Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
J Clin Immunol ; 44(7): 160, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990428

RESUMO

BACKGROUND: Inborn errors of immunity (IEIs) encompass various diseases with diverse clinical and immunological symptoms. Determining the genotype-phenotype of different variants in IEI entity precisely is challenging, as manifestations can be heterogeneous even in patients with the same mutated gene. OBJECTIVE: In the present study, we conducted a systematic review of patients recorded with NFKB1 and NFKB2 mutations, two of the most frequent monogenic IEIs. METHODS: The search for relevant literature was conducted in databases including Web of Science, PubMed, and Scopus. Information encompassing demographic, clinical, immunological, and genetic data was extracted from cases reported with mutations in NFKB1 and NFKB2. The comprehensive features of manifestations in patients were described, and a comparative analysis of primary characteristics was conducted between individuals with NFKB1 loss of function (LOF) and NFKB2 (p52-LOF/IκBδ-gain of function (GOF)) variants. RESULTS: A total of 397 patients were included in this study, 257 had NFKB1 mutations and 140 had NFKB2 mutations. There were 175 LOF cases in NFKB1 and 122 p52LOF/IκBδGOF cases in NFKB2 pivotal groups with confirmed functional implications. NFKB1LOF and p52LOF/IκBδGOF predominant cases (81.8% and 62.5% respectively) initially presented with a CVID-like phenotype. Patients with NFKB1LOF variants often experienced hematologic autoimmune disorders, whereas p52LOF/IκBδGOF patients were more susceptible to other autoimmune diseases. Viral infections were markedly higher in p52LOF/IκBδGOF cases compared to NFKB1LOF (P-value < 0.001). NFKB2 (p52LOF/IκBδGOF) patients exhibited a greater prevalence of ectodermal dysplasia and pituitary gland involvement than NFKB1LOF patients. Most NFKB1LOF and p52LOF/IκBδGOF cases showed low CD19 + B cells, with p52LOF/IκBδGOF having more cases of this type. Low memory B cells were more common in p52LOF/IκBδGOF patients. CONCLUSIONS: Patients with NFKB2 mutations, particularly p52LOF/IκBδGOF, are at higher risk of viral infections, pituitary gland involvement, and ectodermal dysplasia compared to patients with NFKB1LOF mutations. Genetic testing is essential to resolve the initial complexity and confusion surrounding clinical and immunological features. Emphasizing the significance of functional assays in determining the probability of correlations between mutations and immunological and clinical characteristics of patients is crucial.


Assuntos
Mutação , Subunidade p50 de NF-kappa B , Subunidade p52 de NF-kappa B , Humanos , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação/genética , Subunidade p50 de NF-kappa B/genética , Subunidade p52 de NF-kappa B/genética , Fenótipo
2.
Front Immunol ; 15: 1352789, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966639

RESUMO

Introduction: Extracellular ATP (eATP) released from damaged cells activates the P2X7 receptor (P2X7R) ion channel on the surface of surrounding cells, resulting in calcium influx, potassium efflux and inflammasome activation. Inherited changes in the P2X7R gene (P2RX7) influence eATP induced responses. Single nucleotide polymorphisms (SNPs) of P2RX7 influence both function and signaling of the receptor, that in addition to ion flux includes pathogen control and immunity. Methods: Subjects (n = 105) were admitted to the ICU at the University Hospital Ulm, Germany between June 2018 and August 2019. Of these, subjects with a diagnosis of sepsis (n = 75), were also diagnosed with septic shock (n = 24), and/or pneumonia (n = 42). Subjects with pneumonia (n = 43) included those without sepsis (n = 1), sepsis without shock (n = 29) and pneumonia with septic shock (n = 13). Out of the 75 sepsis/septic shock patients, 33 patients were not diagnosed with pneumonia. Controls (n = 30) were recruited to the study from trauma patients and surgical patients without sepsis, septic shock, or pneumonia. SNP frequencies were determined for 16 P2RX7 SNPs known to affect P2X7R function, and association studies were performed between frequencies of these SNPs in sepsis, septic shock, and pneumonia compared to controls. Results: The loss-of-function (LOF) SNP rs17525809 (T253C) was found more frequently in patients with septic shock, and non-septic trauma patients when compared to sepsis. The LOF SNP rs2230911 (C1096G) was found to be more frequent in patients with sepsis and septic shock than in non-septic trauma patients. The frequencies of these SNPs were even higher in sepsis and septic patients with pneumonia. The current study also confirmed a previous study by our group that showed a five SNP combination that included the GOF SNPs rs208294 (C489T) and rs2230912 (Q460R) that was designated #21211 was associated with increased odds of survival in severe sepsis. Discussion: The results found an association between expression of LOF P2RX7 SNPs and presentation to the ICU with sepsis, and septic shock compared to control ICU patients. Furthermore, frequencies of LOF SNPs were found to be higher in sepsis patients with pneumonia compared to those without pneumonia. In addition, a five SNP GOF combination was associated with increased odds of survival in severe sepsis. These results suggest that P2RX7 is required to control infection in pneumonia and that inheritance of LOF variants increases the risk of sepsis when associated with pneumonia. This study confirms that P2RX7 genotyping in pneumonia may identify patients at risk of developing sepsis. The study also identifies P2X7R as a target in sepsis associated with an excessive immune response in subjects with GOF SNP combinations.


Assuntos
Pneumonia , Polimorfismo de Nucleotídeo Único , Receptores Purinérgicos P2X7 , Sepse , Choque Séptico , Humanos , Receptores Purinérgicos P2X7/genética , Masculino , Feminino , Choque Séptico/genética , Choque Séptico/mortalidade , Choque Séptico/imunologia , Pessoa de Meia-Idade , Pneumonia/genética , Pneumonia/mortalidade , Idoso , Sepse/genética , Sepse/mortalidade , Predisposição Genética para Doença , Trifosfato de Adenosina/metabolismo , Adulto , Idoso de 80 Anos ou mais
3.
Clin Immunol ; 266: 110312, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39019339

RESUMO

STAT3 gain-of-function (GOF) variants results in a heterogeneous clinical syndrome characterized by early onset immunodeficiency, multi-organ autoimmunity, and lymphoproliferation. While 191 documented cases with STAT3 GOF variants have been reported, the impact of individual variants on immune regulation and the broad clinical spectrum remains unclear. We developed a Stat3p.L387R mouse model, mirroring a variant identified in a family exhibiting common STAT3 GOF symptoms, and rare phenotypes including pulmonary hypertension and retinal vasculitis. In vitro experiments revealed increased STAT3 phosphorylation, nuclear migration, and DNA binding of the variant. Our Stat3p.L387R model displayed similar traits from previous Stat3GOF strains, such as splenomegaly and lymphadenopathy. Notably, Stat3p.L387R/+ mice exhibited heightened embryonic lethality compared to prior Stat3GOF/+ models and ocular abnormalities were observed. This research underscores the variant-specific pathology in Stat3p.L387R/+ mice, highlighting the ability to recapitulate human STAT3 GOF syndrome in patient-specific transgenic murine models. Additionally, such models could facilitate tailored treatment development.


Assuntos
Modelos Animais de Doenças , Mutação com Ganho de Função , Fator de Transcrição STAT3 , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Animais , Camundongos , Humanos , Mutação com Ganho de Função/genética , Feminino , Masculino , Camundongos Transgênicos , Fenótipo , Fosforilação , Camundongos Endogâmicos C57BL
4.
Cell Oncol (Dordr) ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888850

RESUMO

PURPOSE: Uterine serous carcinoma (USC) is generally associated with poor prognosis due to a high recurrence rate and frequent treatment resistance; hence, there is a need for improved therapeutic strategies. Molecular analysis of USC identified several molecular markers, useful to improve current treatments or identify new druggable targets. PPP2R1A, encoding the Aα subunit of the tumor suppressive Ser/Thr phosphatase PP2A, is mutated in up to 40% of USCs. Here, we investigated the effect of the p.R183W PPP2R1A hotspot variant on treatment response to the nucleoside analogue clofarabine. METHODS AND RESULTS: USC cells stably expressing p.R183W Aα showed increased resistance to clofarabine treatment in vitro and, corroborated by decreased clofarabine-induced apoptosis, G1 phase arrest, DNA-damage (γH2AX) and activation of ATM and Chk1/2 kinases. Phenotypic rescue by pharmacologic PP2A inhibition or dicer-substrate siRNA (dsiRNA)-mediated B56δ subunit knockdown supported a gain-of-function mechanism of Aα p.R183W, promoting dephosphorylation and inactivation of deoxycytidine kinase (dCK), the cellular enzyme responsible for the conversion of clofarabine into its bioactive form. Therapeutic assessment of related nucleoside analogues (gemcitabine, cladribine) revealed similar effects, but in a cell line-dependent manner. Expression of two other PPP2R1A USC mutants (p.P179R or p.S256F) did not affect clofarabine response in our cell models, arguing for mutant-specific effects on treatment outcome as well. CONCLUSIONS: While our results call for PPP2R1A mutant and context-dependent effects upon clofarabine/nucleoside analogue monotherapy, combining clofarabine with a pharmacologic PP2A inhibitor proved synergistically in all tested conditions, highlighting a new generally applicable strategy to improve treatment outcome in USC.

6.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731819

RESUMO

TP53 mutations are prevalent in various cancers, yet the complexity of apoptotic pathway deregulation suggests the involvement of additional factors. HOPS/TMUB1 is known to extend the half-life of p53 under normal and stress conditions, implying a regulatory function. This study investigates, for the first time, the potential modulatory role of the ubiquitin-like-protein HOPS/TMUB1 in p53-mutants. A comprehensive analysis of apoptosis in the most frequent p53-mutants, R175, R248, and R273, in SKBR3, MIA PaCa2, and H1975 cells indicates that the overexpression of HOPS induces apoptosis at least equivalent to that caused by DNA damage. Immunoprecipitation assays confirm HOPS binding to p53-mutant forms. The interaction of HOPS/TMUB1 with p53-mutants strengthens its effect on the apoptotic cascade, showing a context-dependent gain or loss of function. Gene expression analysis of the MYC and TP63 genes shows that H1975 exhibit a gain-of-function profile, while SKBR3 promote apoptosis in a TP63-dependent manner. The TCGA data further corroborate HOPS/TMUB1's positive correlation with apoptotic genes BAX, BBC3, and NOXA1, underscoring its relevance in patient samples. Notably, singular TP53 mutations inadequately explain pathway dysregulation, emphasizing the need to explore additional contributing factors. These findings illuminate the intricate interplay among TP53 mutations, HOPS/TMUB1, and apoptotic pathways, providing valuable insights for targeted cancer interventions.


Assuntos
Apoptose , Mutação , Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Apoptose/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Fatores de Transcrição
7.
J Clin Immunol ; 44(4): 84, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578320

RESUMO

PURPOSE: Patients with STAT1 gain-of-function (GOF) mutations often exhibit autoimmune features. The JAK1/2 inhibitor ruxolitinib can be administered to alleviate autoimmune symptoms; however, it is unclear how immune cells are molecularly changed by ruxolitinib treatment. Then, we aimed to investigate the trnscriptional and epigenetic status of immune cells before and after ruxolitinib treatment in a patient with STAT1 GOF. METHODS: A patient with a heterozygous STAT1 GOF variant (p.Ala267Val), exhibiting autoimmune features, was treated with ruxolitinib, and peripheral blood mononuclear cells (PBMCs) were longitudinally collected. PBMCs were transcriptionally analyzed by single-cell cellular indexing of the transcriptomes and epitopes by sequencing (CITE-seq), and epigenetically analyzed by assay of transposase-accessible chromatin sequencing (ATAC-seq). RESULTS: CITE-seq analysis revealed that before treatment, the patient's PBMCs exhibited aberrantly activated inflammatory features, especially IFN-related features. In particular, monocytes showed high expression levels of a subset of IFN-stimulated genes (ISGs). Ruxolitinib treatment substantially downregulated aberrantly overexpressed ISGs, and improved autoimmune features. However, epigenetic analysis demonstrated that genetic regions of ISGs-e.g., STAT1, IRF1, MX1, and OAS1-were highly accessible even after ruxolitinib treatment. When ruxolitinib was temporarily discontinued, the patient's autoimmune features were aggravated, which is in line with sustained epigenetic abnormality. CONCLUSIONS: In a patient with STAT1 GOF, ruxolitinib treatment improved autoimmune features and downregulated aberrantly overexpressed ISGs, but did not correct epigenetic abnormality of ISGs.


Assuntos
Mutação com Ganho de Função , Pirazóis , Fator de Transcrição STAT1 , Humanos , Mutação com Ganho de Função/genética , Leucócitos Mononucleares/metabolismo , Nitrilas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Fator de Transcrição STAT1/genética
8.
J Clin Immunol ; 44(4): 85, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578354

RESUMO

INTRODUCTION: The signal transducer and activator of transcription (STAT1) gain-of-function (GOF) syndrome accounts for most cases of chronic mucocutaneous candidiasis but is characterized by a broader clinical phenotype that may include bacterial, viral, or invasive fungal infections, autoimmunity, autoinflammatory manifestations, vascular complications, or malignancies. The severity of lymphopenia may vary and influence the infectious morbidity. METHODS: In our cohort of seven STAT1-GOF patients, we investigated the mechanisms that may determine T lymphopenia, we characterized the interferon gene signature (IGS) and analyzed the effect of ruxolitinib in reverting the immune dysregulation. RESULTS: STAT1-GOF patients exhibited increased T lymphocyte apoptosis that was significantly augmented in both resting conditions and following stimulation with mitogens and IFNα, as evaluated by flow cytometry by Annexin V/ Propidium iodide assay. The JAK inhibitor ruxolitinib significantly reduced the IFNα-induced hyperphosphorylation of STAT1 and reverted the stimulation-induced T-cell apoptosis, in vitro. In two adult STAT1-GOF patients, the JAKinib treatment ameliorated chronic mucocutaneous candidiasis and lymphopenia. Most STAT1-GOF patients, particularly those who had autoimmunity, presented increased IGS that significantly decreased in the two patients during ruxolitinib treatment. CONCLUSION: In STAT1-GOF patients, T lymphocyte apoptosis is increased, and T lymphopenia may determine higher risk of severe infections. The JAKinib target therapy should be evaluated to treat severe chronic candidiasis and lymphopenia, and to downregulate the IFNs in patients with autoinflammatory or autoimmune manifestations.


Assuntos
Candidíase Mucocutânea Crônica , Inibidores de Janus Quinases , Linfopenia , Nitrilas , Pirazóis , Pirimidinas , Trombocitopenia , Adulto , Humanos , Mutação com Ganho de Função , Inibidores de Janus Quinases/uso terapêutico , Candidíase Mucocutânea Crônica/tratamento farmacológico , Candidíase Mucocutânea Crônica/genética , Interferons , Fator de Transcrição STAT1/metabolismo
9.
Crit Rev Clin Lab Sci ; 61(5): 317-346, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38497103

RESUMO

Genetic variations in the genes encoding G protein-coupled receptors (GPCRs) can disrupt receptor structure and function, which can result in human genetic diseases. Disease-causing mutations have been reported in at least 55 GPCRs for more than 66 monogenic diseases in humans. The spectrum of pathogenic and likely pathogenic variants includes loss of function variants that decrease receptor signaling on one extreme and gain of function that may result in biased signaling or constitutive activity, originally modeled on prototypical rhodopsin GPCR variants identified in retinitis pigmentosa, on the other. GPCR variants disrupt ligand binding, G protein coupling, accessory protein function, receptor desensitization and receptor recycling. Next generation sequencing has made it possible to identify variants of uncertain significance (VUS). We discuss variants in receptors known to result in disease and in silico strategies for disambiguation of VUS such as sorting intolerant from tolerant and polymorphism phenotyping. Modeling of variants has contributed to drug development and precision medicine, including drugs that target the melanocortin receptor in obesity and interventions that reverse loss of gonadotropin-releasing hormone receptor from the cell surface in idiopathic hypogonadotropic hypogonadism. Activating and inactivating variants of the calcium sensing receptor (CaSR) gene that are pathogenic in familial hypocalciuric hypercalcemia and autosomal dominant hypocalcemia have enabled the development of calcimimetics and calcilytics. Next generation sequencing has continued to identify variants in GPCR genes, including orphan receptors, that contribute to human phenotypes and may have therapeutic potential. Variants of the CaSR gene, some encoding an arginine-rich region that promotes receptor phosphorylation and intracellular retention, have been linked to an idiopathic epilepsy syndrome. Agnostic strategies have identified variants of the pyroglutamylated RF amide peptide receptor gene in intellectual disability and G protein-coupled receptor 39 identified in psoriatic arthropathy. Coding variants of the G protein-coupled receptor L1 (GPR37L1) orphan receptor gene have been identified in a rare familial progressive myoclonus epilepsy. The study of the role of GPCR variants in monogenic, Mendelian phenotypes has provided the basis of modeling the significance of more common variants of pharmacogenetic significance.


Assuntos
Variação Genética , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Doenças Genéticas Inatas/genética , Mutação/genética
10.
Pathogens ; 13(3)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38535602

RESUMO

Primary immune regulatory disorders (PIRDs) constitute a spectrum of inborn errors of immunity (IEIs) that are primarily characterized by autoimmunity, lymphoproliferation, atopy, and malignancy. In PIRDs, infections are infrequent compared to other IEIs. While susceptibility to infection primarily stems from antibody deficiency, it is sometimes associated with additional innate immune and T or NK cell defects. The use of immunotherapy and chemotherapy further complicates the immune landscape, increasing the risk of diverse infections. Recurrent sinopulmonary infections, particularly bacterial infections such as those associated with staphylococcal and streptococcal organisms, are the most reported infectious manifestations. Predisposition to viral infections, especially Epstein-Barr virus (EBV)-inducing lymphoproliferation and malignancy, is also seen. Notably, mycobacterial and invasive fungal infections are rarely documented in these disorders. Knowledge about the spectrum of infections in these disorders would prevent diagnostic delays and prevent organ damage. This review delves into the infection profile specific to autoimmune lymphoproliferative syndrome (ALPS), Tregopathies, and syndromes with autoimmunity within the broader context of PIRD. Despite the critical importance of understanding the infectious aspects of these disorders, there remains a scarcity of comprehensive reports on this subject.

11.
Eur J Med Chem ; 265: 116121, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38194777

RESUMO

TP53, also known as the "guardian of the genome," is an important tumor suppressor gene. It is encoded by the human genome and is associated with the development of diverse cancers. The p53 protein, encoded by TP53, functions in the cell to monitor DNA damage and prompts the cell to respond appropriately. When DNA is damaged, p53 halts the cell cycle, allowing cells to enter the repair state. If the repair is ineffective, p53 induces cell death via apoptosis. This prevents DNA damage transmission during cell division and reduces cancer risk. However, the p53 gene mutation compromises its function. This leads to the inability of cells to respond properly to DNA damage, which may result in cancer development. Mutations in p53 are widespread in diverse cancers, especially highly prevalent cancers, including breast, colon, and lung cancers. Despite the association between p53 mutations and cancer, researchers have discovered drugs and treatments that may reactivate mutated p53 function. Therefore, p53 remains an important area of research in cancer treatment and holds promise as a new direction for cancer therapy. In summary, TP53 is a vital tumor suppressor gene responsible for monitoring DNA damage and prompting cells to respond appropriately. This article summarizes drugs related to p53 and diverse strategies for discovering drugs that act on either wide or mutant p53. Herein, p53 is categorized into two types: wild and mutant type. Drugs are also classified according to diverse treatment strategies, enabling readers to differentiate between the two types of p53 and aiding in selecting the appropriate research direction. Additionally, this review offers a valuable reference for drug design.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Mutação , Dano ao DNA , Apoptose
13.
J Clin Immunol ; 44(1): 20, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38129739

RESUMO

While SARS-CoV-2 infection causes a mild disease in most children, SARS-CoV-2 infection may be lethal in a few of them. In the defense against SARS-CoV-2, type I interferons are key players, and several studies have identified a defective or neutralized interferon response as the cause of overwhelming viral infection. However, inappropriate, untimely, or excessive interferon production may also be detrimental to the host. Here, we describe two patients with STAT1 gain-of-function (GOF), a known type I interferonopathy, who died of COVID-19. Whole-exome sequencing and interferon-gamma-activated sequence (GAS) and interferon-sensitive responsive element (ISRE) reporter assay were performed to identify and characterize STAT1 variants. Patient 1 developed hemophagocytic lymphohistiocytosis (HLH) in the context of COVID-19 infection and died in less than a week at the age of 4 years. Patient 2 developed a high fever, cough, and hypoxemia and succumbed to COVID-19 pneumonia at the age of 5 years. Two heterozygous missense variants, p.E563Q and p.K344E, in STAT1 were identified. Functional validation by reporter assay and immunoblot confirmed that both variants are gain-of-function (GOF). GOF variants transiently expressing cells exhibited enhanced upregulation of downstream genes, including ISG15, MX1, and OAS1, in response to IFN-α stimulation. A catastrophic course with HLH or acute respiratory failure is thought to be associated with inappropriate immunoregulatory mechanisms to handle SARS-CoV-2 in STAT1 GOF. While most patients with inborn errors of immunity who developed COVID-19 seem to handle it well, these cases suggest that patients with STAT1-GOF might be at risk of developing fatal complications due to SARS-CoV-2.


Assuntos
COVID-19 , Interferon Tipo I , Criança , Pré-Escolar , Humanos , COVID-19/genética , Mutação com Ganho de Função , Interferon-alfa/genética , SARS-CoV-2/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
14.
Intern Med ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37779067

RESUMO

A 30-year-old man presented with oral candidiasis and a history of lung abscess. He experienced recurring oral and skin candidiasis in childhood but spent long periods without any infections. Therefore, immunodeficiency was suspected. T and B lymphocyte and natural killer cell counts as well as immunoglobulin levels were normal. Human immunodeficiency virus test results were negative. Therefore, we suspected chronic mucocutaneous candidiasis (CMC). The signal transducer and activator of transcription (STAT) mutation, the leading cause of CMC, was detected by exome sequencing. Most cases of STAT-1 mutations are diagnosed in childhood, but a few are diagnosed in adulthood because Candida infections may not be severe.

15.
Pathog Glob Health ; : 1-10, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37791645

RESUMO

Governing dual-use research of concern (DURC) in the life sciences has become difficult owing to the diversification of scientific domains, digitalization of potential threats, and the proliferation of actors. This paper proposes three approaches to realize bottom-up governance of DURC from laboratory operation to institutional decision-making levels. First, a technological approach can predict and monitor the dual-use nature of the research target pathogens and their information. Second, an interactive approach is proposed in which diverse stakeholders proactively discuss and examine dual-use issues through research practice. Third, a personnel approach can identify the right persons involved in DURC. These approaches suggest that, going beyond self-governance by researchers, collaborative and networked governance involving diverse actors should become essential. This mode of governance can also be seen in light of the management of research use. Therefore, program design by funding agencies and publication screening by journal publishers continuously contribute to governance at the meso-level. Bottom-up governance may be realized by using an appropriately integrated design of these three approaches at the micro-level, such as dual-use prediction and monitoring, stakeholder dialogue, and background checks. Given that the term 'open science' has been promoted to the research community as part of top-down governance, paying due attention on site to research subjects, research practices, and persons involved in research will provide an opportunity to develop a more socially conscious open science.

16.
bioRxiv ; 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37873369

RESUMO

More than twenty recurrent missense gain-of-function (GOF) mutations have been identified in the sodium-activated potassium (KNa) channel gene KCNT1 in patients with severe developmental and epileptic encephalopathies (DEEs), most of which are resistant to current therapies. Defining the neuron types most vulnerable to KCNT1 GOF will advance our understanding of disease mechanisms and provide refined targets for precision therapy efforts. Here, we assessed the effects of heterozygous expression of a Kcnt1 GOF variant (Y777H) on KNa currents and neuronal physiology among cortical glutamatergic and GABAergic neurons in mice, including those expressing vasoactive intestinal polypeptide (VIP), somatostatin (SST), and parvalbumin (PV), to identify and model the pathogenic mechanisms of autosomal dominant KCNT1 GOF variants in DEEs. Although the Kcnt1-Y777H variant had no effects on glutamatergic or VIP neuron function, it increased subthreshold KNa currents in both SST and PV neurons but with opposite effects on neuronal output; SST neurons became hypoexcitable with a higher rheobase current and lower action potential (AP) firing frequency, whereas PV neurons became hyperexcitable with a lower rheobase current and higher AP firing frequency. Further neurophysiological and computational modeling experiments showed that the differential effects of the Y777H variant on SST and PV neurons are not likely due to inherent differences in these neuron types, but to an increased persistent sodium current in PV, but not SST, neurons. The Y777H variant also increased excitatory input onto, and chemical and electrical synaptic connectivity between, SST neurons. Together, these data suggest differential pathogenic mechanisms, both direct and compensatory, contribute to disease phenotypes, and provide a salient example of how a pathogenic ion channel variant can cause opposite functional effects in closely related neuron subtypes due to interactions with other ionic conductances.

17.
Br J Haematol ; 203(4): 673-677, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37592722

RESUMO

Platelet-type von Willebrand disease (PT-VWD) is a rare autosomal dominant bleeding disorder characterized by an increased ristocetin-induced platelet aggregation (RIPA) and enhanced affinity of platelet glycoprotein Ibα (GPIbα) to von Willebrand factor (VWF). To date, only seven variants have been described with this gain-of-function effect, most of them located in the C-terminal disulphide loop of the VWF-binding domain of GPIbα. We herein describe a patient with moderate bleeding symptoms, mild thrombocytopenia and increased RIPA. By direct sequencing of GP1BA, a novel leucine-rich repeat heterozygous variant was identified (c.580C>T; predictably p.Leu194Phe), strongly suggestive as being the underlying cause for the PT-VWD phenotype of our patient.


Assuntos
Doenças de von Willebrand , Fator de von Willebrand , Humanos , Fator de von Willebrand/genética , Mutação com Ganho de Função , Doenças de von Willebrand/diagnóstico , Plaquetas , Hemorragia/genética , Complexo Glicoproteico GPIb-IX de Plaquetas/genética
18.
BMC Med Genomics ; 16(1): 156, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400800

RESUMO

BACKGROUND: Mitchell syndrome (MITCH) is a rare autosomal dominant hereditary disorder, characterized by episodic demyelination, sensorimotor polyneuropathy and hearing loss. MITCH is caused by heterozygous mutation in the ACOX1 gene, which encodes straight-chain acyl-CoA oxidase, on chromosome 17q25.1.  Only 5 unrelated patients have been reported so far, and no reports from China. Here, we describe the first MITCH case in a Chinese individual. CASE PRESENTATION: A 7-year-old girl initially presented with diffuse desquamatory rash at age 3. Her clinical symptoms in order of presentation were diffuse desquamatory rash, gait instability, ptosis with photophobia, hearing loss, abdominal pain, diarrhea, nausea, and dysuria. Genetic analysis demonstrated that the patient carried a heterozygous variant c.710A>G(p.Asp237Ser) in the ACOX1 gene, which can cause MITCH symptoms. This is the first MITCH case with gastrointestinal and urinary tract symptoms. After administrating N acetylcysteine amide (NACA), some symptoms were relieved and the patient's condition improved. CONCLUSION: This is the first MITCH case in the Chinese population, and we expanded the genotype spectrum of it. The p.Asp237Ser may be a mutational hotspot in ACOX1 regardless of race. In terms of diagnosis, patients with recurrent rash, gait instability, and hearing loss with some autonomic symptoms should raise the suspicion of MITCH and proper and prompt treatment should be given.


Assuntos
Acil-CoA Oxidase , Criança , Feminino , Humanos , Acil-CoA Oxidase/genética , China , Genótipo , Heterozigoto , Mutação
19.
Front Immunol ; 14: 1183273, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275873

RESUMO

Introduction: Humans with gain-of-function (GOF) mutations in STAT1 (Signal Transducer and Activator of Transcription 1), a potent immune regulator, experience frequent infections. About one-third, especially those with DNA-binding domain (DBD) mutations such as T385M, also develop autoimmunity, sometimes accompanied by increases in T-helper 1 (Th1) and T-follicular helper (Tfh) CD4 effector T cells, resembling those that differentiate following infection-induced STAT1 signaling. However, environmental and molecular mechanisms contributing to autoimmunity in STAT1 GOF patients are not defined. Methods: We generated Stat1T385M/+ mutant mice to model the immune impacts of STAT1 DBD GOF under specific-pathogen free (SPF) conditions. Results: Stat1T385M/+ lymphocytes had more total Stat1 at baseline and also higher amounts of IFNg-induced pStat1. Young mutants exhibited expansion of Tfh-like cells, while older mutants developed autoimmunity accompanied by increased Tfh-like cells, B cell activation and germinal center (GC) formation. Mutant females exhibited these immune changes sooner and more robustly than males, identifying significant sex effects of Stat1T385M-induced immune dysregulation. Single cell RNA-Seq (scRNA-Seq) analysis revealed that Stat1T385M activated transcription of GC-associated programs in both B and T cells. However, it had the strongest transcriptional impact on T cells, promoting aberrant CD4 T cell activation and imparting both Tfh-like and Th1-like effector programs. Discussion: Collectively, these data demonstrate that in the absence of overt infection, Stat1T385M disrupted naïve CD4 T cell homeostasis and promoted expansion and differentiation of abnormal Tfh/Th1-like helper and GC-like B cells, eventually leading to sex-biased autoimmunity, suggesting a model for STAT1 GOF-induced immune dysregulation and autoimmune sequelae in humans.


Assuntos
Autoimunidade , Linfócitos T CD4-Positivos , Masculino , Feminino , Humanos , Animais , Camundongos , Autoimunidade/genética , Mutação com Ganho de Função , Mutação , Linfócitos T Auxiliares-Indutores , Fator de Transcrição STAT1/genética
20.
J Clin Immunol ; 43(7): 1640-1659, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37358695

RESUMO

STAT1 gain-of-function (GOF) mutations cause an inborn error of immunity with diverse phenotype ranging from chronic mucocutaneous candidiasis (CMC) to various non-infectious manifestations, the most precarious of which are autoimmunity and vascular complications. The pathogenesis centers around Th17 failure but is far from being understood. We hypothesized that neutrophils, whose functions have not been explored in the context of STAT1 GOF CMC yet, might be involved in the associated immunodysregulatory and vascular pathology. In a cohort of ten patients, we demonstrate that STAT1 GOF human ex-vivo peripheral blood neutrophils are immature and highly activated; have strong propensity for degranulation, NETosis, and platelet-neutrophil aggregation; and display marked inflammatory bias. STAT1 GOF neutrophils exhibit increased basal STAT1 phosphorylation and expression of IFN stimulated genes, but contrary to other immune cells, STAT1 GOF neutrophils do not display hyperphosphorylation of STAT1 molecule upon stimulation with IFNs. The patient treatment with JAKinib ruxolitinib does not ameliorate the observed neutrophil aberrations. To our knowledge, this is the first work describing features of peripheral neutrophils in STAT1 GOF CMC. The presented data suggest that neutrophils may contribute to the immune pathophysiology of the STAT1 GOF CMC.


Assuntos
Candidíase Mucocutânea Crônica , Mutação com Ganho de Função , Fator de Transcrição STAT1 , Humanos , Autoimunidade , Candidíase Mucocutânea Crônica/tratamento farmacológico , Candidíase Mucocutânea Crônica/genética , Neutrófilos/metabolismo , Fenótipo , Fosforilação , Fator de Transcrição STAT1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA