Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(35): 15661-15671, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39163486

RESUMO

Wildfires generate abundant smoke primarily composed of fine-mode aerosols. However, accurately measuring the fine-mode aerosol optical depth (fAOD) is highly uncertain in most existing satellite-based aerosol products. Deep learning offers promise for inferring fAOD, but little has been done using multiangle satellite data. We developed an innovative angle-dependent deep-learning model (ADLM) that accounts for angular diversity in dual-angle observations. The model captures aerosol properties observed from dual angles in the contiguous United States and explores the potential of Greenhouse gases Observing Satellite-2's (GOSAT-2) measurements to retrieve fAOD at a 460 m spatial resolution. The ADLM demonstrates a strong performance through rigorous validation against ground-based data, revealing small biases. By comparison, the official fAOD product from the Moderate Resolution Imaging Spectroradiometer (MODIS), the Visible Infrared Imaging Radiometer Suite (VIIRS), and the Multiangle Imaging Spectroradiometer (MISR) during wildfire events is underestimated by more than 40% over western USA. This leads to significant differences in estimates of aerosol radiative forcing (ARF) from wildfires. The ADLM shows more than 20% stronger ARF than the MODIS, VIIRS, and MISR estimates, highlighting a greater impact of wildfire fAOD on Earth's energy balance.


Assuntos
Aerossóis , Incêndios Florestais , Estados Unidos , Imagens de Satélites , Monitoramento Ambiental
2.
Sci Total Environ ; 922: 171311, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38423317

RESUMO

Methane (CH4) is the second most abundant greenhouse gas after CO2, which plays the most important role in global and regional climate change. To explore the long-term spatiotemporal variations of near-surface CH4, datasets were extracted from Greenhouse gases Observing SATellite (GOSAT), and the Copernicus Atmospheric Monitoring Service (CAMS) reanalyzed datasets from June 2009 to September 2020 over South, East, and Southeast Asia. The accuracy of near-surface CH4 from GOSAT and CAMS was verified against surface observatory stations available in the study region to confirm both dataset applicability and results showed significant correlations. Temporal plots revealed continuous inflation in the near-surface CH4 with a significant seasonal and monthly variation in the study region. To explore the factors affecting near-surface CH4 distribution, near-surface CH4 relationship with anthropogenic emission, NDVI data, wind speed, temperature, precipitation, soil moisture, and relative humidity were investigated. The results showed a significant contribution of anthropogenic emissions with near-surface CH4. Regression and correlation analysis showed a significant positive correlation between NDVI data and near-surface CH4 from GOSAT and CAMS, while a significant negative correlation was found between wind and near-surface CH4. In the case of temperature, soil moisture, and near-surface CH4 from GOSAT and CAMS over high CH4 regions of the study area showed a significant positive correlation. However significant negative correlations were found between precipitation and relative humidity with GOSAT and CAMS datasets over high CH4 regions in South, East, and Southeast Asia. Moreover, these climatic factors showed no significant correlation within the low near-surface CH4 areas in our study region. Our study results showed that anthropogenic emissions, NDVI data, wind speed, temperature, precipitation, soil moisture, and humidity could significantly affect the near-surface CH4 over South, East, and Southeast Asia.

3.
Environ Sci Pollut Res Int ; 30(54): 115745-115757, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37889413

RESUMO

Understanding the spatial and temporal variations of CO2 column concentration (CO2-CCs) is crucial for tackling climate change and promoting sustainable human development. This study provides an in-depth analysis of CO2 dynamics in the Yellow River Basin, an area significantly affected by both natural and anthropogenic factors. Using data from the Orbiting Carbon Observatory 2 (OCO-2) and the Fourier transformation spectrometer (FTS) of the GOSAT satellite remote sensing sensors, supplemented with ground station data from the Waliguan station, we scrutinized the CO2 levels in the region from 2013 to 2022. The regional CO2-CC displayed a 12-month cyclical variation and a continuous upward trend, escalating by approximately 4.26% over the 10-year period. Spatiotemporal differences were evident in the monthly variation of CO2-CC, with peak and minimum values occurring in May and August respectively. Geographically, the highest CO2-CC was found in the central part of the basin, while the lowest was in the northern part of Inner Mongolia. This study underscores the increased significance of the region's CO2-CC, which showed an increase from 17.0 ppm at the start of the period to 21.0 ppm by the end, representing an overall growth of between 4.35 and 5.25%. The findings highlight the urgency of targeted measures to mitigate CO2 emissions and adapt to their consequences in the Yellow River Basin, contributing to the global efforts against climate change and towards sustainable development.


Assuntos
Dióxido de Carbono , Rios , Humanos , Dióxido de Carbono/análise , Tecnologia de Sensoriamento Remoto , China , Mudança Climática
4.
Environ Res ; 236(Pt 1): 116796, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37524157

RESUMO

We investigate the spatiotemporal variability of near-surface CO2 concentrations in Mongolia from 2010 to 2019 and the factors affecting it over four climate zones of Mongolia based on the Köppen-Geiger climate classification system, including arid desert climate (BWh), arid steppe climate (BSk), dry climate (Dw), and polar frost climate (ET). Initially, we validate the near-surface CO2 datasets obtained from the Greenhouse Gases Observing Satellite (GOSAT) using ground-based CO2 observations obtained from the World Data Center for Greenhouse Gases (WDCGG) and found good agreement. The results showed that CO2 concentrations over Mongolia steadily increased from 389.48 ppmv in 2010 to 409.72 ppmv in 2019, with an annual growth rate of 2.24 ppmv/year. Spatially, the southeastern Gobi desert region has the highest annual average CO2 concentration, while the northwestern Alpine and Meadow steppe region exhibits the most significant growth rate. Additionally, significant monthly and seasonal variations were observed in each climate zone, with CO2 levels decreasing to a minimum in summer and reaching a maximum in spring. Furthermore, our findings revealed a negative correlation between CO2 concentrations and vegetation parameters (NDVI, GPP, and LAI) during summer when photosynthesis is at its peak, while a positive correlation was observed during spring and autumn when the capacity for carbon sequestration is lower. Understanding CO2 concentrations in different climate zones and the uptake capacity of vegetation may help improve estimates of carbon sequestration in ecosystems such as deserts, steppes and forests.

5.
Sci Total Environ ; 858(Pt 2): 159588, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334674

RESUMO

As China is the world's largest CO2 emitter, it is important to understand the spatio-temporal variation of atmospheric CO2 to reduce carbon emissions. Satellite remote sensing for carbon monitoring has been widely used and studied because of its long-term and large-scale characteristics. However, the satellite data results are very sparse with significant gaps due to narrow swath and other factors on CO2 retrieval. The simple interpolation methods ignore the influential factors of CO2 and loss the spatial resolution, which leads to the inability to quantify the spatio-temporal variation well. This study developed a machine learning method that considers carbon emissions, vegetation, and meteorology. Using the column-averaged dry-air mole fraction of CO2 (XCO2) data of SCIAMACHY, GOSAT, and OCO-2, we derived monthly-scale contiguous XCO2 data across China from 2003 to 2019 with 0.25° resolution. The results showed a good agreement with the satellite measurements, with the bias and standard deviation of 0.11 and 1.38 ppmv for the validation dataset, respectively. Moreover, the results were consistent with the model simulation and in-situ sites, indicating the ability to reflect long-term spatio-temporal variation with a finer texture. We analyzed the spatial distribution, seasonal variation, and long-term trends of XCO2 in China, revealing that the machine learning method has comparable performance to model simulations. The results showed that XCO2 is dominated by anthropogenic emissions spatially and has a clear seasonal cycle, with a larger amplitude the further north. The long-term trend shows the XCO2 increased by an average rate of 2.17 ppmv per year from 2003 to 2019 in China, which is consistent with the global. The method and data can further study the carbon cycle and climate change.


Assuntos
Dióxido de Carbono , Monitoramento Ambiental , Monitoramento Ambiental/métodos , Dióxido de Carbono/análise , China , Aprendizado de Máquina , Carbono
6.
Sci Total Environ ; 836: 155513, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35489516

RESUMO

Carbon dioxide (CO2) is a major greenhouse gas. This study investigated the performance of three common algorithms, namely NIES, ACOS, and Remo Tec (SRFP). These algorithms were compared using GOSAT observation satellite data with reference data obtained from TCCON during the period 2009-2021. According to statistical evaluation, the SRFP and NIES algorithms achieved the lowest and highest correlation values of the 13 year (2009_2021) average of all sites, respectively. The average bias error values of NIES and ACOS was estimated to be less than that of SRFP approximately 0.5 ppm, while the bias within SRFP was of about 2 ppm. Comparing the RMSE and CRMS error values showed that the highest and lowest error values were related to the SRFP and NIES algorithms respectively, which were 0.37-1.67 and ppm 1.46-7.9. The researchers also compared them with monthly time changes based on ground measurements, and observed a time series of CO2 concentration changes that well matched the trend of gas concentration values at ground stations obtained by NIES algorithm. The results showed that in most cases NIES was an effective algorithm to retrieve carbon dioxide gas concentrations, allowing the researchers to identify the main sources of greenhouse gas emissions in different areas. The clustering result in the study area showed that the continental CO2 columnar concentration has a specific seasonal cycle, with the maximum and minimum values appearing in winter-early spring and spring-late summer, respectively. In conclusion, cluster analysis can classify the surface CO2 column concentration values and determine the spatial distribution pattern of CO2.


Assuntos
Gases de Efeito Estufa , Dióxido de Carbono/análise , Monitoramento Ambiental/métodos , Gases de Efeito Estufa/análise , Estações do Ano , Análise Espectral
7.
Fundam Res ; 2(3): 357-366, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-38933397

RESUMO

China, the Unite States (US), the European Union (EU), India, and Russia are the world's top 5 fossil fuel and cement CO2 (FFC) emitting countries or regions (CRs). It is very important to understand their status of carbon neutrality, and to monitor their future changes of net carbon fluxes (NCFs). In this study, we implemented a well-established global carbon assimilation system (GCAS, Version 2) to infer global surface carbon fluxes from May 2009 to December 2019 using both GOSAT and OCO-2 XCO2 retrievals. The reductions of flux uncertainty and XCO2 bias, and the evaluation of posterior flux show that GCAS has comparable and good performance in the 5 CRs. The results suggest that Russia has achieved carbon neutrality, but the other 4 are still far from being carbon neutral, especially China. The mean annual NCFs in China, the US, the EU, India, and Russia are 2.33 ± 0.29, 0.82 ± 0.20, 0.42 ± 0.16, 0.50 ± 0.12, and -0.33 ± 0.23 PgC yr-1, respectively. From 2010 to 2019, the NCFs showed an increasing trend in the US and India, a slight downward trend after 2013 in China, and were stable in the EU. The changes of land sinks in China and the US might be the main reason for their trends. India's trend was mainly due to the increase of FFC emission. The relative contributions of NCFs to the global land net carbon emission of China and the EU have decreased, while those of the US and India have increased, implying the US and India must take more active measures to control carbon emissions or increase their sinks. This study indicates that satellite XCO2 could be successfully used to monitor the changes of regional NCFs, which is of great significance for major countries to achieve greenhouse gas control goals.

8.
Environ Monit Assess ; 193(11): 751, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34704116

RESUMO

Numerous studies have reported that CO2 emissions have decreased because of global lockdown during the first wave of the COVID-19 pandemic. However, previous estimates of the global CO2 concentration before and after the outbreak of the COVID-19 pandemic are limited because they are based on energy consumption statistics or local specific in-situ observations. The aim of the study was to explore objective evidence for various previous studies that have claimed the global CO2 concentration decreased during the first wave of the COVID-19 pandemic. There are two ways to measure the global CO2 concentration: from the top-down using satellites and the bottom-up using ground stations. We implemented the time-series analysis by comparing the before and after the inflection point (first wave of COVID-19) with the long-term CO2 concentration data obtained from World Meteorological Organization Global Atmosphere Watch (WMO GAW) and Greenhouse Gases Observing Satellite (GOSAT). Measurements from the GOSAT and GAW global monitoring stations show that the CO2 concentrations in Europe, China, and the USA have continuously risen in March and April 2020 compared with the same months in 2019. These data confirm that the global lockdown during the first wave of the COVID-19 pandemic did not change the vertical CO2 profile at the global level from the ground surface to the upper layer of the atmosphere. The results of this study provide an important foundation for the international community to explore policy directions to mitigate climate change in the upcoming post-COVID-19 period.


Assuntos
COVID-19 , Dióxido de Carbono , Dióxido de Carbono/análise , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Pandemias , SARS-CoV-2
9.
Sci Total Environ ; 800: 149433, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34392227

RESUMO

Greenhouse gases (GHGs) released from permafrost regions may have a positive feedback to climate change, but there is much uncertainty about additional warming from the permafrost carbon cycle. One of the main reasons for this uncertainty is that the observation data of large-scale GHG concentrations are sparse, especially for areas with rapid permafrost degradation. We selected the Mongolian Plateau as the study area. We first analyzed the active layer thickness and ground temperature changes using borehole observations. Based on ground observation data, we assessed the applicability of Greenhouse Gases Observing Satellite (GOSAT) carbon dioxide (CO2) and methane (CH4) datasets. Finally, we analyzed the temporal and spatial changes in near-surface CO2 and CH4 concentrations from 2010 to 2017 and their patterns in different permafrost regions. The results showed that the Mongolian permafrost has been experiencing rapid degradation. The annual average near-surface CO2 concentration increased gradually between 2.19 ppmv/yr and 2.38 ppmv/yr, whereas the near-surface CH4 concentration increased significantly from 7.76 ppbv/yr to 8.49 ppbv/yr. There were significant seasonal variations in near-surface CO2 and CH4 concentrations for continuous, discontinuous, sporadic, and isolated permafrost zones. The continuous and discontinuous permafrost zones had lower near-surface CO2 and CH4 concentrations in summer and autumn, whereas sporadic and isolated permafrost zones had higher near-surface CO2 and CH4 concentrations in winter and spring. Our results indicated that climate warming led to rapid permafrost degradation, and carbon-based GHG concentrations also increased rapidly in Mongolia. Although, GHG concentrations increased at rates similar to the global average and many factors can account for their changes, GHG concentration in the permafrost regions merits more attention in the future because the spatiotemporal distribution has indicated a different driving force for regional warming.


Assuntos
Gases de Efeito Estufa , Pergelissolo , Dióxido de Carbono/análise , Mudança Climática , Metano/análise
10.
UCL Open Environ ; 3: e013, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37228802

RESUMO

Measurements of methane isotopologues can differentiate between different source types, be they biogenic (e.g. marsh lands) or abiogenic (e.g. industry). Global measurements of these isotopologues would greatly benefit the current disconnect between 'top-down' (knowledge from chemistry transport models and satellite measurements) and 'bottom-up' (in situ measurement inventories) methane measurements. However, current measurements of these isotopologues are limited to a small number of in situ studies and airborne studies. In this paper we investigate the potential for detecting the second most common isotopologue of methane (13CH4) from space using the Japanese Greenhouse Gases Observing Satellite applying a quick and simple residual radiance analysis technique. The method allows for a rapid analysis of spectral regions, and can be used to teach university students or advanced school students about radiative transfer analysis. Using this method we find limited sensitivity to 13CH4, with detections limited to total column methane enhancements of >6%, assuming a desert surface albedo of >0.3.

11.
J Environ Manage ; 277: 111423, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33031999

RESUMO

Good-quality CO2 emission data are fundamental for effective climate policy and governance. Data manipulation should be deterred, while developing countries are generally weaker than developed countries in compiling bottom-up CO2 emission inventories due to less adequate data collection capacity. This paper assesses the capabilities of CO2 satellites as objective, independent, potentially low-cost and external data sources for monitoring energy-related anthropogenic CO2 emissions at regional/national, megacity and point-source geographical scales. After overviewing all major CO2 satellites, SCIAMACHY, GOSAT and OCO-2 are focused on due to their wider research applications and higher CO2 sensitivity in total column measurements that include near surface emissions. Nighttime light satellite data for proxy CO2 monitoring are also brought into comparison to distinguish the importance of direct CO2 satellite monitoring. Studies are reviewed from the perspectives of spatial and temporal capability and accuracy to comprehend the current statuses of applications, assess the strengths and weaknesses of research methods, investigate major challenges and propose suggestions for future progress. We conclude that CO2 satellite monitoring can strengthen the data foundation for implementing international climate treaties and domestic climate policies.


Assuntos
Dióxido de Carbono , Monitoramento Ambiental , Dióxido de Carbono/análise , Clima
12.
Artigo em Inglês | MEDLINE | ID: mdl-32824606

RESUMO

The IPAT/Kaya identity is the most popular index used to analyze the driving forces of individual factors on CO2 emissions. It represents the CO2 emissions as a product of factors, such as the population, gross domestic product (GDP) per capita, energy intensity of the GDP, and carbon footprint of energy. In this study, we evaluated the mutual relationship of the factors of the IPAT/Kaya identity and their decomposed variables with the fossil-fuel CO2 flux, as measured by the Greenhouse Gases Observing Satellite (GOSAT). We built two regression models to explain this flux; one using the IPAT/Kaya identity factors as the explanatory variables and the other one using their decomposed factors. The factors of the IPAT/Kaya identity have less explanatory power than their decomposed variables and comparably low correlation with the fossil-fuel CO2 flux. However, the model using the decomposed variables shows significant multicollinearity. We performed a multivariate cluster analysis for further investigating the benefits of using the decomposed variables instead of the original factors. The results of the cluster analysis showed that except for the M factor, the IPAT/Kaya identity factors are inadequate for explaining the variations in the fossil-fuel CO2 flux, whereas the decomposed variables produce reasonable clusters that can help identify the relevant drivers of this flux.


Assuntos
Combustíveis Fósseis , Gases de Efeito Estufa , Produto Interno Bruto , Dióxido de Carbono/análise
13.
Sensors (Basel) ; 19(7)2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30987274

RESUMO

Dust aerosols, which have diverse and strong influences on the environment, must be monitored. Satellite data are effective for monitoring atmospheric conditions globally. In this work, the modified CO2 slicing method, a cloud detection technique using thermal infrared data from space, was applied to GOSAT data to detect the dust aerosol layer height. The results were compared using lidar measurements. Comparison of horizontal distributions found for northern Africa during summer revealed that both the relative frequencies of the low level aerosol layer from the slicing method and the dust frequencies of CALIPSO are high in northern coastal areas. Comparisons of detected layer top heights using collocated data with CALIPSO and ground-based lidar consistently showed high detection frequencies of the lower level aerosol layer, although the slicing method sometimes produces overestimates. This tendency is significant over land. The main causes of this tendency might be uncertainty of the surface skin temperature and a temperature inversion layer in the atmosphere. The results revealed that obtaining the detailed behavior of dust aerosols using the modified slicing method alone is difficult.

14.
Sensors (Basel) ; 19(5)2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30871124

RESUMO

The photon path length probability density function-simultaneous (PPDF-S) algorithm is effective for retrieving column-averaged concentrations of carbon dioxide (XCO2) and methane (XCH4) from Greenhouse gases Observing Satellite (GOSAT) spectra in Short Wavelength InfraRed (SWIR). Using this method, light-path modification attributable to light reflection/scattering by atmospheric clouds/aerosols is represented by the modification of atmospheric transmittance according to PPDF parameters. We optimized PPDF parameters for a more accurate XCO2 retrieval under aerosol dense conditions based on simulation studies for various aerosol types and surface albedos. We found a more appropriate value of PPDF parameters referring to the vertical profile of CO2 concentration as a measure of a stable solution. The results show that the constraint condition of a PPDF parameter that represents the light reflectance effect by aerosols is sufficiently weak to affect XCO2 adversely. By optimizing the constraint, it was possible to obtain a stable solution of XCO2. The new optimization was applied to retrieval analysis of the GOSAT data measured in Western Siberia. First, we assumed clear sky conditions and retrieved XCO2 from GOSAT data obtained near Yekaterinburg in the target area. The retrieved XCO2 was validated through a comparison with ground-based Fourier Transform Spectrometer (FTS) measurements made at the Yekaterinburg observation site. The validation results showed that the retrieval accuracy was reasonable. Next, we applied the optimized method to dense aerosol conditions when biomass burning was active. The results demonstrated that optimization enabled retrieval, even under smoky conditions, and that the total number of retrieved data increased by about 70%. Furthermore, the results of the simulation studies and the GOSAT data analysis suggest that atmospheric aerosol types that affected CO2 analysis are identifiable by the PPDF parameter value. We expect that we will be able to suggest a further improved algorithm after the atmospheric aerosol types are identified.

15.
Sensors (Basel) ; 19(5)2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30841621

RESUMO

Carbon dioxide (CO2) is the most important anthropogenic greenhouse gas and its concentration in atmosphere has been increasing rapidly due to the increase of anthropogenic CO2 emissions. Quantifying anthropogenic CO2 emissions is essential to evaluate the measures for mitigating climate change. Satellite-based measurements of greenhouse gases greatly advance the way of monitoring atmospheric CO2 concentration. In this study, we propose an approach for estimating anthropogenic CO2 emissions by an artificial neural network using column-average dry air mole fraction of CO2 (XCO2) derived from observations of Greenhouse gases Observing SATellite (GOSAT) in China. First, we use annual XCO2 anomalies (dXCO2) derived from XCO2 and anthropogenic emission data during 2010⁻2014 as the training dataset to build a General Regression Neural Network (GRNN) model. Second, applying the built model to annual dXCO2 in 2015, we estimate the corresponding emission and verify them using ODIAC emission. As a results, the estimated emissions significantly demonstrate positive correlation with that of ODIAC CO2 emissions especially in the areas with high anthropogenic CO2 emissions. Our results indicate that XCO2 data from satellite observations can be applied in estimating anthropogenic CO2 emissions at regional scale by the machine learning. This developed method can estimate carbon emission inventory in a data-driven way. In particular, it is expected that the estimation accuracy can be further improved when combined with other data sources, related CO2 uptake and emissions, from satellite observations.

16.
Environ Sci Pollut Res Int ; 25(27): 27378-27392, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30033484

RESUMO

As an important cause of global warming, CO2 concentrations and their changes have aroused worldwide concern. Establishing explicit understanding of the spatial and temporal distributions of CO2 concentrations at regional scale is a crucial technical problem for climate change research. High accuracy surface modeling (HASM) is employed in this paper using the output of the CO2 concentrations from weather research and forecasting-chemistry (WRF-CHEM) as the driving fields, and the greenhouse gases observing satellite (GOSAT) retrieval XCO2 data as the accuracy control conditions to obtain high accuracy XCO2 fields. WRF-CHEM is an atmospheric chemical transport model designed for regional studies of CO2 concentrations. Verified by ground- and space-based observations, WRF-CHEM has a limited ability to simulate the conditions of CO2 concentrations. After conducting HASM, we obtain a higher accuracy distribution of the CO2 in North China than those calculated using the classical Kriging and inverse distance weighted (IDW) interpolation methods, which were often used in past studies. The cross-validation also shows that the averaging mean absolute error (MAE) of the results from HASM is 1.12 ppmv, and the averaging root mean square error (RMSE) is 1.41 ppmv, both of which are lower than those of the Kriging and IDW methods. This study also analyses the space-time distributions and variations of the XCO2 from the HASM results. This analysis shows that in February and March, there was the high value zone in the southern region of study area relating to heating in the winter and the dense population. The XCO2 concentration decreased by the end of the heating period and during the growing period of April and May, and only some relatively high value zones continued to exist.


Assuntos
Dióxido de Carbono/química , Monitoramento Ambiental , Modelos Químicos , China , Mudança Climática , Simulação por Computador , Monitoramento Ambiental/métodos , Aquecimento Global , Estações do Ano , Análise Espacial , Tempo (Meteorologia)
17.
Sci Total Environ ; 612: 1593-1609, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28359568

RESUMO

We presented the characterization of urban CO2 column abundance (XCO2) in Hefei, China using a portable low resolution spectrometer (PLRS). An optimized correction spectrum was introduced in the spectral fitting to improve CO2 retrieval. A pronounced seasonal cycle and diurnal variation were observed with a precision of ~0.12%. The CO2 concentrations in winter are about 5-10ppm higher than those in summer. Most diurnal variations exhibited downward trends. The measurement in the early morning is about 2-5ppm higher than the late afternoon observation. The causes of the seasonal and diurnal trends were systematic analyzed. The coincident CO2 time series were compared with the Greenhouse Gases Observing SATellite (GOSAT) data and the GEOS-Chem global 3-D tropospheric chemistry model data. We found the ground based (g-b) PLRS data are systematically higher than the GOSAT and the GEOS-Chem data. Compared to the GOSAT data, the g-b PLRS data are 0.26ppm (0.07%) higher with a standard deviation of 1.70ppm (0.43%). Compared to the smoothed GEOS-Chem model data, the g-b PLRS data shows a 1.31ppm (0.33%) higher with a standard deviation of 5.30ppm (0.87%). The g-b PLRS generally reproduced the seasonal cycle observed by GOSAT and GEOS-Chem model with correlation coefficients (r) of 0.82 and 0.64, respectively.

18.
Environ Pollut ; 226: 60-68, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28407537

RESUMO

In the summer of 2010, more than 6 hundred wildfires broke out in western Russia because of an unprecedented intense heat wave that resulted from strong atmospheric blocking. The present study evaluated the CO2 emissions using GOSAT (Greenhouse gases Observing SATellite) data from July 23 to August 18, 2010 for western Russia. The results demonstrated that the GOSAT CAI (Cloud and Aerosol Imager) was well-suited for the identification of smoke plumes and that the GOSAT FTS (Fourier-Transform Spectrometer) TIR (Thermal InfraRed) could be used to calculate the height of the plumes at approximately 800 hPa (1.58 km). Using GOSAT data, we estimated that the 2010 fires in western Russia emitted 255.76 Tg CO2. We also calculated the CO2 emissions by employing the Biomass Burning Model (BBM) for the same study site and obtained a similar result of 261.82-302.48 Tg CO2. The present study proposes a new method for the evaluation of CO2 emissions from a wildfire using remote sensing data, which could be used to improve the knowledge of the burning of biomass at a regional or a continental scale, to reduce the uncertainties in modeling greenhouse gases emissions, and to further understand how wildfires impact the atmospheric carbon cycle and global warming.


Assuntos
Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , Monitoramento Ambiental/métodos , Incêndios , Imagens de Satélites , Aerossóis/análise , Biomassa , Gases , Aquecimento Global , Federação Russa , Estações do Ano , Fumaça/análise
19.
Glob Chang Biol ; 21(9): 3469-77, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25881891

RESUMO

Several studies have shown that satellite retrievals of solar-induced chlorophyll fluorescence (SIF) provide useful information on terrestrial photosynthesis or gross primary production (GPP). Here, we have incorporated equations coupling SIF to photosynthesis in a land surface model, the National Center for Atmospheric Research Community Land Model version 4 (NCAR CLM4), and have demonstrated its use as a diagnostic tool for evaluating the calculation of photosynthesis, a key process in a land surface model that strongly influences the carbon, water, and energy cycles. By comparing forward simulations of SIF, essentially as a byproduct of photosynthesis, in CLM4 with observations of actual SIF, it is possible to check whether the model is accurately representing photosynthesis and the processes coupled to it. We provide some background on how SIF is coupled to photosynthesis, describe how SIF was incorporated into CLM4, and demonstrate that our simulated relationship between SIF and GPP values are reasonable when compared with satellite (Greenhouse gases Observing SATellite; GOSAT) and in situ flux-tower measurements. CLM4 overestimates SIF in tropical forests, and we show that this error can be corrected by adjusting the maximum carboxylation rate (Vmax ) specified for tropical forests in CLM4. Our study confirms that SIF has the potential to improve photosynthesis simulation and thereby can play a critical role in improving land surface and carbon cycle models.


Assuntos
Clorofila/metabolismo , Ecossistema , Fluorescência , Modelos Biológicos , Ciclo do Carbono , Luz Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA