Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39000464

RESUMO

GPR55 is a receptor for lysophosphatidylinositols (LPIs) in digestive metabolites. Overnutrition leads to obesity, insulin resistance, and increased LPI levels in the plasma. The involvement of LPIs and GPR55 in adiposity, hepatic steatosis, and atherosclerosis has been previously elucidated. However, the therapeutic efficacy of GPR55 antagonists against obesity-induced airway inflammation has not been studied. The present study investigated whether CID16020046, a selective antagonist of GPR55, could modulate obesity-induced airway inflammation caused by a high-fat diet (HFD) in C57BL/6 mice. Administration of CID16020046 (1 mg/kg) inhibits HFD-induced adiposity and glucose intolerance. Analysis of immune cells in BALF showed that CID16020046 inhibited HFD-induced increase in immune cell infiltration. Histological analysis revealed the HFD induced hypersecretion of mucus and extensive fibrosis in the lungs. CID16020046 inhibited these HFD-induced pathological features. qRT-PCR revealed the HFD-induced increase in the expression of Ifn-γ, Tnf-α, Il-6, Il-13, Il-17A, Il-1ß, Nlrp3, and Mpo mRNAs in the lungs. CID16020046 inhibited the HFD-induced increases in these genes. The expression levels of adipokines were regulated by the HFD and CID16020046. AdipoQ in the lungs and gonadal white adipose tissue was decreased by the HFD and reversed by CID16020046. In contrast, Lep was increased by the HFD and suppressed by CID16020046. The findings suggest the potential application of the GPR55 antagonist CID16020046 in obesity-induced airway inflammation.


Assuntos
Dieta Hiperlipídica , Pulmão , Camundongos Endogâmicos C57BL , Obesidade , Receptores de Canabinoides , Animais , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/complicações , Camundongos , Dieta Hiperlipídica/efeitos adversos , Masculino , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Receptores de Canabinoides/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/metabolismo , Adiposidade/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores
2.
Biochim Biophys Acta Gen Subj ; 1868(8): 130651, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38825256

RESUMO

Cannabidiol (CBD) has antioxidant and anti-inflammatory activities. However, the anti-tumor effect of CBD on hepatocellular carcinoma (HCC) remains unclear. Here, we investigated whether CBD displays anti-tumorigenic effects in HCC cells and whether it could reduce tumorigenesis and metastases in vivo. First, this study treated HCC cells with different concentrations of CBD, followed by analyzing the changes in the proliferative, apoptotic, migratory and invasive abilities. The effects of CBD on the growth and metastasis of HCC cells in vivo were verified by tumorigenesis and metastasis assays. Subsequently, the target genes of CBD were predicted through the SwissTarget website and the genes differentially expressed in cells after CBD treatment were analyzed by microarray for intersection. The enrichment of the pathways after CBD treatment was analyzed by KEGG enrichment analysis, followed by western blot validation. Finally, rescue assays were used to validate the functions of genes as well as pathways in the growth and metastasis of HCC cells. A significant weakening of the ability of HCC cells to grow and metastasize in vitro and in vivo was observed upon CBD treatment. Mechanistically, CBD reduced GRP55 expression in HCC cells, along with increased TP53 expression and blocked MAPK signaling activation. In CBD-treated cells, the anti-tumor of HCC cells was restored after overexpression of GRP55 or deletion of TP53. CBD inhibits the MAPK signaling activation and increases the TP53 expression by downregulating GRP55 in HCC cells, thereby suppressing the growth and metastasis of HCC cells.


Assuntos
Canabidiol , Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptores de Canabinoides , Proteína Supressora de Tumor p53 , Canabidiol/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Humanos , Proteína Supressora de Tumor p53/metabolismo , Receptores de Canabinoides/metabolismo , Receptores de Canabinoides/genética , Animais , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Fenótipo , Camundongos Nus
3.
Pharmaceuticals (Basel) ; 17(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38931342

RESUMO

Chronic inflammation is driven by proinflammatory cytokines such as interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), and chemokines, such as c-c motif chemokine ligand 2 (CCL2), CCL3, C-X-C motif chemokine ligand 2 (CXCL2), and CXCL10. Inflammatory processes of the central nervous system (CNS) play an important role in the pathogenesis of various neurological and psychiatric disorders like Alzheimer's disease, Parkinson's disease, and depression. Therefore, identifying novel anti-inflammatory drugs may be beneficial for treating disorders with a neuroinflammatory background. The G-protein-coupled receptor 55 (GPR55) gained interest due to its role in inflammatory processes and possible involvement in different disorders. This study aims to identify the anti-inflammatory effects of the coumarin-based compound KIT C, acting as an antagonist with inverse agonistic activity at GPR55, in lipopolysaccharide (LPS)-stimulated BV2 microglial cells in comparison to the commercial GPR55 agonist O-1602 and antagonist ML-193. All compounds significantly suppressed IL-6, TNF-α, CCL2, CCL3, CXCL2, and CXCL10 expression and release in LPS-treated BV2 microglial cells. The anti-inflammatory effects of the compounds are partially explained by modulation of the phosphorylation of p38 mitogen-activated protein kinase (MAPK), p42/44 MAPK (ERK 1/2), protein kinase C (PKC) pathways, and the transcription factor nuclear factor (NF)-κB, respectively. Due to its potent anti-inflammatory properties, KIT C is a promising compound for further research and potential use in inflammatory-related disorders.

4.
Heliyon ; 10(9): e30462, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38720745

RESUMO

Methamphetamine is a potent and highly addictive neurotoxic psychostimulant that triggers a spectrum of adverse emotional responses during withdrawal. G-protein coupled receptor 55 (GPR55), a novel endocannabinoid receptor, is closely associated with mood regulation. Herein, we developed a murine model of methamphetamine-induced anxiety- and depressive-like behavior during abstinence which showed a decreased GPR55 expression in the hippocampus. Activation of GPR55 mitigated these behavioral symptoms, concomitantly ameliorating impairments in hippocampal neurogenesis and reducing neuroinflammation. These findings underscore the pivotal role of GPR55 in mediating the neuropsychological consequences of methamphetamine withdrawal, potentially via mechanisms involving the modulation of hippocampal neurogenesis and inflammation.

5.
J Mol Neurosci ; 74(2): 41, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602576

RESUMO

KLS-13019 was reported previously to reverse paclitaxel-induced mechanical allodynia in a mouse model of chemotherapy-induced peripheral neuropathy (CIPN). Recent studies demonstrated that paclitaxel-induced increases in inflammatory markers (GPR55, NLRP3, and IL-1ß) of dorsal root ganglion (DRG) cultures were shown to be reversed by KLS-13019 treatment. The mechanism of action for KLS-13019-mediated reversal of paclitaxel-induced neuroinflammation now has been explored using GPR55 siRNA. Pre-treatment of DRG cultures with GPR55 siRNA produced a 21% decrease of immunoreactive (IR) area for GPR55 in cell bodies and a 59% decrease in neuritic IR area, as determined by high-content imaging. Using a 24-h reversal treatment paradigm, paclitaxel-induced increases in the inflammatory markers were reversed back to control levels after KLS-3019 treatment. Decreases in these inflammatory markers produced by KLS-13019 were significantly attenuated by GPR55 siRNA co-treatment, with mean IR area responses being attenuated by 56% in neurites and 53% in cell bodies. These data indicate that the percentage decreases in siRNA-mediated attenuation of KLS-13019-related efficacy on the inflammatory markers were similar to the percentage knockdown observed for neuritic GPR55 IR area. Similar studies conducted with cannabidiol (CBD), the parent compound of KLS-13019, produced low efficacy (25%) reversal of all inflammatory markers that were poorly attenuated (29%) by GPR55 siRNA. CBD was shown previously to be ineffective in reversing paclitaxel-induced mechanical allodynia. The present studies indicated significant differences between the anti-inflammatory properties of KLS-13019 and CBD which may play a role in their observed differences in the reversibility of mechanical allodynia in a mouse model of CIPN.


Assuntos
Canabidiol , Animais , Camundongos , RNA Interferente Pequeno/genética , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Hiperalgesia/tratamento farmacológico , Anti-Inflamatórios , Modelos Animais de Doenças , Paclitaxel/toxicidade , Receptores de Canabinoides/genética
6.
Pharmacol Res ; 203: 107176, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583687

RESUMO

Cannabidiol (CBD), a non-psychotomimetic constituent of Cannabis sativa, has been recently approved for epileptic syndromes often associated with Autism spectrum disorder (ASD). However, the putative efficacy and mechanism of action of CBD in patients suffering from ASD and related comorbidities remain debated, especially because of the complex pharmacology of CBD. We used pharmacological, immunohistochemical and biochemical approaches to investigate the effects and mechanisms of action of CBD in the recently validated Fmr1-Δexon 8 rat model of ASD, that is also a model of Fragile X Syndrome (FXS), the leading monogenic cause of autism. CBD rescued the cognitive deficits displayed by juvenile Fmr1-Δexon 8 animals, without inducing tolerance after repeated administration. Blockade of CA1 hippocampal GPR55 receptors prevented the beneficial effect of both CBD and the fatty acid amide hydrolase (FAAH) inhibitor URB597 in the short-term recognition memory deficits displayed by Fmr1-Δexon 8 rats. Thus, CBD may exert its beneficial effects through CA1 hippocampal GPR55 receptors. Docking analysis further confirmed that the mechanism of action of CBD might involve competition for brain fatty acid binding proteins (FABPs) that deliver anandamide and related bioactive lipids to their catabolic enzyme FAAH. These findings demonstrate that CBD reduced cognitive deficits in a rat model of FXS and provide initial mechanistic insights into its therapeutic potential in neurodevelopmental disorders.


Assuntos
Canabidiol , Modelos Animais de Doenças , Síndrome do Cromossomo X Frágil , Hipocampo , Receptores de Canabinoides , Reconhecimento Psicológico , Animais , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/metabolismo , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Receptores de Canabinoides/metabolismo , Masculino , Reconhecimento Psicológico/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ratos , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Memória/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Simulação de Acoplamento Molecular
7.
Front Neurosci ; 18: 1358555, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505774

RESUMO

Background: Some evidence suggests that cannabidiol (CBD) has potential to help alleviate HIV symptoms due to its antioxidant and anti-inflammatory properties. Here we examined acute CBD effects on various behaviors and the endocannabinoid system in HIV Tat transgenic mice. Methods: Tat transgenic mice (female/male) were injected with CBD (3, 10, 30 mg/kg) and assessed for antinociception, activity, coordination, anxiety-like behavior, and recognition memory. Brains were taken to quantify endocannabinoids, cannabinoid receptors, and cannabinoid catabolic enzymes. Additionally, CBD and metabolite 7-hydroxy-CBD were quantified in the plasma and cortex. Results: Tat decreased supraspinal-related nociception and locomotion. CBD and sex had little to no effects on any of the behavioral measures. For the endocannabinoid system male sex was associated with elevated concentration of the proinflammatory metabolite arachidonic acid in various CNS regions, including the cerebellum that also showed higher FAAH expression levels for Tat(+) males. GPR55 expression levels in the striatum and cerebellum were higher for females compared to males. CBD metabolism was altered by sex and Tat expression. Conclusion: Findings indicate that acute CBD effects are not altered by HIV Tat, and acute CBD has no to minimal effects on behavior and the endocannabinoid system.

8.
Res Sq ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464007

RESUMO

KLS-13019 was reported previously to reverse paclitaxel-induced mechanical allodynia in a mouse model of chemotherapy-induced peripheral neuropathy (CIPN). Recent studies demonstrated that paclitaxel-induced increases in inflammatory markers (GPR55, NLRP3 and IL-1b) of dorsal root ganglion (DRG) cultures were shown to be reversed by KLS-13019 treatment. The mechanism of action for KLS-13019-mediated reversal of paclitaxel-induced neuroinflammation now has been explored using GPR55 siRNA. Pretreatment of DRG cultures with GPR55 siRNA produced a 21% decrease of immunoreactive (IR) area for GPR55 in cell bodies and a 59% decrease in neuritic IR area, as determined by high content imaging. Using a 24-hour reversal treatment paradigm, paclitaxel-induced increases in the inflammatory markers were reversed back to control levels after KLS-3019 treatment. Decreases in these inflammatory markers produced by KLS-13019 were significantly attenuated by GPR55 siRNA co-treatment, with mean IR area responses being attenuated by 56% in neurites and 53% in cell bodies. These data indicate that the percentage decreases in siRNA-mediated attenuation of KLS-13019-related efficacy on the inflammatory markers were similar to the percentage knockdown observed for neuritic GPR55 IR area. Similar studies conducted with cannabidiol (CBD), the parent compound of KLS-13019, produced low efficacy (25%) reversal of all inflammatory markers that were poorly attenuated (29%) by GPR55 siRNA. CBD was shown previously to be ineffective in reversing paclitaxel-induced mechanical allodynia. The present studies indicated significant differences between the anti-inflammatory properties of KLS-13019 and CBD which may play a role in their observed differences in the reversibility of mechanical allodynia in a mouse model of CIPN.

9.
Res Sq ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37886574

RESUMO

Cannabis legalization continues to progress in the USA for medical and recreational purposes. G protein-coupled receptor 55 (GPR55) is a putative "CB3" receptor. However, its functional role in cannabinoid action and drug abuse is not explored. Here we report that GPR55 is mainly expressed in cortical and subcortical glutamate neurons and its activation attenuates nicotine taking and seeking in rats and mice. RNAscope in situ hybridization detected GPR55 mRNA in cortical vesicular glutamate transporter 1 (VgluT1)-positive and subcortical VgluT2-positive glutamate neurons in wildtype, but not GPR55-knockout, mice. GPR55 mRNA was not detected in midbrain dopamine (DA) neurons in either genotype. Immunohistochemistry assays detected GPR55-like staining, but the signal is not GPR55-specific as the immunostaining was still detectable in GPR55-knockout mice. We then used a fluorescent CB1-GPR55 ligand (T1117) and detected GPR55 binding in cortical and subcortical glutamate neurons, but not in midbrain DA neurons, in CB1-knockout mice. Systemic administration of O-1602, a GPR55 agonist, dose-dependently increased extracellular glutamate, not DA, in the nucleus accumbens. Pretreatment with O-1602 failed to alter Δ9-tetrahydrocannabinol (D9-THC)-induced triad effects or intravenous cocaine self-administration, but it dose-dependently inhibited nicotine self-administration under fixed-ratio and progressive-ratio reinforcement schedules in rats and wildtype mice, not in GPR55-knockout mice. O-1602 itself is not rewarding or aversive as assessed by optical intracranial self-stimulation (oICSS) in DAT-Cre mice. These findings suggest that GPR55 is functionally involved in nicotine reward process possibly by a glutamate-dependent mechanism, and therefore, GPR55 deserves further research as a new therapeutic target for treating nicotine use disorder.

10.
Life Sci ; 334: 122195, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37866808

RESUMO

AIMS: Dysregulation of PI3K/Akt/GSK3ß signaling has been implicated in various neurological disorders, including autism spectrum disorder (ASD). G protein-coupled receptor 55 (GPR55) has recently emerged as a potential regulator of this signaling cascade. This study explores the intricate modulation of the PI3K/Akt/GSK3ß signaling cascade via GPR55 activation and its potential therapeutic implications in the context of autism-associated neuronal impairments. MAIN METHODS: Valproic acid (VPA) was administered on embryonic day 12 (E12) to induce ASD, and lysophosphatidylinositol (LPI), a GPR55 agonist, was used prenatally to modulate the receptor activity. Golgi-cox staining was performed to observe neuronal morphology, and Hematoxylin and eosin (H and E) staining was carried out to quantify damaged neurons. Enzyme-linked immunosorbent assay (ELISA) was implemented to identify molecular mediators involved in neuroprotection. KEY FINDINGS: Prenatal VPA exposure resulted in significant abnormalities in synaptic development, which were further evidenced by impairments in social interaction and cognitive function. When LPI was administered, most of the synaptic abnormalities were alleviated, as reflected by higher neuron and dendritic spine count. LPI treatment also reduced cytoplasmic cytochrome c concentration and related neuronal cell death. Mechanistically, GPR55 activation by LPI increases the expression of phospho-Akt and phospho-GSK3ß, leading to the activation of this signaling in the process of rescuing synaptic abnormalities and mitochondria-mediated neuronal apoptosis. SIGNIFICANCE: The observed therapeutic effects of GPR55 activation shed light on its significance as a prospective target for ameliorating mitochondrial dysfunction and dendritic spine loss, offering novel prospects for developing targeted interventions to alleviate the neuropathological causes of ASD.


Assuntos
Transtorno do Espectro Autista , Receptores Acoplados a Proteínas G , Humanos , Transtorno do Espectro Autista/tratamento farmacológico , Glicogênio Sintase Quinase 3 beta , Lisofosfolipídeos/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Receptores Acoplados a Proteínas G/metabolismo , Ácido Valproico/farmacologia
11.
Biomolecules ; 13(9)2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37759798

RESUMO

Cannabis has demonstrated anticonvulsant properties, and about thirty percent of epileptic patients do not have satisfactory seizure management with standard treatment and could potentially benefit from cannabis-based intervention. Here, we report the use of cannabinoids to treat pentylenetetrazol (PTZ)-induced convulsions in a zebrafish model, their effect on gene expression, and a simple assay for assessing their uptake in zebrafish tissues. Using an optimized behavioral assay, we show that cannabidiol (CBD) and cannabichromene (CBC) and cannabinol (CBN) are effective at reducing seizures at low doses, with little evidence of sedation, and our novel HPLC assay indicates that CBC is effective with the lowest accumulation in larval tissues. All cannabinoids tested were effective at higher concentrations. Pharmacological manipulation of potential receptors demonstrates that Gpr55 partially mediates the anticonvulsant effects of CBD. Treatment of zebrafish larvae with endocannabinoids, such as 2-arachidonoylglycerol (2-AG) and anandamide (AEA), altered larvae movement, and the expression of genes that regulate their metabolism was affected by phytocannabinoid treatment, highlighting the possibility that changes to endocannabinoid levels may represent one facet of the anticonvulsant effect of phytocannabinoids.


Assuntos
Canabidiol , Cannabis , Humanos , Animais , Endocanabinoides , Peixe-Zebra , Anticonvulsivantes/farmacologia , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/genética , Agonistas de Receptores de Canabinoides , Canabidiol/farmacologia , Canabinol , Expressão Gênica
12.
Aging (Albany NY) ; 15(17): 8930-8947, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37688769

RESUMO

Hepatocellular carcinoma (HCC) is the most common subtype, accounting for about 90% of all primary liver cancers. The liver is rich in a large number of immune cells, thus forming a special immune microenvironment, which plays a key role in the occurrence and development of hepatocellular carcinoma. Nowadays, tumor immunotherapy has become one of the most promising cancer treatment methods. Immune checkpoint inhibitors (ICIs) combined with VEGF inhibitors are listed as first-line treatment options for advanced HCC. Therefore, the search for a potential biomarker to predict the response to immunotherapy in HCC patients is urgently needed. The G protein-coupled receptor 55 (GPR55), a lysophosphatidylinositol (LPI) receptor, has recently emerged as a potential new target for anti-tumor therapy. Previous studies have found that GPR55 is highly expressed in breast cancer, pancreatic cancer, skin cancer and cholangiocarcinoma, and is involved in tumor proliferation and migration. However, the role and mechanism of GPR55 in HCC has not been elucidated. Therefore, this article discusses the clinical significance of GPR55 in HCC and its correlation with the immune response of HCC patients, so as to provide theoretical basis for improving the prognosis of HCC.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Prognóstico , Ductos Biliares Intra-Hepáticos , Microambiente Tumoral , Receptores de Canabinoides
13.
J Chem Neuroanat ; 133: 102337, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37708946

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease marked by mitochondrial dysfunction, amyloid-ß (Aß) aggregation, and neuronal cell loss. G-protein-coupled receptor 55 (GPR55) has been used as a promising target for insulin receptors in diabetes therapy, but GPR55's role in AD is still unidentified. Gelatin (GE) and polyethylene glycol (PEG) polymeric hydrogels are commonly used in the drug delivery system. Therefore, the aim of the present study was the preparation of magnesium hydroxide nanocomposite using Clitoria ternatea (CT) flower extract, GE, and PEG (GE/PEG/Mg(OH)2NCs) by the green precipitation method. The synthesized GE/PEG/Mg(OH)2NCs were used to determine the effect of GPR55 activation of intracerebroventricular administration on streptozotocin (ICV-STC)-induced cholinergic dysfunction, oxidative stress, neuroinflammation, and cognitive deficits. The GE/PEG/Mg(OH)2NCs were administered following bilateral ICV-STC administration (3 mg/kg) in experimental rats. Neurobehavioral assessments were performed using a Morris water maze (MWM) and a passive avoidance test (PA). Cholinergic and antioxidant activity, oxidative stress, and mitochondrial complex activity were estimated in the cortex and hippocampus through biochemical analysis. Inflammatory markers (TNF-α, IL-6, and IL-1ß) were determined using the ELISA method. Our study results demonstrated that the GE/PEG/Mg(OH)2NCs treatment significantly improved spatial and non-spatial memory functions in behavioral studies. Moreover, the treatment with GE/PEG/Mg(OH)2NCs group significantly attenuated cholinergic dysfunction, oxidative stress, and inflammatory markers, and also highly improved anti-oxidant activity (GSH, SOD, CAT, and GPx) in the cortex and hippocampus regions. The western blot results suggest the activation of the GPR55 protein expression through GE/PEG/Mg(OH)2NCs. The histopathological studies showed clear cytoplasm and healthy neurons, effectively promoting neuronal activity. Furthermore, the molecular docking results demonstrated the binding affinity and potential interactions of the compounds with the AChE enzyme. In conclusion, the GE/PEG/Mg(OH)2NCs treated groups showed reduced neurotoxicity and have the potential as a therapeutic agent to effectively target AD.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Nanopartículas , Doenças Neurodegenerativas , Animais , Ratos , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Antioxidantes/farmacologia , Colinérgicos/metabolismo , Colinérgicos/farmacologia , Colinérgicos/uso terapêutico , Modelos Animais de Doenças , Gelatina/metabolismo , Gelatina/farmacologia , Gelatina/uso terapêutico , Hipocampo/metabolismo , Hidróxido de Magnésio/metabolismo , Hidróxido de Magnésio/farmacologia , Hidróxido de Magnésio/uso terapêutico , Simulação de Acoplamento Molecular , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Estresse Oxidativo , Polietilenoglicóis/farmacologia , Polietilenoglicóis/metabolismo , Polietilenoglicóis/uso terapêutico , Receptores de Canabinoides/metabolismo , Receptores de Canabinoides/uso terapêutico , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Nanopartículas/química , Nanopartículas/uso terapêutico
14.
Life Sci ; 332: 122072, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37704067

RESUMO

AIMS: Bladder function is regulated by clock genes and dysregulation of circadian bladder function can cause nocturia. The blood concentration of palmitoylethanolamide (PEA), a fatty acid metabolite, changes with circadian rhythm. Clock gene abnormalities demonstrate the highest PEA levels during the sleep phase. PEA is a GPR55 agonist that influences urination; therefore, increased PEA during the sleep phase may cause nocturia. Herein, we investigated the function of GPR55 to evaluate the relationship between GPR55 and nocturia that evoked higher PEA during the sleep phase in patients with circadian rhythm disorders. MAIN METHODS: Male C57BL/6 mice were used. GPR55 localization was evaluated by immunofluorescence staining, qRT-PCR, and western blotting. Variations in PEA-induced intracellular Ca2+ concentrations were measured in primary cultured mouse urothelial cells (UCs) using Ca2+ imaging. PEA-induced NGF and PGI2 release in UCs was measured by ELISA. The micturition reflex pathway after PEA administration was evaluated using immunofluorescence staining. KEY FINDINGS: GPR55 was predominant in the UC layer. PEA induced release of Ca2+ from the endoplasmic reticulum into the UC cytoplasm. ELISA and immunofluorescence staining revealed that NGF and PGI2 were released from bladder UCs, stimulated the pontine micturition center in mice, and induced nocturia. SIGNIFICANCE: The loss of regular circadian metabolizing rhythm in fatty acids causes higher blood PEA levels during the sleep phase. Binding of PEA to GPR55 in UC may activate the downstream processes of the micturition reflex, leading to nocturia. These findings suggest a new mechanism for nocturia and its potential as a therapeutic target.

15.
Aging (Albany NY) ; 15(16): 8518-8527, 2023 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-37642951

RESUMO

Alzheimer's disease is the most frequent neurodegenerative disease and is characterized by progressive cognitive impairment and decline. NSCs (neural stem cells) serve as beneficial and promising adjuncts to treat Alzheimer's disease. This study aimed to determine the role of miR-153-3p expression in NSC differentiation and proliferation. We illustrated that miR-153-3p was decreased and GPR55 was upregulated during NSC differentiation. IL-1ß can induce miR-153-3p expression. Luciferase reporter analysis noted that elevated expression of miR-153-3p significantly inhibited the luciferase value of the WT reporter plasmid but did not change the luciferase value of the mut reporter plasmid. Ectopic miR-153-3p expression suppressed GPR55 expression in NSCs and identified GPR55 as a direct target gene of miR-153-3p. Ectopic expression of miR-153-3p inhibited NSC growth and differentiation into astrocytes and neurons. Elevated expression of miR-153-3p induced the release of proinflammatory cytokines, such as TNF-α, IL-1ß and IL-6, in NSCs. Furthermore, miR-153-3p inhibited NSC differentiation and proliferation by targeting GPR55 expression. These data suggested that miR-153-3p may act as a clinical target for the therapeutics of neurodegenerative diseases.


Assuntos
Doença de Alzheimer , MicroRNAs , Células-Tronco Neurais , Doenças Neurodegenerativas , Humanos , Diferenciação Celular , Proliferação de Células , Receptores de Canabinoides
16.
Biology (Basel) ; 12(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37372090

RESUMO

BACKGROUND: The endocannabinoid system (ECS) and associated lipid transmitter-based signaling systems play an important role in modulating brain neuroinflammation. ECS is affected in neurodegenerative disorders, such as Alzheimer's disease (AD). Here we have evaluated the non-psychotropic endocannabinoid receptor type 2 (CB2) and lysophosphatidylinositol G-protein-coupled receptor 55 (GPR55) localization and expression during Aß-pathology progression. METHODS: Hippocampal gene expression of CB2 and GPR55 was explored by qPCR analysis, and brain distribution was evaluated by immunofluorescence in the wild type (WT) and APP knock-in AppNL-G-F AD mouse model. Furthermore, the effects of Aß42 on CB2 and GPR55 expression were assessed in primary cell cultures. RESULTS: CB2 and GPR55 mRNA levels were significantly upregulated in AppNL-G-F mice at 6 and 12 months of age, compared to WT. CB2 was highly expressed in the microglia and astrocytes surrounding the Aß plaques. Differently, GPR55 staining was mainly detected in neurons and microglia but not in astrocytes. In vitro, Aß42 treatment enhanced CB2 receptor expression mainly in astrocytes and microglia cells, whereas GPR55 expression was enhanced primarily in neurons. CONCLUSIONS: These data show that Aß pathology progression, particularly Aß42, plays a crucial role in increasing the expression of CB2 and GPR55 receptors, supporting CB2 and GPR55 implications in AD.

17.
Br J Pharmacol ; 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085333

RESUMO

BACKGROUND AND PURPOSE: Receptor activity-modifying proteins (RAMPs) and melanocortin receptor accessory proteins (MRAPs) modulate expression and signalling of calcitonin and melanocortin GPCRs. Interactions with other GPCRs have also been reported. The cannabinoid receptors, CB1 and CB2 , and two putative cannabinoid receptors, GPR18 and GPR55, exhibit substantial intracellular expression and there are discrepancies in ligand responsiveness between studies. We investigated whether interactions with RAMPs or MRAPs could explain these phenomena. EXPERIMENTAL APPROACH: Receptors and accessory proteins were co-expressed in HEK-293 cells. Selected receptors were studied at basal expression levels and also with enhanced expression produced by incorporation of a preprolactin signal sequence/peptide (pplss). Cell surface and total expression of receptors and accessory proteins were quantified using immunocytochemistry. Signalling was measured using cAMP (CAMYEL) and G protein dissociation (TRUPATH Gα13 ) biosensors. KEY RESULTS: MRAP2 enhanced surface and total expression of GPR18. Pplss-GPR18 increased detection of cell surface MRAP2. MRAP1α and MRAP2 reduced GPR55 surface and total expression, correlating with reduced constitutive, but not agonist-induced, signalling. GPR55, pplss-CB1 and CB2 reduced detection of MRAP1α at the cell surface. Pplss-CB1 agonist potency was reduced by MRAP2 in Gα13 but not cAMP assays, consistent with MRAP2 reducing pplss-CB1 expression. Some cannabinoid receptors increased RAMP2 or RAMP3 total expression without influencing surface expression. CONCLUSIONS AND IMPLICATIONS: Mutual influences on expression and/or function for specific accessory protein-receptor pairings raises the strong potential for physiological and disease-relevant consequences. Sequestration and/or hetero-oligomerisation of cannabinoid receptors with accessory proteins is a possible novel mechanism for receptor crosstalk.

18.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047288

RESUMO

Mast cells (MCs) are the main participants in the control of immune reactions associated with inflammation, allergies, defense against pathogens, and tumor growth. Bioactive lipids are lipophilic compounds able to modulate MC activation. Here, we explored some of the effects of the bioactive lipid lysophosphatidylinositol (LPI) on MCs. Utilizing murine bone marrow-derived mast cells (BMMCs), we found that LPI did not cause degranulation, but slightly increased FcεRI-dependent ß-hexosaminidase release. However, LPI induced strong chemotaxis together with changes in LIM kinase (LIMK) and cofilin phosphorylation. LPI also promoted modifications to actin cytoskeleton dynamics that were detected by an increase in cell size and interruptions in the continuity of the cortical actin ring. The chemotaxis and cortical actin ring changes were dependent on GPR55 receptor activation, since the specific agonist O1602 mimicked the effects of LPI and the selective antagonist ML193 prevented them. The LPI and O1602-dependent stimulation of BMMC also led to VEGF, TNF, IL-1α, and IL-1ß mRNA accumulation, but, in contrast with chemotaxis-related processes, the effects on cytokine transcription were dependent on GPR55 and cannabinoid (CB) 2 receptors, since they were sensitive to ML193 and to the specific CB2 receptor antagonist AM630. Remarkably, GPR55-dependent BMMC chemotaxis was observed towards conditioned media from distinct mouse and human cancer cells. Our data suggest that LPI induces the chemotaxis of MCs and leads to cytokine production in MC in vitro with the differential participation of GPR55 and CB2 receptors. These effects could play a significant role in the recruitment of MCs to tumors and the production of MC-derived pro-angiogenic factors in the tumor microenvironment.


Assuntos
Receptor CB2 de Canabinoide , Receptores Acoplados a Proteínas G , Camundongos , Humanos , Animais , Receptores Acoplados a Proteínas G/genética , Receptor CB2 de Canabinoide/genética , Quimiotaxia , Mastócitos , Citocinas , Actinas , Receptores de Canabinoides/genética , Lisofosfolipídeos/farmacologia , Lisofosfolipídeos/fisiologia
19.
Med Chem ; 19(9): 838-847, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37038675

RESUMO

GPCR superfamily, the largest known family of membrane receptors, consists of six classes from A to F. GPR18 and GPR55, δ-branch of A class, had been reported to have no confirmed endogenous ligand and were named as "orphan receptors". Previous studies suggest that both GPR18 and GPR55 are possibly related to the migration and proliferation of cancer cells, macrophages and other inflammation-associated immune cells. Thus, they may be potential targets for inflammation, cancer and analgesia therapy. In this paper, we aimed to summarize the chemical structures and bioactivities of the agonists and antagonists of GPR18 and GPR55; moreover, we have briefly discussed the challenges and future perspectives in this field. This review will be beneficial for further design and synthesis of efficient agonists and antagonists towards GPR18 and GPR55- related disease treatment.


Assuntos
Inflamação , Receptores Acoplados a Proteínas G , Humanos , Receptores de Canabinoides , Ligantes
20.
Brain Behav Immun ; 110: 276-287, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36898418

RESUMO

Pain transmission and processing in the nervous system are modulated by various biologically active substances, including lysophospholipids, through direct and indirect actions on the somatosensory pathway. Lysophosphatidylglucoside (LysoPtdGlc) was recently identified as a structurally unique lysophospholipid that exerts biological actions via the G protein-coupled receptor GPR55. Here, we demonstrated that GPR55-knockout (KO) mice show impaired induction of mechanical pain hypersensitivity in a model of spinal cord compression (SCC) without the same change in the models of peripheral tissue inflammation and peripheral nerve injury. Among these models, only SCC recruited peripheral inflammatory cells (neutrophils, monocytes/macrophages, and CD3+ T-cells) in the spinal dorsal horn (SDH), and GPR55-KO blunted these recruitments. Neutrophils were the first cells recruited to the SDH, and their depletion suppressed the induction of SCC-induced mechanical hypersensitivity and inflammatory responses in compressed SDH. Furthermore, we found that PtdGlc was present in the SDH and that intrathecal administration of an inhibitor of secretory phospholipase A2 (an enzyme required for producing LysoPtdGlc from PtdGlc) reduced neutrophil recruitment to compressed SDH and suppressed pain induction. Finally, by screening compounds from a chemical library, we identified auranofin as a clinically used drug with an inhibitory effect on mouse and human GPR55. Systemically administered auranofin to mice with SCC effectively suppressed spinal neutrophil infiltration and pain hypersensitivity. These results suggest that GPR55 signaling contributes to the induction of inflammatory responses and chronic pain after SCC via the recruitment of neutrophils and may provide a new target for reducing pain induction after spinal cord compression, such as spinal canal stenosis.


Assuntos
Dor Crônica , Compressão da Medula Espinal , Humanos , Camundongos , Animais , Infiltração de Neutrófilos , Compressão da Medula Espinal/metabolismo , Auranofina/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Dor Crônica/metabolismo , Medula Espinal/metabolismo , Receptores de Canabinoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA