Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 293
Filtrar
1.
Subcell Biochem ; 104: 269-294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963491

RESUMO

Eukaryotic cells coordinate available nutrients with their growth through the mechanistic target of rapamycin complex 1 (mTORC1) pathway, in which numerous evolutionarily conserved protein complexes survey and transmit nutrient inputs toward mTORC1. mTORC1 integrates these inputs and activates downstream anabolic or catabolic programs that are in tune with cellular needs, effectively maintaining metabolic homeostasis. The GAP activity toward Rags-1 (GATOR1) protein complex is a critical negative regulator of the mTORC1 pathway and, in the absence of amino acid inputs, is activated to turn off mTORC1 signaling. GATOR1-mediated inhibition of mTORC1 signaling is tightly regulated by an ensemble of protein complexes that antagonize or promote its activity in response to the cellular nutrient environment. Structural, biochemical, and biophysical studies of the GATOR1 complex and its interactors have advanced our understanding of how it regulates cellular metabolism when amino acids are limited. Here, we review the current research with a focus on GATOR1 structure, its enzymatic mechanism, and the growing group of proteins that regulate its activity. Finally, we discuss the implication of GATOR1 dysregulation in physiology and human diseases.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina , Transdução de Sinais , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Animais
2.
Arch Microbiol ; 206(8): 339, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958759

RESUMO

Cordyceps cicadae is recognized for its medicinal properties, attributed to bioactive constituents like polysaccharides and adenosine, which have been shown to improve kidney and liver functions and possess anti-tumor properties. Rho GTPase activating proteins (Rho GAPs) serve as inhibitory regulators of Rho GTPases in eukaryotic cells by accelerating the GTP hydrolysis of Rho GTPases, leading to their inactivation. In this study, we explored the function of the CcRga8 gene in C. cicadae, which encodes a Rho-type GTPase activating protein. Our study found that the knockout of CcRga8 resulted in a decrease in polysaccharide levels and an increase in adenosine concentration. Furthermore, the mutants exhibited altered spore yield and morphology, fruiting body development, decreased infectivity, reduced resistance to hyperosmotic stress, oxidative conditions, and cell wall inhibitors. These findings suggest that CcRga8 plays a crucial role in the development, stress response, and bioactive compound production of C. cicadae.


Assuntos
Cordyceps , Cordyceps/metabolismo , Cordyceps/genética , Cordyceps/crescimento & desenvolvimento , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Adenosina/metabolismo , Polissacarídeos/metabolismo , Carpóforos/crescimento & desenvolvimento , Carpóforos/metabolismo , Carpóforos/genética
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167332, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960056

RESUMO

Malignant cell plasticity is an important hallmark of tumor biology and crucial for metastasis and resistance. Cell plasticity lets cancer cells adapt to and escape the therapeutic strategies, which is the leading cause of cancer patient mortality. Epithelial cells acquire mobility via epithelial-mesenchymal transition (EMT), whereas mesenchymal cells enhance their migratory ability and clonogenic potential by acquiring amoeboid characteristics through mesenchymal-amoeboid transition (MAT). Tumor formation, progression, and metastasis depend on the tumor microenvironment (TME), a complex ecosystem within and around a tumor. Through increased migration and metastasis of cancer cells, the TME also contributes to malignancy. This review underscores the distinction between invasion pattern morphological manifestations and the diverse structures found within the TME. Furthermore, the mechanisms by which amoeboid-associated characteristics promote resistance and metastasis and how these mechanisms may represent therapeutic opportunities are discussed.

4.
Cancer Biomark ; 40(2): 205-223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38905034

RESUMO

BACKGROUND: Kidney Renal Clear Cell Carcinoma (KIRC) is a malignant tumor that seriously threatens human health. Rho GTPase-activating protein 4 (ARHGAP4) plays an important role in the occurrence and development of tumors. OBJECTIVE: The purpose of this study was to explore the role of ARHGAP4 in the progression of KIRC and its diagnostic and prognostic value. METHODS: Multiple analytical methods and in vitro cell assays were used to explore the expression of ARHGAP4 and its value in the progression, diagnosis and prognosis of KIRC. The biological function of ARHGAP4 was studied by GO analysis and KEGG pathway analysis, and then the relationship between ARHGAP4 and immune infiltration was analyzed. RESULTS: The expression of ARHGAP4 was significantly up-regulated in KIRC. We found that the high expression of ARHGAP4 was related to the progression of KIRC and suggested a poor prognosis. Compared with normal tissues, ARHGAP4 had a better diagnostic value in KIRC. The biological function of ARHGAP4 was related to immunity, and its expression was also closely related to tumor immune infiltration and immune checkpoints. CONCLUSIONS: Our study demonstrated that ARHGAP4 may be a biomarker, which is related to the progression, diagnosis and prognosis of KIRC. Its biological functions are related to tumor immune infiltration.


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Renais , Proteínas Ativadoras de GTPase , Neoplasias Renais , Humanos , Prognóstico , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/imunologia , Neoplasias Renais/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Masculino , Feminino , Regulação para Cima , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade , Linhagem Celular Tumoral
5.
J Pathol ; 263(3): 347-359, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734878

RESUMO

Vascular permeability is temporarily heightened during inflammation, but excessive inflammation-associated microvascular leakage can be detrimental, as evidenced in the inflamed lung. Formylated peptides regulate vascular leakage indirectly via formylated peptide receptor-1 (FPR1)-mediated recruitment and activation of neutrophils. Here we identify how the GTPase-activating protein ARAP3 protects against formylated peptide-induced microvascular permeability via endothelial cells and neutrophils. In vitro, Arap3-/- endothelial monolayers were characterised by enhanced formylated peptide-induced permeability due to upregulated endothelial FPR1 and enhanced vascular endothelial cadherin internalisation. In vivo, enhanced inflammation-associated microvascular leakage was observed in Arap3-/- mice. Leakage of plasma protein into the lungs of Arap3-/- mice increased within hours of formylated peptide administration. Adoptive transfer experiments indicated this was dependent upon ARAP3 deficiency in both immune and non-immune cells. Bronchoalveolar lavages of formylated peptide-challenged Arap3-/- mice contained neutrophil extracellular traps (NETs). Pharmacological inhibition of NET formation abrogated excessive microvascular leakage, indicating a critical function of NETs in this context. The observation that Arap3-/- mice developed more severe influenza suggests these findings are pertinent to pathological situations characterised by abundant formylated peptides. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Permeabilidade Capilar , Células Endoteliais , Camundongos Knockout , Neutrófilos , Animais , Neutrófilos/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Humanos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Camundongos , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Camundongos Endogâmicos C57BL , Armadilhas Extracelulares/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Pulmão/irrigação sanguínea
6.
Cell Mol Life Sci ; 81(1): 216, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740643

RESUMO

p50RhoGAP is a key protein that interacts with and downregulates the small GTPase RhoA. p50RhoGAP is a multifunctional protein containing the BNIP-2 and Cdc42GAP Homology (BCH) domain that facilitates protein-protein interactions and lipid binding and the GAP domain that regulates active RhoA population. We recently solved the structure of the BCH domain from yeast p50RhoGAP (YBCH) and showed that it maintains the adjacent GAP domain in an auto-inhibited state through the ß5 strand. Our previous WT YBCH structure shows that a unique kink at position 116 thought to be made by a proline residue between alpha helices α6 and α7 is essential for the formation of intertwined dimer from asymmetric monomers. Here we sought to establish the role and impact of this Pro116. However, the kink persists in the structure of P116A mutant YBCH domain, suggesting that the scaffold is not dictated by the proline residue at this position. We further identified Tyr124 (or Tyr188 in HBCH) as a conserved residue in the crucial ß5 strand. Extending to the human ortholog, when substituted to acidic residues, Tyr188D or Tyr188E, we observed an increase in RhoA binding and self-dimerization, indicative of a loss of inhibition of the GAP domain by the BCH domain. These results point to distinct roles and impact of the non-conserved and conserved amino acid positions in regulating the structural and functional complexity of the BCH domain.


Assuntos
Proteínas Ativadoras de GTPase , Prolina , Proteínas de Schizosaccharomyces pombe , Humanos , Sequência de Aminoácidos , Sequência Conservada , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Modelos Moleculares , Prolina/metabolismo , Prolina/química , Prolina/genética , Ligação Proteica , Domínios Proteicos , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/química , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Tirosina/metabolismo , Tirosina/química , Tirosina/genética
7.
Int J Mol Sci ; 25(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38791282

RESUMO

We previously found IQ motif containing GTPase activating protein (IQGAP1) to be consistently elevated in lung fibroblasts (LF) isolated from patients with scleroderma (systemic sclerosis, SSc)-associated interstitial lung disease (ILD) and reported that IQGAP1 contributed to SSc by regulating expression and organization of α-smooth muscle actin (SMA) in LF. The aim of this study was to compare the development of ILD in the presence and absence of IQGAP1. Pulmonary fibrosis was induced in IQGAP1 knockout (KO) and wild-type (WT) mice by a single-intratracheal instillation of bleomycin. Two and three weeks later, mice were euthanized and investigated. We observed that the IQGAP1 KO mouse was characterized by a reduced rate of actin polymerization with reduced accumulation of actin in the lung compared to the WT mouse. After exposure to bleomycin, the IQGAP1 KO mouse demonstrated decreased contractile activity of LF, reduced expression of SMA, TGFß, and collagen, and lowered overall fibrosis scores compared to the WT mouse. The numbers of inflammatory cells and expression of pro-inflammatory cytokines in lung tissue were not significantly different between IQGAP1 KO and WT mice. We conclude that IQGAP1 plays an important role in the development of lung fibrosis induced by bleomycin, and the absence of IQGAP1 reduces the contractile activity of lung fibroblast and bleomycin-induced pulmonary fibrosis. Thus, IQGAP1 may be a potential target for novel anti-fibrotic therapies for lung fibrosis.


Assuntos
Actinas , Bleomicina , Fibroblastos , Camundongos Knockout , Fibrose Pulmonar , Proteínas Ativadoras de ras GTPase , Animais , Bleomicina/efeitos adversos , Proteínas Ativadoras de ras GTPase/metabolismo , Proteínas Ativadoras de ras GTPase/genética , Actinas/metabolismo , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Fibrose Pulmonar/genética , Camundongos , Fibroblastos/metabolismo , Fibroblastos/patologia , Pulmão/patologia , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Polimerização , Modelos Animais de Doenças
8.
Biosci Rep ; 44(5)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808367

RESUMO

Platelets are small anucleate blood cells supporting vascular function. They circulate in a quiescent state monitoring the vasculature for injuries. Platelets adhere to injury sites and can be rapidly activated to secrete granules and to form platelet/platelet aggregates. These responses are controlled by signalling networks that include G proteins and their regulatory guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Recent proteomics studies have revealed the complete spectrum of G proteins, GEFs, and GAPs present in platelets. Some of these proteins are specific for platelets and very few have been characterised in detail. GEFs and GAPs play a major role in setting local levels of active GTP-bound G proteins in response to activating and inhibitory signals encountered by platelets. Thus, GEFs and GAPs are highly regulated themselves and appear to integrate G protein regulation with other cellular processes. This review focuses on GAPs of small G proteins of the Arf, Rab, Ras, and Rho families, as well as of heterotrimeric G proteins found in platelets.


Assuntos
Plaquetas , Proteínas Ativadoras de GTPase , Plaquetas/metabolismo , Humanos , Proteínas Ativadoras de GTPase/metabolismo , Animais , Proteínas de Ligação ao GTP/metabolismo , Transdução de Sinais , Fatores de Troca do Nucleotídeo Guanina/metabolismo
9.
Front Mol Neurosci ; 17: 1352731, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463630

RESUMO

The Ras family of small GTPases coordinates tissue development by modulating cell proliferation, cell-cell adhesion, and cellular morphology. Perturbations of any of these key steps alter nervous system development and are associated with neurological disorders. While the underlying causes are not known, genetic mutations in Ras and Rap GTPase signaling pathways have been identified in numerous neurodevelopmental disorders, including autism spectrum, neurofibromatosis, intellectual disability, epilepsy, and schizophrenia. Despite diverse clinical presentations, intersections between these two signaling pathways may provide a better understanding of how deviations in neurodevelopment give rise to neurological disorders. In this review, we focus on presynaptic and postsynaptic functions of Ras and Rap GTPases. We highlight various roles of these small GTPases during synapse formation and plasticity. Based on genomic analyses, we discuss how disease-related mutations in Ras and Rap signaling proteins may underlie human disorders. Finally, we discuss how recent observations have identified molecular interactions between these pathways and how these findings may provide insights into the mechanisms that underlie neurodevelopmental disorders.

10.
Mol Plant Pathol ; 25(3): e13448, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38502297

RESUMO

Ras GTPase-activating proteins (Ras GAPs) act as negative regulators for Ras proteins and are involved in various signalling processes that influence cellular functions. Here, the function of four Ras GAPs, UvGap1 to UvGap4, was identified and analysed in Ustilaginoidea virens, the causal agent of rice false smut disease. Disruption of UvGAP1 or UvGAP2 resulted in reduced mycelial growth and an increased percentage of larger or dumbbell-shaped conidia. Notably, the mutant ΔUvgap1 completely lost its pathogenicity. Compared to the wild-type strain, the mutants ΔUvgap1, ΔUvgap2 and ΔUvgap3 exhibited reduced tolerance to H2 O2 oxidative stress. In particular, the ΔUvgap1 mutant was barely able to grow on the H2 O2 plate, and UvGAP1 was found to influence the expression level of genes involved in reactive oxygen species synthesis and scavenging. The intracellular cAMP level in the ΔUvgap1 mutant was elevated, as UvGap1 plays an important role in maintaining the intracellular cAMP level by affecting the expression of phosphodiesterases, which are linked to cAMP degradation in U. virens. In a yeast two-hybrid assay, UvRas1 and UvRasGef (Ras guanyl nucleotide exchange factor) physically interacted with UvGap1. UvRas2 was identified as an interacting partner of UvGap1 through a bimolecular fluorescence complementation assay and affinity capture-mass spectrometry analysis. Taken together, these findings suggest that the UvGAP1-mediated Ras pathway is essential for the development and pathogenicity of U. virens.


Assuntos
Hypocreales , Oryza , Proteínas Ativadoras de GTPase/genética , Oryza/microbiologia , Proteínas Ativadoras de ras GTPase , Doenças das Plantas/microbiologia
11.
Cell Biosci ; 14(1): 13, 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38246997

RESUMO

BACKGROUND: Rasal1 is a Ras GTPase-activating protein which contains C2 domains necessary for dynamic membrane association following intracellular calcium elevation. Membrane-bound Rasal1 inactivates Ras signaling through its RasGAP activity, and through such mechanisms has been implicated in regulating various cellular functions in the context of tumors. Although highly expressed in the brain, the contribution of Rasal1 to neuronal development and function has yet to be explored. RESULTS: We examined the contributions of Rasal1 to neuronal development in primary culture of hippocampal neurons through modulation of Rasal1 expression using molecular tools. Fixed and live cell imaging demonstrate diffuse expression of Rasal1 throughout the cell soma, dendrites and axon which localizes to the neuronal plasma membrane in response to intracellular calcium fluctuation. Pull-down and co-immunoprecipitation demonstrate direct interaction of Rasal1 with PKC, tubulin, and CaMKII. Consequently, Rasal1 is found to stabilize microtubules, through post-translational modification of tubulin, and accordingly inhibit dendritic outgrowth and branching. Through imaging, molecular, and electrophysiological techniques Rasal1 is shown to promote NMDA-mediated synaptic activity and CaMKII phosphorylation. CONCLUSIONS: Rasal1 functions in two separate roles in neuronal development; calcium regulated neurite outgrowth and the promotion of NMDA receptor-mediated postsynaptic events which may be mediated both by interaction with direct binding partners or calcium-dependent regulation of down-stream pathways. Importantly, the outlined molecular mechanisms of Rasal1 may contribute notably to normal neuronal development and synapse formation.

12.
J Cell Biochem ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38226533

RESUMO

Small ubiquitin-like modifiers from the ATG8 family regulate autophagy initiation and progression in mammalian cells. Their interaction with LC3-interacting region (LIR) containing proteins promotes cargo sequestration, phagophore assembly, or even fusion between autophagosomes and lysosomes. Previously, we have shown that RabGAP proteins from the TBC family directly bind to LC3/GABARAP proteins. In the present study, we focus on the function of TBC1D2B. We show that TBC1D2B contains a functional canonical LIR motif and acts at an early stage of autophagy by binding to both LC3/GABARAP and ATG12 conjugation complexes. Subsequently, TBC1D2B is degraded by autophagy. TBC1D2B condensates into liquid droplets upon autophagy induction. Our study suggests that phase separation is an underlying mechanism of TBC1D2B-dependent autophagy induction.

13.
Adv Sci (Weinh) ; 11(7): e2305922, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38084438

RESUMO

Immune checkpoint inhibitors (ICIs) show promise as second-line treatment for advanced bladder cancer (BLCA); however, their responsiveness is limited by the immune evasion mechanisms in tumor cells. This study conduct a Cox regression analysis to screen mRNA-binding proteins and reveals an association between Ras GTPase-activating protein-binding protein 1 (G3BP1) and diminished effectiveness of ICI therapy in patients with advanced BLCA. Subsequent investigation demonstrates that G3BP1 enhances immune evasion in BLCA cells by downregulating major histocompatibility complex class I (MHC-I) through phosphoinositide 3-kinase (PI3K)/Akt signaling activation. Mechanistically, G3BP1 interacts with splicing factor synergistic lethal with U5 snRNA 7 (SLU7) to form a complex with poly(A)-binding protein cytoplasmic 1 and eukaryotic translation initiation factor 4 gamma 1. This complex stabilizes the closed-loop structure of the mRNAs of class IA PI3Ks and consequently facilitates their translation and stabilization, thereby activating PI3K/Akt signaling to downregulate MHC-I. Consistently, targeting G3BP1 with epigallocatechin gallate (EGCG) impedes immune evasion and sensitizes BLCA cells to anti-programmed cell death (PD)-1 antibodies in mice. Thus, G3BP1 and SLU7 collaboratively contribute to immune evasion in BLCA, indicating that EGCG is a precision therapeutic agent to enhance the effectiveness of anti-PD-1 therapy.


Assuntos
DNA Helicases , Neoplasias da Bexiga Urinária , Humanos , Animais , Camundongos , DNA Helicases/genética , DNA Helicases/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Evasão da Resposta Imune , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Transporte/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Fatores de Processamento de RNA
14.
Biol Psychiatry ; 95(9): 896-908, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37913973

RESUMO

BACKGROUND: Circular RNAs are highly enriched in the synapses of the mammalian brain and play important roles in neurological function by acting as molecular sponges of microRNAs. circAnk3 is derived from the 11th intron of the ankyrin-3 gene, Ank3, a strong genetic risk factor for neuropsychiatric disorders; however, the function of circAnk3 remains elusive. In this study, we investigated the function of circAnk3 and its downstream regulatory network for target genes in the hippocampus of mice. METHODS: The DNA sequence from which circAnk3 is generated was modified using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9) technology, and neurobehavioral tests (anxiety and depression-like behaviors, social behaviors) were performed in circAnk3+/- mice. A series of molecular and biochemical assays were used to investigate the function of circAnk3 as a microRNA sponge and its downstream regulatory network for target genes. RESULTS: circAnk3+/- mice exhibited both anxiety-like behaviors and social deficits. circAnk3 was predominantly located in the cytoplasm of neuronal cells and functioned as a miR-7080-3p sponge to regulate the expression of Iqgap1. Inhibition of miR-7080-3p or restoration of Iqgap1 in the hippocampus ameliorated the behavioral deficits of circAnk3+/- mice. Furthermore, circAnk3 deficiency decreased the expression of the NMDA receptor subunit GluN2a and impaired the structural plasticity of dendritic synapses in the hippocampus. CONCLUSIONS: Our results reveal an important role of the circAnk3/miR-7080-3p/IQGAP1 axis in maintaining the structural plasticity of hippocampal synapses. circAnk3 might offer new insights into the involvement of circular RNAs in neuropsychiatric disorders.


Assuntos
MicroRNAs , RNA Circular , Camundongos , Animais , RNA Circular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Hipocampo/metabolismo , Encéfalo/metabolismo , Ansiedade/genética , Mamíferos/genética , Mamíferos/metabolismo
15.
Int J Biol Macromol ; 256(Pt 2): 128498, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042315

RESUMO

Rab GTPase-activating proteins (RabGAPs), serving as crucial signaling switches, play essential roles in several physiological processes related to plant growth and development. However, despite their importance, information regarding the RabGAP gene family and their biological functions remains unknown in the Rosaceae. In this study, we identified a total of 127 RabGAP genes in seven Rosaceae species, which were divided into five subfamilies. Our findings indicate that whole genome duplication (WGD) events or dispersed duplication events largely contributed to the expansion of RabGAP family members within Rosaceae species. Through tissue-specific expression analyses, we revealed that the PbrRabGAP genes exhibited distinct expression patterns in different pear tissues. Furthermore, by examining the expression pattern during pollen development and employing an antisense oligonucleotide approach, we demonstrated that PbrRabGAP10, located in the cytoplasm, mediates the imbalance of cellulose distribution, thus regulating pollen tube elongation. In conclusion, the present study offers an overview of the RabGAP family in Rosaceae genomes and serves as the basis for further functional studies.


Assuntos
Pyrus , Rosaceae , Celulose , Evolução Molecular , Genoma de Planta/genética , Genômica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubo Polínico/genética , Tubo Polínico/metabolismo , Pyrus/genética , Pyrus/metabolismo , Rosaceae/genética
16.
J Biol Chem ; 300(1): 105582, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141762

RESUMO

The intracellular parasite, Toxoplasma gondii, has developed sophisticated molecular strategies to subvert host processes and promote growth and survival. During infection, T. gondii replicates in a parasitophorous vacuole (PV) and modulates host functions through a network of secreted proteins. Of these, Mitochondrial Association Factor 1b (MAF1b) recruits host mitochondria to the PV, a process that confers an in vivo growth advantage, though the precise mechanisms remain enigmatic. To address this knowledge gap, we mapped the MAF1b interactome in human fibroblasts using a commercial Yeast-2-hybrid (Y2H) screen, which revealed several previously unidentified binding partners including the GAP domain of Ral GTPase Accelerating Protein α1 (RalGAPα1(GAP)). Recombinantly produced MAF1b and RalGAPα1(GAP) formed as a stable binary complex as shown by size exclusion chromatography with a Kd of 334 nM as measured by isothermal titration calorimetry (ITC). Notably, no binding was detected between RalGAPα1(GAP) and the structurally conserved MAF1b homolog, MAF1a, which does not recruit host mitochondria. Next, we used hydrogen deuterium exchange mass spectrometry (HDX-MS) to map the RalGAPα1(GAP)-MAF1b interface, which led to identification of the "GAP-binding loop" on MAF1b that was confirmed by mutagenesis and ITC to be necessary for complex formation. A high-confidence Alphafold model predicts the GAP-binding loop to lie at the RalGAPα1(GAP)-MAF1b interface further supporting the HDX-MS data. Mechanistic implications of a RalGAPα1(GAP)-MAF1b complex are discussed in the context of T. gondii infection and indicates that MAF1b may have evolved multiple independent functions to increase T. gondii fitness.


Assuntos
Proteínas Ativadoras de GTPase , Mitocôndrias , Mapas de Interação de Proteínas , Proteínas de Protozoários , Toxoplasma , Humanos , Sítios de Ligação , Calorimetria , Cromatografia em Gel , Fibroblastos/metabolismo , Fibroblastos/parasitologia , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Espectrometria de Massa com Troca Hidrogênio-Deutério , Mitocôndrias/metabolismo , Mitocôndrias/parasitologia , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/química , Toxoplasma/genética , Toxoplasma/metabolismo , Técnicas do Sistema de Duplo-Híbrido
17.
JACC Basic Transl Sci ; 8(10): 1357-1378, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38094680

RESUMO

A specific genetic variant associated with atrial fibrillation risk, rs17171731, was identified as a regulatory variant responsible for controlling FAM13B expression. The atrial fibrillation risk allele decreases FAM13B expression, whose knockdown alters the expression of many genes in stem cell-derived cardiomyocytes, including SCN2B, and led to pro-arrhythmogenic changes in the late sodium current and Ca2+ cycling. Fam13b knockout mice had increased P-wave and QT interval duration and were more susceptible to pacing-induced arrhythmias vs control mice. FAM13B expression, its regulation, and downstream effects are potential targets for investigation of patient-specific therapeutics.

18.
Neurobiol Dis ; 188: 106344, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37926169

RESUMO

Epilepsy, a common complication of diffuse low-grade gliomas (DLGGs; diffuse oligodendroglioma and astrocytoma collectively), severely compromises the quality of life of patients. DLGG epileptogenicity may primarily be generated by interactions between the tumor and the neocortex. Neuronal uptake of dysfunctional mitochondria from the extracellular environment can lead to abnormal neuronal discharge. Mitochondrial dysfunction is frequently observed in gliomas that can transmigrate across the plasma membranes. Here, we examined the role of the Rho GTPase-activating protein 44 (RICH2) in mitochondrial dynamics and DLGG-related epilepsy. We investigated the association between mitochondrial and RICH2 expression in human DLGG tissues using immunohistochemistry. We examined the association between RICH2 and epilepsy in nude mouse glioma models by electrophysiology. The effect of RICH2 on mitochondrial morphology and calcium motility were assessed by single cell fluorescence microscopy. Quantitative RT-PCR (qRT-PCR) and Western blot analysis were performed to characterize RICH2 induced expression changes in the genes related to mitochondrial dynamics, mitogenesis and mitochondrial function. We found that RICH2 expression was higher in oligodendroglioma than in astrocytoma and was correlated with better prognosis and higher epilepsy rate in patients. The expression of mitochondria may be associated with clinical DLGG-related epilepsy and reduced by RICH2 overexpression. And RICH2 could promote DLGG-related epilepsy in tumorigenic nude mice. RICH2 overexpression decreased calcium flow and the mitochondria released from glioma cells (SW1088 and U251) into the extracellular environment, potentially via downregulation of MFN-1/MFN-2 levels which suggests reduced mitochondrial fusion. In addition, we observed decreased mitochondrial trafficking into neurons (released from glioma cells and trafficked into neurons), which could explain the higher incidence of DLGG-related epilepsy due to reduced neuroprotection. Furthermore, RICH2 downregulated MAPK/ERK/HIF-1 pathway. In conclusion, these results suggest that RICH2 could promote epilepsy by (i) inhibiting mitochondrial fusion via MFN downregulation and Drp-1 upregulation; (ii) altering the MAPK/ERK/Hif-1 signaling axis. RICH2 may be a potential target in the treatment of DLGG-related epilepsy.


Assuntos
Astrocitoma , Glioma , Oligodendroglioma , Animais , Camundongos , Humanos , Cálcio , Camundongos Nus , Qualidade de Vida , Mitocôndrias
19.
Mol Clin Oncol ; 19(6): 100, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38022849

RESUMO

Rho GTPASE-activating protein 23 (ARHGAP23) is known to activate RHO-GTPase and has an important role in the infiltration and metastasis of tumors. Although previous studies suggested its involvement in certain human cancers, its role in pan-cancer remains unclear. In the present study, the expression, prognosis and potential functions of ARHGAP23 in pan-cancer were evaluated through various public databases such as Human Protein Atlas, Tumor IMmune Estimation Resource, Gene Set Co-Expression Analysis, Gene Expression Profiling Interactive Analysis, cBio Cancer Genomics Portal, Tumor-Immune System Interactions Database (TISIDB) and others. Through these data combined with a variety of biological information analysis methods, the potential role of ARHGAP23 as a carcinogenic gene was explored in the present study. The present analysis revealed that ARHGAP23 expressed abnormalities in >10 tumors, which was associated with differences in prognosis. Furthermore, the findings of the present study indicated that ARHGAP23 is associated with DNA methylation and multiple immune cell infiltrations in these tumors. ARHGAP23 expression was related to clinical prognosis, DNA methylation and immune infiltration. These findings support the potential of ARHGAP23 as a prognostic biomarker and a molecular target for cancer treatment.

20.
Front Microbiol ; 14: 1235283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779704

RESUMO

The p21-GTPase-activated protein kinases (PAKs) participate in signal transduction downstream of Rho GTPases, which are regulated by Rho GTPase-activating proteins (Rho-GAP). Herein, we characterized two orthologous Rho-GAPs (AoRga1 and AoRga2) and two PAKs (AoPak1 and AoPak2) through bioinformatics analysis and reverse genetics in Arthrobotrys oligospora, a typical nematode-trapping (NT) fungus. The transcription analyses performed at different development stages suggested that Aopaks and Aorga1 play a crucial role during sporulation and trap formation, respectively. In addition, we successfully deleted Aopak1 and Aorga1 via the homologous recombination method. The disruption of Aopak1 and Aorga1 caused a remarkable reduction in spore yield and the number of nuclei per cell, but did not affect mycelial growth. In ∆Aopak1 mutants, the trap number was decreased at 48 h after the introduction of nematodes, but nematode predatory efficiency was not affected because the extracellular proteolytic activity was increased. On the contrary, the number of traps in ∆Aorga1 mutants was significantly increased at 36 h and 48 h. In addition, Aopak1 and Aorga1 had different effects on the sensitivity to cell-wall-disturbing reagent and oxidant. A yeast two-hybrid assay revealed that AoPak1 and AoRga1 both interacted with AoRac, and AoPak1 also interacted with AoCdc42. Furthermore, the Aopaks were up-regulated in ∆Aorga1 mutants, and Aorga1 was down-regulated in ∆Aopak1 mutants. These results reveal that AoRga1 indirectly regulated AoPAKs by regulating small GTPases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA