RESUMO
High activation of the angiotensin-converting enzyme (ACE)/(angiotensin-II type 1 receptor) AT1r axis is closely linked to pro-inflammatory effects and liver damage. The aim of this study was to evaluate the effects of the short-term administration of GW501516 on pro-inflammatory markers in white adipose tissue (WAT) and hepatic stellate cells (HSCs), lipogenesis and insulin resistance in the liver upon high-fructose diet (HFru)-induced ACE/AT1r axis activation. Three-month-old male C57Bl/6 mice were fed a standard chow diet or a HFru for 8 weeks. Then, the animals were separated randomly into four groups and treated with GW501516 for 3 weeks. Morphological variables, systolic blood pressure, and plasma determinations were analyzed. In the WAT, the ACE/AT1r axis and pro-inflammatory cytokines were assessed, and in the liver, the ACE/AT1r axis, HSCs, fatty acid oxidation, insulin resistance, and AMPK activation were evaluated. The HFru group displayed a high activation of the ACE/AT1r axis in both the WAT and liver; consequently, we detected inflammation and liver damage. Although GW501516 abolished the increased activation of the ACE/AT1r axis in the WAT, no differences were found in the liver. GW501516 blunted the inflammatory state in the WAT and reduced HSC activation in the liver. In addition, GW501516 alleviates damage in the liver by increasing the expression of the genes that regulate beta-oxidation and decreasing the expression of the genes and proteins that are involved in lipogenesis and gluconeogenesis. We conclude that GW501516 may serve as a therapeutic option for the treatment of a highly activated ACE/AT1r axis in WAT and liver.
Assuntos
Tecido Adiposo Branco/efeitos dos fármacos , Frutose/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Inflamação/tratamento farmacológico , Resistência à Insulina , Lipogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , PPAR delta/agonistas , Sistema Renina-Angiotensina/efeitos dos fármacos , Tiazóis/farmacologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tiazóis/administração & dosagemRESUMO
Peroxisome proliferator activated receptors (PPARs) are ligand activated transcription factors with crucial functions in lipid homeostasis, anti-inflammatory processes and placental development. Maternal diabetes induces a pro-inflammatory environment and alters placental development. We investigated whether PPARs regulate lipid metabolism and nitric oxide (NO) production in placental explants from healthy and type 2 diabetic (DM2) patients. We found decreased PPARα and PPARγ concentrations, no changes in PPARδ concentrations, and increased lipids, lipoperoxides and NO production in placentas from DM2 patients. PPARα agonists reduced placental concentrations of triglycerides and both PPARα and PPARδ agonists reduced concentrations of phospholipids, cholesteryl esters and cholesterol. PPARγ agonists increased lipid concentrations in placentas from DM2 patients and more markedly in placentas from healthy patients. Endogenous ligands for the three PPAR isotypes reduced NO production and lipoperoxidation in placentas from DM2 patients. We conclude that PPARs play a role in placental NO and lipid homeostasis and can regulate NO production, lipid concentrations and lipoperoxidation in placentas from DM2 patients.