Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
MethodsX ; 13: 102839, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39105091

RESUMO

Melanoma is a type of skin cancer that poses significant health risks and requires early detection for effective treatment. This study proposing a novel approach that integrates a transformer-based model with hand-crafted texture features and Gray Wolf Optimization, aiming to enhance efficiency of melanoma classification. Preprocessing involves standardizing image dimensions and enhancing image quality through median filtering techniques. Texture features, including GLCM and LBP, are extracted to capture spatial patterns indicative of melanoma. The GWO algorithm is applied to select the most discriminative features. A transformer-based decoder is then employed for classification, leveraging attention mechanisms to capture contextual dependencies. The experimental validation on the HAM10000 dataset and ISIC2019 dataset showcases the effectiveness of the proposed methodology. The transformer-based model, integrated with hand-crafted texture features and guided by Gray Wolf Optimization, achieves outstanding results. The results showed that the proposed method performed well in melanoma detection tasks, achieving an accuracy and F1-score of 99.54% and 99.11% on the HAM10000 dataset, and an accuracy of 99.47%, and F1-score of 99.25% on the ISIC2019 dataset. • We use the concepts of LBP and GLCM to extract features from the skin lesion images. • The Gray Wolf Optimization (GWO) algorithm is employed for feature selection. • A decoder based on Transformers is utilized for melanoma classification.

2.
J Imaging ; 10(7)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39057739

RESUMO

Accurate prognosis and diagnosis are crucial for selecting and planning lung cancer treatments. As a result of the rapid development of medical imaging technology, the use of computed tomography (CT) scans in pathology is becoming standard practice. An intricate interplay of requirements and obstacles characterizes computer-assisted diagnosis, which relies on the precise and effective analysis of pathology images. In recent years, pathology image analysis tasks such as tumor region identification, prognosis prediction, tumor microenvironment characterization, and metastasis detection have witnessed the considerable potential of artificial intelligence, especially deep learning techniques. In this context, an artificial intelligence (AI)-based methodology for lung cancer diagnosis is proposed in this research work. As a first processing step, filtering using the Butterworth smooth filter algorithm was applied to the input images from the LUNA 16 lung cancer dataset to remove noise without significantly degrading the image quality. Next, we performed the bi-level feature selection step using the Chaotic Crow Search Algorithm and Random Forest (CCSA-RF) approach to select features such as diameter, margin, spiculation, lobulation, subtlety, and malignancy. Next, the Feature Extraction step was performed using the Multi-space Image Reconstruction (MIR) method with Grey Level Co-occurrence Matrix (GLCM). Next, the Lung Tumor Severity Classification (LTSC) was implemented by using the Sparse Convolutional Neural Network (SCNN) approach with a Probabilistic Neural Network (PNN). The developed method can detect benign, normal, and malignant lung cancer images using the PNN algorithm, which reduces complexity and efficiently provides classification results. Performance parameters, namely accuracy, precision, F-score, sensitivity, and specificity, were determined to evaluate the effectiveness of the implemented hybrid method and compare it with other solutions already present in the literature.

3.
J Biophotonics ; 17(8): e202400090, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38937995

RESUMO

Second-harmonic generation (SHG) microscopy provides a high-resolution label-free approach for noninvasively detecting collagen organization and its pathological alterations. Up to date, several imaging analysis algorithms for extracting collagen morphological features from SHG images-such as fiber size and length, order and anisotropy-have been developed. However, the dependence of extracted features on experimental setting represents a significant obstacle for translating the methodology in the clinical practice. We tackled this problem by acquiring SHG images of the same kind of collagenous sample in various laboratories using different experimental setups and imaging conditions. The acquired images were analyzed by commonly used algorithms, such as gray-level co-occurrence matrix or curvelet transform; the extracted morphological features were compared, finding that they strongly depend on some experimental parameters, whereas they are almost independent from others. We conclude with useful suggestions for comparing results obtained in different labs using different experimental setups and conditions.


Assuntos
Colágeno , Processamento de Imagem Assistida por Computador , Microscopia de Geração do Segundo Harmônico , Colágeno/metabolismo , Colágeno/química , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Geração do Segundo Harmônico/métodos , Animais , Algoritmos , Microscopia/métodos , Tomografia Computadorizada por Raios X
4.
Sensors (Basel) ; 24(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38794052

RESUMO

Recently, explainability in machine and deep learning has become an important area in the field of research as well as interest, both due to the increasing use of artificial intelligence (AI) methods and understanding of the decisions made by models. The explainability of artificial intelligence (XAI) is due to the increasing consciousness in, among other things, data mining, error elimination, and learning performance by various AI algorithms. Moreover, XAI will allow the decisions made by models in problems to be more transparent as well as effective. In this study, models from the 'glass box' group of Decision Tree, among others, and the 'black box' group of Random Forest, among others, were proposed to understand the identification of selected types of currant powders. The learning process of these models was carried out to determine accuracy indicators such as accuracy, precision, recall, and F1-score. It was visualized using Local Interpretable Model Agnostic Explanations (LIMEs) to predict the effectiveness of identifying specific types of blackcurrant powders based on texture descriptors such as entropy, contrast, correlation, dissimilarity, and homogeneity. Bagging (Bagging_100), Decision Tree (DT0), and Random Forest (RF7_gini) proved to be the most effective models in the framework of currant powder interpretability. The measures of classifier performance in terms of accuracy, precision, recall, and F1-score for Bagging_100, respectively, reached values of approximately 0.979. In comparison, DT0 reached values of 0.968, 0.972, 0.968, and 0.969, and RF7_gini reached values of 0.963, 0.964, 0.963, and 0.963. These models achieved classifier performance measures of greater than 96%. In the future, XAI using agnostic models can be an additional important tool to help analyze data, including food products, even online.


Assuntos
Algoritmos , Inteligência Artificial , Aprendizado de Máquina , Pós , Ribes , Pós/química , Ribes/química , Árvores de Decisões
5.
Front Oncol ; 14: 1264611, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751808

RESUMO

Cervical cancer is a significant concern for women, necessitating early detection and precise treatment. Conventional cytological methods often fall short in early diagnosis. The proposed innovative Heap Optimizer-based Self-Systematized Neural Fuzzy (HO-SsNF) method offers a viable solution. It utilizes HO-based segmentation, extracting features via Gray-Level Co-Occurrence Matrix (GLCM) and Local Binary Pattern (LBP). The proposed SsNF-based classifier achieves an impressive 99.6% accuracy in classifying cervical cancer cells, using the Herlev Pap Smear database. Comparative analyses underscore its superiority, establishing it as a valuable tool for precise cervical cancer detection. This algorithm has been seamlessly integrated into cervical cancer diagnosis centers, accessible through smartphone applications, with minimal resource demands. The resulting insights provide a foundation for advancing cancer prevention methods.

6.
Int J Biol Macromol ; 271(Pt 1): 132550, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38782326

RESUMO

Cyclic olefin copolymer (COC) has emerged as an interesting biocompatible material for Organ-on-a-Chip (OoC) devices monitoring growth, viability, and metabolism of cells. Despite ISO 10993 approval, systematic investigation of bacteria grown onto COC is a still not documented issue. This study discusses biofilm formations of the canonical wild type BB120 Vibrio campbellii strain on a native COC substrate and addresses the impact of the physico-chemical properties of COC compared to conventional hydroxyapatite (HA) and poly(dimethylsiloxane) (PDMS) surfaces. An interdisciplinary approach combining bacterial colony counting, light microscopy imaging and advanced digital image processing remarks interesting results. First, COC can reduce biomass adhesion with respect to common biopolymers, that is suitable for tuning biofilm formations in the biological and medical areas. Second, remarkably different biofilm morphology (dendritic complex patterns only in the case of COC) was observed among the examined substrates. Third, the observed biofilm morphogenesis was related to the interaction of COC with the conditioning layer of the planktonic biological medium. Fourth, Level Co-occurrence Matrix (CGLM)-based analysis enabled quantitative assessment of the biomass textural fractal development under different coverage conditions. All of this is of key practical relevance in searching innovative biocompatible materials for pharmaceutical, implantable and medical products.


Assuntos
Aderência Bacteriana , Materiais Biocompatíveis , Biofilmes , Vibrio , Materiais Biocompatíveis/química , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Vibrio/efeitos dos fármacos , Vibrio/crescimento & desenvolvimento , Aderência Bacteriana/efeitos dos fármacos , Cicloparafinas/química , Polímeros/química , Durapatita/química , Biomassa
7.
PeerJ Comput Sci ; 10: e1927, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660180

RESUMO

Textures provide a powerful segmentation and object detection cue. Recent research has shown that deep convolutional nets like Visual Geometry Group (VGG) and ResNet perform well in non-stationary texture datasets. Non-stationary textures have local structures that change from one region of the image to the other. This is consistent with the view that deep convolutional networks are good at detecting local microstructures disguised as textures. However, stationary textures are textures that have statistical properties that are constant or slow varying over the entire region are not well detected by deep convolutional networks. This research demonstrates that simple seven-layer convolutional networks can obtain better results than deep networks using a novel convolutional technique called orthogonal convolution with pre-calculated regional features using grey level co-occurrence matrix. We obtained an average of 8.5% improvement in accuracy in texture recognition on the Outex dataset over GoogleNet, ResNet, VGG and AlexNet.

9.
Foods ; 13(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38472810

RESUMO

In the modern times of technological development, it is important to select adequate methods to support various food and industrial problems, including innovative techniques with the help of artificial intelligence (AI). Effective analysis and the speed of algorithm implementation are key points in assessing the quality of food products. Non-invasive solutions are being sought to achieve high accuracy in the classification and evaluation of various food products. This paper presents various machine learning algorithm architectures to evaluate the efficiency of identifying blackcurrant powders (i.e., blackcurrant concentrate with a density of 67 °Brix and a color coefficient of 2.352 (E520/E420) in combination with the selected carrier) based on information encoded in microscopic images acquired via scanning electron microscopy (SEM). Recognition of blackcurrant powders was performed using texture feature extraction from images aided by the gray-level co-occurrence matrix (GLCM). It was evaluated for quality using individual single classifiers and a metaclassifier based on metrics such as accuracy, precision, recall, and F1-score. The research showed that the metaclassifier, as well as a single random forest (RF) classifier most effectively identified blackcurrant powders based on image texture features. This indicates that ensembles of classifiers in machine learning is an alternative approach to demonstrate better performance than the existing traditional solutions with single neural models. In the future, such solutions could be an important tool to support the assessment of the quality of food products in real time. Moreover, ensembles of classifiers can be used for faster analysis to determine the selection of an adequate machine learning algorithm for a given problem.

10.
Heliyon ; 10(4): e26192, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38404820

RESUMO

Machine learning offers significant potential for lung cancer detection, enabling early diagnosis and potentially improving patient outcomes. Feature extraction remains a crucial challenge in this domain. Combining the most relevant features can further enhance detection accuracy. This study employed a hybrid feature extraction approach, which integrates both Gray-level co-occurrence matrix (GLCM) with Haralick and autoencoder features with an autoencoder. These features were subsequently fed into supervised machine learning methods. Support Vector Machine (SVM) Radial Base Function (RBF) and SVM Gaussian achieved perfect performance measures, while SVM polynomial produced an accuracy of 99.89% when utilizing GLCM with an autoencoder, Haralick, and autoencoder features. SVM Gaussian achieved an accuracy of 99.56%, while SVM RBF achieved an accuracy of 99.35% when utilizing GLCM with Haralick features. These results demonstrate the potential of the proposed approach for developing improved diagnostic and prognostic lung cancer treatment planning and decision-making systems.

11.
Sci Total Environ ; 917: 170389, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38307294

RESUMO

Arctic coasts are transition zones influenced by terrestrial, marine, and cryospheric factors. Due to the degradation of the cryosphere exacerbated by climate change, many segments of Arctic coasts are characterized by severe erosions and thus resulting in many social-economic consequences. To assess the imminent coastal risks and increasing organic carbon fluxes released from Arctic erosional coasts, continuous monitoring of shoreline movement is necessary. Conventional studies employ spaceborne multi-spectral optical images to detect ample Arctic coasts' dynamics; nonetheless, the frequent cloud cover and Arctic haze limit the number of usable images. Thence, most studies merely utilize a few image pairs to estimate long-term rate changes, which deter statistically meaningful trend analysis and are likely biased by intra-annual variations. This study employs cross-mission synthetic aperture radar (SAR) images that are cloud-penetrating and weather-independent to depict 32-year spatiotemporal changes of Drew Point Coast along the Alaskan Beaufort Sea. To efficiently and robustly extract shorelines, a non-manual intervention-required and cross-SAR sensor applicable approach is proposed. Based on the automatically delineated time series shoreline positions, each coastal segment's position-time records are modeled with a statistic-based coastal dynamics classification scheme that enables constructing non-linear trends of inter-decadal recession rates. Results reveal that 83.7 % of the coast exhibits continuous erosion during 1992-2023. Dynamically, 48.6 % of coast demonstrates polynomial change patterns with an erosive rate higher than -6 m/yr. Remarkably, 22.5 % of the coast has been statistically significantly accelerating. For instance, the erosional rate nearly double (93.8 %) between Drew Point and McLeod Point, while between Lonely and Pitt Point, the most erosive segment in the study coast, the retreating rate increases 285.57 % from -5.92 to -22.81 m/yr. These findings exemplify the high heterogeneity of Arctic coastal changes and highlight the opportunities of using spaceborne SAR data to empower the management and conservation of Arctic coasts.

12.
Plants (Basel) ; 13(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38202443

RESUMO

Deep learning plays a vital role in precise grapevine disease detection, yet practical applications for farmer assistance are scarce despite promising results. The objective of this research is to develop an intelligent approach, supported by user-friendly, open-source software named AI GrapeCare (Version 1, created by Osama Elsherbiny). This approach utilizes RGB imagery and hybrid deep networks for the detection and prevention of grapevine diseases. Exploring the optimal deep learning architecture involved combining convolutional neural networks (CNNs), long short-term memory (LSTM), deep neural networks (DNNs), and transfer learning networks (including VGG16, VGG19, ResNet50, and ResNet101V2). A gray level co-occurrence matrix (GLCM) was employed to measure the textural characteristics. The plant disease detection platform (PDD) created a dataset of real-life grape leaf images from vineyards to improve plant disease identification. A data augmentation technique was applied to address the issue of limited images. Subsequently, the augmented dataset was used to train the models and enhance their capability to accurately identify and classify plant diseases in real-world scenarios. The analyzed outcomes indicated that the combined CNNRGB-LSTMGLCM deep network, based on the VGG16 pretrained network and data augmentation, outperformed the separate deep network and nonaugmented version features. Its validation accuracy, classification precision, recall, and F-measure are all 96.6%, with a 93.4% intersection over union and a loss of 0.123. Furthermore, the software developed through the proposed approach holds great promise as a rapid tool for diagnosing grapevine diseases in less than one minute. The framework of the study shows potential for future expansion to include various types of trees. This capability can assist farmers in early detection of tree diseases, enabling them to implement preventive measures.

13.
Pathol Res Pract ; 254: 155126, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38228038

RESUMO

BACKGROUND: Micronuclei (MN) have been used as screening, diagnostic and prognostic markers in multiple cancer types, including breast cancer (BC). However, the question that the MN present in all subtypes of BC are similar or different remains unanswered. We thus hypothesized that MN present in different subtypes of BC may differ in their contents which may be visible as differences in their morphologic and morphometric features. This study was thus carried out with the aim to identify the differences between MN morphometry, complexity, and texture in different subtypes of BC, such as estrogen and progesterone receptor-positive (ER+/PR+; MCF-7, T-47D), human epidermal growth factor receptor-positive (Her2 +;SKBR3) and triple-negative BC (TNBC; MDA-MB-231, MDA-MB-468) cell lines (CLs) by ImageJ software. METHODS: For analysis of MN dimensions, MN irregularity, and texture, we used morphometry and two mathematical computer-assisted algorithms, i.e., fractal dimension (FD) and grey level co-occurrence matrix (GLCM) of ImageJ software. RESULTS: MN area and perimeter values showed differences in the size of MN in different subtypes of BC, with the largest MN in TNBC CLs. GLCM parameters (entropy, angular second moment, inverse difference moment, contrast, and correlation) showed highly heterogenous texture in case of TNBC MN as compared to the others. FD analysis also revealed more complexity and irregularity in MN found in TNBC cells. CONCLUSION: The study for the first time showed morphometric, architectural and texture related differences amongst MN present in different subtypes of BC. The above may reflect differences in their composition and contents. Further, these differences may point towards the distinct mechanisms involved in the formation of MN in different subtypes of BC that need to be explored further.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Algoritmos , Estrogênios , Linhagem Celular , Software
14.
BMC Oral Health ; 23(1): 833, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932703

RESUMO

BACKGROUND AND OBJECTIVE: Dental panoramic radiographs are utilized in computer-aided image analysis, which detects abnormal tissue masses by analyzing the produced image capacity to recognize patterns of intensity fluctuations. This is done to reduce the need for invasive biopsies for arriving to a diagnosis. The aim of the current study was to examine and compare the accuracy of several texture analysis techniques, such as Grey Level Run Length Matrix (GLRLM), Grey Level Co-occurrence Matrix (GLCM), and wavelet analysis in recognizing dental cyst, tumor, and abscess lesions. MATERIALS & METHODS: The current retrospective study retrieved a total of 172 dental panoramic radiographs with lesion including dental cysts, tumors, or abscess. Radiographs that failed to meet technical criteria for diagnostic quality (such as significant overlap of teeth, a diffuse image, or distortion) were excluded from the sample. The methodology adopted in the study comprised of five stages. At first, the radiographs are improved, and the area of interest was segmented manually. A variety of feature extraction techniques, such GLCM, GLRLM, and the wavelet analysis were used to gather information from the area of interest. Later, the lesions were classified as a cyst, tumor, abscess, or using a support vector machine (SVM) classifier. Eventually, the data was transferred into a Microsoft Excel spreadsheet and statistical package for social sciences (SPSS) (version 21) was used to conduct the statistical analysis. Initially descriptive statistics were computed. For inferential analysis, statistical significance was determined by a p value < 0.05. The sensitivity, specificity, and accuracy were used to find the significant difference between assessed and actual diagnosis. RESULTS: The findings demonstrate that 98% accuracy was achieved using GLCM, 91% accuracy using Wavelet analysis & 95% accuracy using GLRLM in distinguishing between dental cyst, tumor, and abscess lesions. The area under curve (AUC) number indicates that GLCM achieves a high degree of accuracy. The results achieved excellent accuracy (98%) using GLCM. CONCLUSION: The GLCM features can be used for further research. After improving the performance and training, it can support routine histological diagnosis and can assist the clinicians in arriving at accurate and spontaneous treatment plans.


Assuntos
Abscesso , Cistos , Humanos , Estudos Retrospectivos , Aprendizado de Máquina
15.
Cancers (Basel) ; 15(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958422

RESUMO

Oral cancer is a fatal disease and ranks seventh among the most common cancers throughout the whole globe. Oral cancer is a type of cancer that usually affects the head and neck. The current gold standard for diagnosis is histopathological investigation, however, the conventional approach is time-consuming and requires professional interpretation. Therefore, early diagnosis of Oral Squamous Cell Carcinoma (OSCC) is crucial for successful therapy, reducing the risk of mortality and morbidity, while improving the patient's chances of survival. Thus, we employed several artificial intelligence techniques to aid clinicians or physicians, thereby significantly reducing the workload of pathologists. This study aimed to develop hybrid methodologies based on fused features to generate better results for early diagnosis of OSCC. This study employed three different strategies, each using five distinct models. The first strategy is transfer learning using the Xception, Inceptionv3, InceptionResNetV2, NASNetLarge, and DenseNet201 models. The second strategy involves using a pre-trained art of CNN for feature extraction coupled with a Support Vector Machine (SVM) for classification. In particular, features were extracted using various pre-trained models, namely Xception, Inceptionv3, InceptionResNetV2, NASNetLarge, and DenseNet201, and were subsequently applied to the SVM algorithm to evaluate the classification accuracy. The final strategy employs a cutting-edge hybrid feature fusion technique, utilizing an art-of-CNN model to extract the deep features of the aforementioned models. These deep features underwent dimensionality reduction through principal component analysis (PCA). Subsequently, low-dimensionality features are combined with shape, color, and texture features extracted using a gray-level co-occurrence matrix (GLCM), Histogram of Oriented Gradient (HOG), and Local Binary Pattern (LBP) methods. Hybrid feature fusion was incorporated into the SVM to enhance the classification performance. The proposed system achieved promising results for rapid diagnosis of OSCC using histological images. The accuracy, precision, sensitivity, specificity, F-1 score, and area under the curve (AUC) of the support vector machine (SVM) algorithm based on the hybrid feature fusion of DenseNet201 with GLCM, HOG, and LBP features were 97.00%, 96.77%, 90.90%, 98.92%, 93.74%, and 96.80%, respectively.

16.
Cancers (Basel) ; 15(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37894430

RESUMO

BACKGROUND: Glioblastoma (GBM) is one of the most common malignant primary brain tumors, which accounts for 60-70% of all gliomas. Conventional diagnosis and the decision of post-operation treatment plan for glioblastoma is mainly based on the feature-based qualitative analysis of hematoxylin and eosin-stained (H&E) histopathological slides by both an experienced medical technologist and a pathologist. The recent development of digital whole slide scanners makes AI-based histopathological image analysis feasible and helps to diagnose cancer by accurately counting cell types and/or quantitative analysis. However, the technology available for digital slide image analysis is still very limited. This study aimed to build an image feature-based computer model using histopathology whole slide images to differentiate patients with glioblastoma (GBM) from healthy control (HC). METHOD: Two independent cohorts of patients were used. The first cohort was composed of 262 GBM patients of the Cancer Genome Atlas Glioblastoma Multiform Collection (TCGA-GBM) dataset from the cancer imaging archive (TCIA) database. The second cohort was composed of 60 GBM patients collected from a local hospital. Also, a group of 60 participants with no known brain disease were collected. All the H&E slides were collected. Thirty-three image features (22 GLCM and 11 GLRLM) were retrieved from the tumor volume delineated by medical technologist on H&E slides. Five machine-learning algorithms including decision-tree (DT), extreme-boost (EB), support vector machine (SVM), random forest (RF), and linear model (LM) were used to build five models using the image features extracted from the first cohort of patients. Models built were deployed using the selected key image features for GBM diagnosis from the second cohort (local patients) as model testing, to identify and verify key image features for GBM diagnosis. RESULTS: All five machine learning algorithms demonstrated excellent performance in GBM diagnosis and achieved an overall accuracy of 100% in the training and validation stage. A total of 12 GLCM and 3 GLRLM image features were identified and they showed a significant difference between the normal and the GBM image. However, only the SVM model maintained its excellent performance in the deployment of the models using the independent local cohort, with an accuracy of 93.5%, sensitivity of 86.95%, and specificity of 99.73%. CONCLUSION: In this study, we have identified 12 GLCM and 3 GLRLM image features which can aid the GBM diagnosis. Among the five models built, the SVM model proposed in this study demonstrated excellent accuracy with very good sensitivity and specificity. It could potentially be used for GBM diagnosis and future clinical application.

17.
J Clin Med ; 12(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37629289

RESUMO

AIM: The aim of the study was to quantitatively assess the effectiveness of microneedle mesotherapy in reducing skin discoloration. The results were analyzed using the gray-level co-occurrence matrix (GLCM) method. MATERIAL AND METHODS: The skin of the forearm (7 × 7 cm) of 12 women aged 29 to 68 was examined. Microneedle mesotherapy was performed using a dermapen with a preparation containing 12% ascorbic acid. Each of the volunteers underwent a series of four microneedle mesotherapy treatments. The effectiveness of the treatment was quantified using the methods of image analysis and processing. A series of clinical images were taken in cross-polarized light before and after a series of cosmetic procedures. Then, the treated areas were analyzed by determining the parameters of the gray-level co-occurrence matrix (GLCM) algorithm: contrast and homogeneity. RESULTS: During image pre-processing, the volunteers' clinical images were separated into red (R), green (G) and blue (B) channels. The photos taken after the procedure show an increase in skin brightness compared to the photos taken before the procedure. The average increase in skin brightness after the treatment was 10.6%, the average decrease in GLCM contrast was 10.7%, and the average homogeneity increased by 14.5%. Based on the analysis, the greatest differences in the GLCM contrast were observed during tests performed in the B channel of the RGB scale. With a decrease in GLCM contrast, an increase in postoperative homogeneity of 0.1 was noted, which is 14.5%.

18.
Histochem Cell Biol ; 160(6): 563-576, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37604940

RESUMO

The aim of this study was to reveal the effects of obesity and phytotherapy with 20-hydroxyecdysone (20E) on the nuclei of adrenal zona fasciculata (ZF) in the gerbil Gerbillus tarabuli by analyzing nuclear shape and gray-level co-occurrence matrix (GLCM) texture characteristics and by quantifying heterochromatin. Twelve gerbils were divided into three groups: control (C), HC and HC-20E (animals receiving a high-calorie-diet without or with a supplement of 20E, respectively). The adrenals were removed and fixed for histological and statistical analysis. Principal component analysis showed a positive correlation of area, perimeter and textural correlation in C. Nevertheless, a negative correlation was recorded for contrast and entropy. The obesity caused a disorder in nuclear texture; negative correlation was noted with heterochromatin fraction, which may be related to increased ZF activity. However, administration of 20E seems to improve the nuclear state by preserving circularity, uniformity and homogeneity of nuclei as well as the proportion of heterochromatin, which could be a sign of a downregulation of cell activity.Our results suggest that new techniques of image processing could contribute to the understanding of nuclear changes associated with obesity and its possible therapy in this gerbil model for metabolic syndrome.


Assuntos
Síndrome Metabólica , Zona Fasciculada , Animais , Heterocromatina , Gerbillinae , Ecdisterona , Obesidade
19.
J Cancer Res Clin Oncol ; 149(15): 14365-14408, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37540254

RESUMO

PURPOSE: There are millions of people who lose their life due to several types of fatal diseases. Cancer is one of the most fatal diseases which may be due to obesity, alcohol consumption, infections, ultraviolet radiation, smoking, and unhealthy lifestyles. Cancer is abnormal and uncontrolled tissue growth inside the body which may be spread to other body parts other than where it has originated. Hence it is very much required to diagnose the cancer at an early stage to provide correct and timely treatment. Also, manual diagnosis and diagnostic error may cause of the death of many patients hence much research are going on for the automatic and accurate detection of cancer at early stage. METHODS: In this paper, we have done the comparative analysis of the diagnosis and recent advancement for the detection of various cancer types using traditional machine learning (ML) and deep learning (DL) models. In this study, we have included four types of cancers, brain, lung, skin, and breast and their detection using ML and DL techniques. In extensive review we have included a total of 130 pieces of literature among which 56 are of ML-based and 74 are from DL-based cancer detection techniques. Only the peer reviewed research papers published in the recent 5-year span (2018-2023) have been included for the analysis based on the parameters, year of publication, feature utilized, best model, dataset/images utilized, and best accuracy. We have reviewed ML and DL-based techniques for cancer detection separately and included accuracy as the performance evaluation metrics to maintain the homogeneity while verifying the classifier efficiency. RESULTS: Among all the reviewed literatures, DL techniques achieved the highest accuracy of 100%, while ML techniques achieved 99.89%. The lowest accuracy achieved using DL and ML approaches were 70% and 75.48%, respectively. The difference in accuracy between the highest and lowest performing models is about 28.8% for skin cancer detection. In addition, the key findings, and challenges for each type of cancer detection using ML and DL techniques have been presented. The comparative analysis between the best performing and worst performing models, along with overall key findings and challenges, has been provided for future research purposes. Although the analysis is based on accuracy as the performance metric and various parameters, the results demonstrate a significant scope for improvement in classification efficiency. CONCLUSION: The paper concludes that both ML and DL techniques hold promise in the early detection of various cancer types. However, the study identifies specific challenges that need to be addressed for the widespread implementation of these techniques in clinical settings. The presented results offer valuable guidance for future research in cancer detection, emphasizing the need for continued advancements in ML and DL-based approaches to improve diagnostic accuracy and ultimately save more lives.

20.
Sensors (Basel) ; 23(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37430604

RESUMO

One of the most severe types of cancer caused by the uncontrollable proliferation of brain cells inside the skull is brain tumors. Hence, a fast and accurate tumor detection method is critical for the patient's health. Many automated artificial intelligence (AI) methods have recently been developed to diagnose tumors. These approaches, however, result in poor performance; hence, there is a need for an efficient technique to perform precise diagnoses. This paper suggests a novel approach for brain tumor detection via an ensemble of deep and hand-crafted feature vectors (FV). The novel FV is an ensemble of hand-crafted features based on the GLCM (gray level co-occurrence matrix) and in-depth features based on VGG16. The novel FV contains robust features compared to independent vectors, which improve the suggested method's discriminating capabilities. The proposed FV is then classified using SVM or support vector machines and the k-nearest neighbor classifier (KNN). The framework achieved the highest accuracy of 99% on the ensemble FV. The results indicate the reliability and efficacy of the proposed methodology; hence, radiologists can use it to detect brain tumors through MRI (magnetic resonance imaging). The results show the robustness of the proposed method and can be deployed in the real environment to detect brain tumors from MRI images accurately. In addition, the performance of our model was validated via cross-tabulated data.


Assuntos
Inteligência Artificial , Neoplasias Encefálicas , Humanos , Encéfalo , Neoplasias Encefálicas/diagnóstico por imagem , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA