and a plethora of cognitive domains. Further discriminant analysis revealed that the cortical thickness of this region could distinguish PD patients from healthy controls. The mental state evaluation will also be more precise when paired with GDNF and duration. CONCLUSION: Our findings reveal that the topological features of brain networks and cortical thickness are altered in PD patients with cognitive deficits. The above change, accompanied by the serum GDNF, may have merit as a diagnosis marker for PD and, arguably, cognition status.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Humanos , Encéfalo/patologia , Cognição , Disfunção Cognitiva/patologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Imageamento por Ressonância Magnética/métodos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/patologia
19.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L19-L28, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37987758

RESUMO

Our previous study showed that glial-derived neurotrophic factor (GDNF) expression is upregulated in asthmatic human lungs, and GDNF regulates calcium responses through its receptor GDNF family receptor α1 (GFRα1) and RET receptor in human airway smooth muscle (ASM) cells. In this study, we tested the hypothesis that airway GDNF contributes to airway hyperreactivity (AHR) and remodeling using a mixed allergen mouse model. Adult C57BL/6J mice were intranasally exposed to mixed allergens (ovalbumin, Aspergillus, Alternaria, house dust mite) over 4 wk with concurrent exposure to recombinant GDNF, or extracellular GDNF chelator GFRα1-Fc. Airway resistance and compliance to methacholine were assessed using FlexiVent. Lung expression of GDNF, GFRα1, RET, collagen, and fibronectin was examined by RT-PCR and histology staining. Allergen exposure increased GDNF expression in bronchial airways including ASM and epithelium. Laser capture microdissection of the ASM layer showed increased mRNA for GDNF, GFRα1, and RET in allergen-treated mice. Allergen exposure increased protein expression of GDNF and RET, but not GFRα1, in ASM. Intranasal administration of GDNF enhanced baseline responses to methacholine but did not consistently potentiate allergen effects. GDNF also induced airway thickening, and collagen deposition in bronchial airways. Chelation of GDNF by GFRα1-Fc attenuated allergen-induced AHR and particularly remodeling. These data suggest that locally produced GDNF, potentially derived from epithelium and/or ASM, contributes to AHR and remodeling relevant to asthma.NEW & NOTEWORTHY Local production of growth factors within the airway with autocrine/paracrine effects can promote features of asthma. Here, we show that glial-derived neurotrophic factor (GDNF) is a procontractile and proremodeling factor that contributes to allergen-induced airway hyperreactivity and tissue remodeling in a mouse model of asthma. Blocking GDNF signaling attenuates allergen-induced airway hyperreactivity and remodeling, suggesting a novel approach to alleviating structural and functional changes in the asthmatic airway.


Assuntos
Asma , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Animais , Camundongos , Alérgenos , Colágeno , Modelos Animais de Doenças , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Cloreto de Metacolina/farmacologia , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-ret/metabolismo
20.
Bioessays ; 46(3): e2300189, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38161234

RESUMO

Isthmin-1 (Ism1) was first described to be syn-expressed with Fgf8 in Xenopus. However, its biological role has not been elucidated until recent years. Despite of accumulated evidence that Ism1 participates in angiogenesis, tumor invasion, macrophage apoptosis, and glucose metabolism, the cognate receptors for Ism1 remain largely unknown. Ism1 deficiency in mice results in renal agenesis (RA) with a transient loss of Gdnf transcription and impaired mesenchyme condensation at E11.5. Ism1 binds to and activates Integrin α8ß1 to positively regulate Gdnf/Ret signaling, thus promoting mesenchyme condensation and ureteric epithelium branching morphogenesis. Here, we propose the hypothesis underlying the mechanism by which Ism1 regulates branching morphogenesis during early kidney development.


Assuntos
Estruturas Embrionárias , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Néfrons/embriologia , Ureter , Camundongos , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Rim/anormalidades , Rim/metabolismo , Rim/patologia , Ureter/metabolismo , Morfogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...