Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 892
Filtrar
1.
Cureus ; 16(4): e58326, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38752093

RESUMO

Succinic semialdehyde dehydrogenase (SSADH) deficiency is a rare genetic condition with approximately 450 patients reported worldwide, inherited in an autosomal recessive manner affecting gamma-aminobutyric acid (GABA) metabolism, characterized by varied clinical features. We report a fetal case of a four-month-old female infant presenting with severe, progressive seizures leading to fatality. Despite aggressive medical interventions, including multiple antiepileptic medications and a ketogenic diet, the patient's condition deteriorated rapidly. Genetic testing revealed a homozygous mutation in the aldehyde dehydrogenase 5 family member A1 (ALDH5A1) gene. This present case emphasizes the difficulties in controlling SSADH deficiency and emphasizes the necessity for additional studies on successful therapy approaches.

2.
Brain Res ; : 148995, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735427

RESUMO

Although the focal brain cooling technique is widely used to examine brain function, the effects of cortical temperature at various levels on sensory information processing and neural mechanisms remain underexplored. To elucidate the mechanisms of temperature modulation in somatosensory processing, this study aimed to examine how P1 and N1 deflections of somatosensory evoked potentials (SEPs) depend on cortical temperature and how excitatory and inhibitory inputs contribute to this temperature dependency. SEPs were generated through electrical stimulation of the contralateral forepaw in anesthetized rats. The SEPs were recorded while cortical temperatures were altered between 17-38 °C either without any antagonists, with a gamma-aminobutyric acid type A (GABAA) receptor antagonist (gabazine), with aminomethylphosphonic acid (AMPA) receptor antagonist (NBQX), or with N-Methyl-D-aspartic acid (NMDA) receptor antagonist ([R]-CPP). The effects of different gabazine concentrations (0, 1, and 10 µM) were examined in the 35-38 °C range. The P1/N1 amplitudes and their peak-to-peak differences plotted against cortical temperature showed an inverted U relationship with a maximum at approximately 27.5 °C when no antagonists were administered. The negative correlation between these amplitudes and temperatures of ≥ 27.5 °C plateaued after gabazine administration, which occurred progressively as the gabazine concentration increased. In contrast, the correlation remained negative after the administration of NBQX and (R)-CPP. These results suggest that GABAergic inhibitory inputs contribute to the negative correlation between SEP amplitude and cortical temperature around the physiological cortical temperature.

3.
Int J Mol Sci ; 25(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38791268

RESUMO

Floods induce hypoxic stress and reduce wheat growth. On the other hand, rice is a semi-aquatic plant and usually grows even when partially submerged. To clarify the dynamic differences in the cellular mechanism between rice and wheat under flooding stress, morphological and biochemical analyses were performed. Although the growth of wheat in the early stage was significantly suppressed due to flooding stress, rice was hardly affected. Amino-acid analysis revealed significant changes in amino acids involved in the gamma-aminobutyric acid (GABA) shunt and anaerobic/aerobic metabolism. Flood stress significantly increased the contents of GABA and glutamate in wheat compared with rice, though the abundances of glutamate decarboxylase and succinyl semialdehyde dehydrogenase did not change. The abundance of alcohol dehydrogenase and pyruvate carboxylase increased in wheat and rice, respectively. The contents of aspartic acid and pyruvic acid increased in rice root but remained unchanged in wheat; however, the abundance of aspartate aminotransferase increased in wheat root. These results suggest that flooding stress significantly inhibits wheat growth through upregulating amino-acid metabolism and increasing the alcohol-fermentation system compared to rice. When plant growth is inhibited by flooding stress and the aerobic-metabolic system is activated, GABA content increases.


Assuntos
Aminoácidos , Inundações , Oryza , Estresse Fisiológico , Triticum , Ácido gama-Aminobutírico , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Aminoácidos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo
4.
Int J Mol Sci ; 25(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38791562

RESUMO

We compared the effects of two different high-caloric diets administered to 4-week-old rats for 12 weeks: a diet rich in sugar (30% sucrose) and a cafeteria diet rich in sugar and high-fat foods. We focused on the hippocampus, particularly on the gamma-aminobutyric acid (GABA)ergic system, including the Ca2+-binding proteins parvalbumin (PV), calretinin (CR), calbindin (CB), and the neuropeptides somatostatin (SST) and neuropeptide Y (NPY). We also analyzed the density of cholinergic varicosities, brain-derived neurotrophic factor (BDNF), reelin (RELN), and cyclin-dependent kinase-5 (CDK-5) mRNA levels, and glial fibrillary acidic protein (GFAP) expression. The cafeteria diet reduced PV-positive neurons in the granular layer, hilus, and CA1, as well as NPY-positive neurons in the hilus, without altering other GABAergic populations or overall GABA levels. The high-sugar diet induced a decrease in the number of PV-positive cells in CA3 and an increase in CB-positive cells in the hilus and CA1. No alterations were observed in the cholinergic varicosities. The cafeteria diet also reduced the relative mRNA expression of RELN without significant changes in BDNF and CDK5 levels. The cafeteria diet increased the number but reduced the length of the astrocyte processes. These data highlight the significance of determining the mechanisms mediating the observed effects of these diets and imply that the cognitive impairments previously found might be related to both the neuroinflammation process and the reduction in PV, NPY, and RELN expression in the hippocampal formation.


Assuntos
Astrócitos , Quinase 5 Dependente de Ciclina , Hipocampo , Neurogênese , Proteína Reelina , Animais , Astrócitos/metabolismo , Ratos , Proteína Reelina/metabolismo , Masculino , Hipocampo/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Quinase 5 Dependente de Ciclina/genética , Neurônios GABAérgicos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Neuropeptídeo Y/metabolismo , Neuropeptídeo Y/genética , Ratos Wistar , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Parvalbuminas/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-38685761

RESUMO

BACKGROUND: Alzheimer's disease is a neurological dysfunction of the brain caused by neurodegeneration and oxidative stress. Some viruses, such as herpes viruses, HSV-1, and HSV-2, are causative agents of Alzheimer's disease and result in ß-amyloid peptide and tau protein accumulation in the brain. Some antiviral drugs, such as valacyclovir, acyclovir, and foscarnet, reduce amyloid-beta and P-tau. Pavetta indica leaves are also reported for their antiviral properties. The current study aimed to find out the significance of using Pavetta indica methanolic extract and acyclovir against Alzheimer's disease induced by streptozotocin. METHODS: Wistar rats received acyclovir and Pavetta indica methanolic extract orally at different dose ranges (50, 150, 450 mg/kg) and (125, 250, 500 mg/kg), respectively. The standard therapy, Rivastigmine (2 mg/kg), was given orally. RESULTS: Intracerebroventricular-streptozotocin produced significant alternations in behavioral assessments, including locomotor activity test, Morris water maze test, and elevated plus maze test. Moreover, intracerebroventricular-streptozotocin ameliorated the antioxidant defense activity by decreasing levels of catalase, superoxide dismutase, and reduced glutathione while enhancing the oxidative stress markers, including malondialdehyde, and total nitrite levels. Finally, the main findings showed that intracerebroventricular-streptozotocin significantly increased the inflammatory marker, tumor necrosis factor-α, and disturbed neurotransmitter mediators, including levels of acetylcholinesterase, glutamate, and γ-amino butyric acid. CONCLUSION: In a dose-dependent manner, acyclovir and Pavetta indica methanolic extract treatments abrogated the streptozotocin-induced behavioral and neurological abnormalities in rats. The potential therapeutic effects of PIME and acyclovir administration in intracerebroventricular-streptozotocin-treated rats may be attributed to its potential antiviral, antioxidant, and anti-inflammatory effects. The current study suggests that Pavetta indica methanolic extract and acyclovir are promising therapeutic targets against Alzheimer's disease.

6.
Foods ; 13(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38672920

RESUMO

The aim of this study was to evaluate and compare the characteristics of non-treated and fermented [via submerged (SMF) and solid-state (SSF) fermentation using Pediococcus acidilactici] lentils (Lens culinaris) grown either in pure stands (L) or relay intercropped with winter rye (LR). It was observed that the lentils were suitable substrate for lacto-fermentation. Most of the free amino acid concentrations increased in lentils after both fermentations. The highest concentration of γ-aminobutyric acid was found in SSF LR samples. However, fermentation led to higher biogenic amines (BA) content in lentils. The most abundant fatty acid in lentils was C18:2. SSF lentils showed more complex volatile compound (VC) profiles (with between nine and seventeen new VCs formed), whereas, in SMF samples, between two and five newly VCs were formed. When comparing lentil grown types, L contained significantly higher concentrations of Na, K, Ca, P, Mn, and Se, while LR contained significantly higher concentrations of Fe and Ni. To sum up, fermentation with lactic acid bacteria (LAB) contributed to the improved biological value of lentils; still, the quantity of BA needs to be considered. Further investigations into the P. acidilactici metabolism of certain compounds (such as phenolic and antinutritional compounds) in lentils during fermentation ought to be carried out.

7.
bioRxiv ; 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38586043

RESUMO

Cochlear outer hair cells (OHCs) are electromotile and are implicated in mechanisms of amplification of responses to sound that enhance sound sensitivity and frequency tuning. They send information to the brain through glutamatergic synapses onto a small subpopulation of neurons of the ascending auditory nerve, the type II spiral ganglion neurons (SGNs). The OHC synapses onto type II SGNs are sparse and weak, suggesting that type II SGNs respond primarily to loud and possibly damaging levels of sound. OHCs also receive innervation from the brain through the medial olivocochlear (MOC) efferent neurons. MOC neurons are cholinergic yet exert an inhibitory effect on auditory function as they are coupled to alpha9/alpha10 nicotinic acetylcholine receptors (nAChRs) on OHCs, which leads to calcium influx that gates SK potassium channels. The net hyperpolarization exerted by this efferent synapse reduces OHC activity-evoked electromotility and is implicated in cochlear gain control, protection against acoustic trauma, and attention. MOC neurons also label for markers of gamma-aminobutyric acid (GABA) and GABA synthesis. GABAB autoreceptor (GABABR) activation by GABA released from MOC terminals has been demonstrated to reduce ACh release, confirming important negative feedback roles for GABA. However, the full complement of GABAergic activity in the cochlea is not currently understood, including the mechanisms that regulate GABA release from MOC axon terminals, whether GABA diffuses from MOC axon terminals to other postsynaptic cells, and the location and function of GABAA receptors (GABAARs). Previous electron microscopy studies suggest that MOC neurons form contacts onto several other cell types in the cochlea, but whether these contacts form functional synapses, and what neurotransmitters are employed, are unknown. Here we use immunohistochemistry, optical neurotransmitter imaging and patch-clamp electrophysiology from hair cells, afferent dendrites, and efferent axons to demonstrate that in addition to presynaptic GABABR autoreceptor activation, MOC efferent axon terminals release GABA onto type II SGN afferent dendrites with postsynaptic activity mediated by GABAARs. This synapse may have multiple roles including developmental regulation of cochlear innervation, fine tuning of OHC activity, or providing feedback to the brain about MOC and OHC activity.

8.
J Nanobiotechnology ; 22(1): 190, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637808

RESUMO

Acute lung injury (ALI) is generally caused by severe respiratory infection and characterized by overexuberant inflammatory responses and inefficient pathogens-containing, the two major processes wherein alveolar macrophages (AMs) play a central role. Dysfunctional mitochondria have been linked with distorted macrophages and hence lung disorders, but few treatments are currently available to correct these defects. Plant-derive nanovesicles have gained significant attention because of their therapeutic potential, but the targeting cells and the underlying mechanism remain elusive. We herein prepared the nanovesicles from Artemisia annua, a well-known medicinal plant with multiple attributes involving anti-inflammatory, anti-infection, and metabolism-regulating properties. By applying three mice models of acute lung injury caused by bacterial endotoxin, influenza A virus (IAV) and SARS-CoV-2 pseudovirus respectively, we showed that Artemisia-derived nanovesicles (ADNVs) substantially alleviated lung immunopathology and raised the survival rate of challenged mice. Macrophage depletion and adoptive transfer studies confirmed the requirement of AMs for ADNVs effects. We identified that gamma-aminobutyric acid (GABA) enclosed in the vesicles is a major molecular effector mediating the regulatory roles of ADNVs. Specifically, GABA acts on macrophages through GABA receptors, promoting mitochondrial gene programming and bioenergy generation, reducing oxidative stress and inflammatory signals, thereby enhancing the adaptability of AMs to inflammation resolution. Collectively, this study identifies a promising nanotherapeutics for alleviating lung pathology, and elucidates a mechanism whereby the canonical neurotransmitter modifies AMs and mitochondria to resume tissue homeostasis, which may have broader implications for treating critical pulmonary diseases such as COVID-19.


Assuntos
Lesão Pulmonar Aguda , Plantas Medicinais , Pneumonia Viral , Pneumonia , Camundongos , Animais , Macrófagos Alveolares/metabolismo , Pulmão/metabolismo , Pneumonia Viral/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Mitocôndrias/patologia , Ácido gama-Aminobutírico/metabolismo , Pneumonia/metabolismo
9.
Tzu Chi Med J ; 36(2): 103-109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645778

RESUMO

Sleep is an essential activity for the survival of mammals. Good sleep quality helps promote the performance of daily functions. In contrast, insufficient sleep reduces the efficiency of daily activities, causes various chronic diseases like Alzheimer's disease, and increases the risk of having accidents. The GABAergic system is the primary inhibitory neurotransmitter system in the central nervous system. It transits the gamma-aminobutyric acid (GABA) neurotransmitter via GABAA and GABAB receptors to counterbalance excitatory neurotransmitters, such as glutamate, noradrenaline, serotonin, acetylcholine, orexin, and dopamine, which release and increase arousal activities during sleep. Several studies emphasized that dysfunction of the GABAergic system is related to insomnia, the most prevalent sleep-related disorder. The GABAergic system comprises the GABA neurotransmitter, GABA receptors, GABA synthesis, and degradation. Many studies have demonstrated that GABA levels correlate with sleep quality, suggesting that modulating the GABAergic system may be a promising therapeutic approach for insomnia. In this article, we highlight the significance of sleep, the classification and pathology of insomnia, and the impact of the GABAergic system changes on sleep. In addition, we also review the medications that target the GABAergic systems for insomnia, including benzodiazepines (BZDs), non-BZDs, barbiturates, GABA supplements, and Chinese herbal medicines.

10.
Bioresour Bioprocess ; 11(1): 32, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38647854

RESUMO

GABA (Gamma-aminobutyric acid), a crucial neurotransmitter in the central nervous system, has gained significant attention in recent years due to its extensive benefits for human health. The review focused on recent advances in the biosynthesis and production of GABA. To begin with, the investigation evaluates GABA-producing strains and metabolic pathways, focusing on microbial sources such as Lactic Acid Bacteria, Escherichia coli, and Corynebacterium glutamicum. The metabolic pathways of GABA are elaborated upon, including the GABA shunt and critical enzymes involved in its synthesis. Next, strategies to enhance microbial GABA production are discussed, including optimization of fermentation factors, different fermentation methods such as co-culture strategy and two-step fermentation, and modification of the GABA metabolic pathway. The review also explores methods for determining glutamate (Glu) and GABA levels, emphasizing the importance of accurate quantification. Furthermore, a comprehensive market analysis and prospects are provided, highlighting current trends, potential applications, and challenges in the GABA industry. Overall, this review serves as a valuable resource for researchers and industrialists working on GABA advancements, focusing on its efficient synthesis processes and various applications, and providing novel ideas and approaches to improve GABA yield and quality.

11.
Phytother Res ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38595123

RESUMO

Insomnia affects millions of people worldwide, prompting considerable interest in herbal remedies for its treatment. This review aims to assess the therapeutic potential of such remedies for insomnia by analyzing current scientific evidence. The analysis identified several herbs, including Rosmarinus officinalis, Crocus sativus, Rosa damascena, Curcuma longa, Valeriana officinalis, Lactuca sativa, Portulaca oleracea, Citrus aurantium, Lippia citriodora, and Melissa officinalis, which show promise in improving overall sleep time, reducing sleep latency, and enhancing sleep quality. These plants act on the central nervous system, particularly the serotonergic and gamma-aminobutyric acid (GABA)ergic systems, promoting sedation and relaxation. However, further research is necessary to fully understand their mechanisms of action, optimal dosages, and treatment protocols. Combining herbal medicines with conventional treatments may offer an effective natural alternative for those seeking medication. Nevertheless, individuals should consult their healthcare provider before using herbal remedies for insomnia. While this review provides evidence supporting their use, additional high-quality studies are needed to firmly establish their clinical efficacy.

12.
Brain Behav Immun Health ; 38: 100761, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38586282

RESUMO

Inflammation, reduced gamma-aminobutyric acidergic (GABAergic) function and altered neuroplasticity are co-occurring pathophysiologies in major depressive disorder (MDD). However, the link between these biological changes remains unclear. We hypothesized that inflammation induces deficits in GABAergic interneuron markers and that this effect is mediated by brain-derived neurotrophic factor (BDNF). We report here that systemic inflammation induced by intraperitoneal injection of lipopolysaccharide (LPS) (0.125, 0.25, 0.5, 1, 2 mg/kg) in the first cohort of C57BL/6 mice (n = 72; 10-11 weeks; 50% female) resulted in increased interleukin 1-beta and interleukin-6 in prefrontal cortex (PFC) and hippocampus (HPC), as measured using enzyme-linked immunosorbent assay (ELISA). Quantitative real-time polymerase reaction (qPCR) was used to explore the effect of LPS on the expression of GABAergic interneuron markers. In the PFC of the second cohort (n = 39; 10-11 weeks; 50% female), 2 mg/kg of LPS decreased the expression of somatostatin (Sst) (p = 0.0014), parvalbumin (Pv) (p = 0.0257), cortistatin (Cort) (p = 0.0003), neuropeptide Y (Npy) (p = 0.0033) and cholecystokinin (Cck) (p = 0.0041), and did not affect corticotropin-releasing hormone (Crh) and vasoactive intestinal peptide (Vip) expression. In the HPC, 2 mg/kg of LPS decreased the expression of Sst (p = 0.0543), Cort (p = 0.0011), Npy (p = 0.0001), and Cck (p < 0.0001), and did not affect Crh, Pv, and Vip expression. LPS decreased the expression of Bdnf in the PFC (p < 0.0001) and HPC (p = 0.0003), which significantly correlated with affected markers (Sst, Pv, Cort, Cck, and Npy). Collectively, these results suggest that inflammation may causally contribute to cortical cell microcircuit GABAergic deficits observed in MDD.

13.
Heliyon ; 10(7): e28401, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586354

RESUMO

Background: Asthma, a principally T helper 2 (Th2) cell mediated immunological disease, is categorized into Th2-high and Th2-low endotypes. The influence of these endotypes on clinical characteristics and treatment responsiveness in asthma is yet to be completely understood. This study delves into the underlying molecular mechanisms of Th2 endotypes on asthma. Methods: Transcriptomics data of airway epithelial and corresponding clinical information were sourced from the GEO. The co-expression modules were established by WGCNA. Cytoscape was applied to construct PPI networks, and hub genes were determined via the Cytohubba plugin. Additionally, a functional enrichment analysis was conducted on the co-expressed genes from the relevant modules. The relative abundances levels of 22 different types of immune cells in asthma patients were evaluated by CIBERSORT algorithm. Results: There were 471 genes in the pink module significantly correlated with Th2 endotype. Overall, 151 DEGs were identified in the various Th2 endotypes, and 66 were obtained through intersection with the pink module. In the PPI network, the ten most important genes that regulate Th2 endotypes were selected as hub genes. In Th2-high endotype asthma, the hub genes were significantly related to γ-aminobutyric acid (GABA) pathways, indicating that hub genes can mainly regulate Th2-high endotype asthma through GABAergic system. Conclusions: The severity of asthma is influenced by different Th2 endotypes. GABAergic related hub genes may provide innovative insights for the treatment of Th2-high asthma.

14.
Folia Histochem Cytobiol ; 62(1): 37-49, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38563048

RESUMO

INTRODUCTION: Nitric oxide (NO) is present in various cell types in the central nervous system and plays a crucial role in the control of various cellular functions. The diurnal Mongolian gerbil is a member of the rodent family Muridae that exhibits unique physiological, anatomical, and behavioral differences from the nocturnal rat and mouse, which render it a useful model for studying the visual system. The purpose of this study was to confirm the distribution and morphology of neurons that contain nitric oxide synthase (NOS) and their pattern of co-expressing NOS with neuropeptide Y (NPY), somatostatin (SST), and gamma-aminobutyric acid (GABA) in the visual cortex of Mongolian gerbils. MATERIALS AND METHODS: Mongolian gerbils were used in the study. We confirmed the localization of NOS in the visual cortex of Mongolian gerbils using horseradish peroxidase immunocytochemistry, fluorescent immunocytochemistry, and conventional confocal microscopy. RESULTS: NOS-immunoreactive (IR) neurons were present in all layers of the visual cortex of the Mongolian gerbil, with the exception of layer I, with the highest density observed in layer V (50.00%). The predominant type of NOS-IR neurons was multipolar round/oval cells (60.96%). Two-color immunofluorescence revealed that 100% NOS-IR neurons were co-labeled with NPY and SST and 34.55% were co-labeled with GABA. CONCLUSIONS: Our findings of the laminar distribution and morphological characteristics of NOS-IR neurons, as well as the colocalization patterns of NOS-IR neurons with NPY, SST, and GABA, indicated the presence of species-specific differences, suggesting the functional diversity of NO in the visual cortex. This study provides valuable data on the anatomical organization of NOS-IR neurons and, consequently, a better understanding of the functional aspects of NO and species diversity.


Assuntos
Neurônios , Córtex Visual , Ratos , Camundongos , Animais , Gerbillinae/metabolismo , Neurônios/metabolismo , Óxido Nítrico Sintase/metabolismo , Ácido gama-Aminobutírico/metabolismo
15.
World J Microbiol Biotechnol ; 40(5): 159, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607454

RESUMO

Gamma-aminobutyric acid (GABA) is a non-protein amino acid which is widely applied in agriculture and pharmaceutical additive industries. GABA is synthesized from glutamate through irreversible α-decarboxylation by glutamate decarboxylase. Recently, microbial synthesis has become an inevitable trend to produce GABA due to its sustainable characteristics. Therefore, reasonable microbial platform design and metabolic engineering strategies for improving production of GABA are arousing a considerable attraction. The strategies concentrate on microbial platform optimization, fermentation process optimization, rational metabolic engineering as key metabolic pathway modification, promoter optimization, site-directed mutagenesis, modular transporter engineering, and dynamic switch systems application. In this review, the microbial producers for GABA were summarized, including lactic acid bacteria, Corynebacterium glutamicum, and Escherichia coli, as well as the efficient strategies for optimizing them to improve the production of GABA.


Assuntos
Corynebacterium glutamicum , Ácido gama-Aminobutírico , Agricultura , Corynebacterium glutamicum/genética , Indústria Farmacêutica , Engenharia , Escherichia coli/genética
16.
J Neurosci Res ; 102(3): e25318, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38491847

RESUMO

The projections of the basal forebrain (BF) to the hippocampus and neocortex have been extensively studied and shown to be important for higher cognitive functions, including attention, learning, and memory. Much less is known about the BF projections to the basolateral nuclear complex of the amygdala (BNC), although the cholinergic innervation of this region by the BF is actually far more robust than that of cortical areas. This review will focus on light and electron microscopic tract-tracing and immunohistochemical (IHC) studies, many of which were published in the last decade, that have analyzed the relationship of BF inputs and their receptors to specific neuronal subtypes in the BNC in order to better understand the anatomical substrates of BF-BNC circuitry. The results indicate that BF inputs to the BNC mainly target the basolateral nucleus of the BNC (BL) and arise from cholinergic, GABAergic, and perhaps glutamatergic BF neurons. Cholinergic inputs mainly target dendrites and spines of pyramidal neurons (PNs) that express muscarinic receptors (MRs). MRs are also expressed by cholinergic axons, as well as cortical and thalamic axons that synapse with PN dendrites and spines. BF GABAergic axons to the BL also express MRs and mainly target BL interneurons that contain parvalbumin. It is suggested that BF-BL circuitry could be very important for generating rhythmic oscillations known to be critical for emotional learning. BF cholinergic inputs to the BNC might also contribute to memory formation by activating M1 receptors located on PN dendritic shafts and spines that also express NMDA receptors.


Assuntos
Prosencéfalo Basal , Complexo Nuclear Basolateral da Amígdala , Neuroanatomia , Neurônios/ultraestrutura , Colinérgicos
17.
Eur J Pharmacol ; 970: 176494, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38484926

RESUMO

BACKGROUND: Inhalational anesthetics target the inhibitory extrasynaptic γ-aminobutyric acid type A (GABAA) receptors. Both neuronal and glial GABA mediate tonic inhibition of the extrasynaptic GABAA receptors. However, the role of glial GABA during inhalational anesthesia remains unclear. This study aimed to evaluate whether astrocytic GABA contributes to the action of different inhalational anesthetics. METHODS: Gene knockout of monoamine oxidase B (MAOB) was used to reduce astrocytic GABA levels in mice. The hypnotic and immobilizing effects of isoflurane, sevoflurane, and desflurane were assessed by evaluating the loss of righting reflex (LORR) and tail-pinch withdrawal response (LTWR) in MAOB knockout and wild-type mice. Minimum alveolar concentration (MAC) for LORR, time to LORR, MAC for LTWR and time to LTWR of isoflurane, sevoflurane, and desflurane were assessed. RESULTS: Time to LORR and time to LTWR with isoflurane were significantly longer in MAOB knockout mice than in wild-type mice (P < 0.001 and P = 0.032, respectively). Time to LORR with 0.8 MAC of sevoflurane was significantly longer in MAOB knockout mice than in wild-type mice (P < 0.001), but not with 1.0 MAC of sevoflurane (P=0.217). MAC for LTWR was significantly higher in MAOB knockout mice exposed to sevoflurane (P < 0.001). With desflurane, MAOB knockout mice had a significantly higher MAC for LORR (P = 0.003) and higher MAC for LTWR (P < 0.001) than wild-type mice. CONCLUSIONS: MAOB knockout mice showed reduced sensitivity to the hypnotic and immobilizing effects of isoflurane, sevoflurane, and desflurane. Behavioral tests revealed that the hypnotic and immobilizing effects of inhalational anesthetics would be mediated by astrocytic GABA.


Assuntos
Anestésicos Inalatórios , Isoflurano , Éteres Metílicos , Camundongos , Animais , Isoflurano/farmacologia , Sevoflurano/farmacologia , Desflurano/farmacologia , Anestésicos Inalatórios/farmacologia , Ácido gama-Aminobutírico , Hipnóticos e Sedativos , Camundongos Knockout , Receptores de GABA-A , Éteres Metílicos/farmacologia
18.
Curr Biol ; 34(8): 1646-1656.e4, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38518777

RESUMO

The obesity epidemic is principally driven by the consumption of more calories than the body requires. It is therefore essential that the mechanisms underpinning feeding behavior are defined. Neurons within the brainstem dorsal vagal complex (DVC) receive direct information from the digestive system and project to second-order regions in the brain to regulate food intake. Although γ-aminobutyric acid is expressed in the DVC (GABADVC), its function in this region has not been defined. In order to discover the unique gene expression signature of GABADVC cells, we used single-nucleus RNA sequencing (Nuc-seq), and this revealed 19 separate clusters. We next probed the function of GABADVC cells and discovered that the selective activation of GABADVC neurons significantly controls food intake and body weight. Optogenetic interrogation of GABADVC circuitry identified GABADVC → hypothalamic arcuate nucleus (ARC) projections as appetite suppressive without creating aversion. Electrophysiological analysis revealed that GABADVC → ARC stimulation inhibits hunger-promoting neuropeptide Y (NPY) neurons via GABA release. Adopting an intersectional genetics strategy, we clarify that the GABADVC → ARC circuit curbs food intake. These data identify GABADVC as a new modulator of feeding behavior and body weight and a controller of orexigenic NPY neuron activity, thereby providing insight into the neural underpinnings of obesity.


Assuntos
Núcleo Arqueado do Hipotálamo , Tronco Encefálico , Comportamento Alimentar , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/fisiologia , Animais , Tronco Encefálico/fisiologia , Tronco Encefálico/metabolismo , Camundongos , Masculino , Comportamento Alimentar/fisiologia , Neurônios GABAérgicos/fisiologia , Neurônios GABAérgicos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ingestão de Alimentos/fisiologia , Camundongos Endogâmicos C57BL , Feminino
19.
Vopr Pitan ; 93(1): 120-124, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38555616

RESUMO

Gamma-aminobutyric acid (GABA) is an endogenous bioactive compound with essential properties for the normal functioning of the human nervous system. As a potent neurotransmitter, it plays an important role in modulating synaptic transmission by exerting phasic inhibition of neurons. This and other effects of GABA provide the phenomenon of neural tissue plasticity underlying learning, memory, maturation and repair of neural tissue after damage. It also has a wide range of biological actions, including antihypertensive, anti-diabetic, antioxidant, and anti-inflammatory. In this regard, GABA is increasingly used in the composition of food for special dietary uses and dietary supplements. However, its adequate intake levels have not yet been assessed and its dietary intake has not been characterized. The aim of the review was to estimate the level of GABA intake under balanced consumption of foods, corresponding to rational norms that meet modern requirements of a healthy diet. Material and methods. The existing literature on the problem in recent years was reviewed using the databases RISC, CyberLeninka, Pubmed, and ResearchGate. Results. Based on the analysis of scientific literature, we evaluated the content of GABA in the average daily diet, compiled on the basis of the rational norms of food consumption that meet modern requirements for healthy nutrition (Order of the Ministry of Healthcare of the Russian Federation dated August 19, 2016. No. 614). The balanced diet can provide about 740 mg of GABA per day, mainly due to vegetables (potatoes - 419 mg/day, beet - 49 mg/day, pumpkin - 41 mg/day), fruits (apple - 15 mg/day, grapes - 3.8 mg/day), as well as low-fat dairy products (92 mg/day). Conclusion. The presented data may be useful in assessing the adequacy of enrichment of foods for special dietary uses and dietary supplements with GABA.


Assuntos
Dieta , Suplementos Nutricionais , Humanos , Ingestão de Alimentos , Frutas , Antioxidantes , Ácido gama-Aminobutírico
20.
J Neuroimmunol ; 388: 578296, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309225

RESUMO

PURPOSE: Anti-gamma-aminobutyric acid B receptor (GABABR) encephalitis is an uncommon form of autoimmune encephalitis associated with a poor prognosis and a high fatality rate. We aim to find diagnostic markers for anti- GABABR encephalitis as well as the effects of immune cell infiltration on this pathology. METHODS: For quantitative proteomic analysis, isobaric tags for relative and absolute quantitation were used in conjunction with LC-MS/MS analysis. To conduct functional correlation analyses, differentially expressed proteins (DEPs) were identified. Following that, we used bioinformatics analysis to screen for and determine the diagnostic signatures of anti- GABABR encephalitis. ROC curves were used to evaluate the diagnostic values. To assess the inflammatory status of anti- GABABR encephalitis, we used cell-type identification by estimating relative subsets of the RNA transcript (CIBERSORT) and explored the link between diagnostic markers and infiltrating immune cells. RESULTS: Overall, 108 robust DEPs (47 upregulated and 61 downregulated) were identified, of which 11 were immune related. The most impressively enriched pathways were complemented and coagulation cascades, actin cytoskeleton regulation, and cholesterol metabolism; GSEA revealed that the enriched pathways were considerably differentially connected to immune modulation. Eleven immune-related DEPs were chosen for further investigation. We developed a novel diagnostic model based on CSF1R and AZGP1 serum levels using ROC analysis (area under the ROC curve = 1). M1 macrophages and activated natural killer cells are likely to play a role in course of anti- GABABR encephalitis. CONCLUSION: We identified CSF1R and AZGP1 are possible anti-GABABR encephalitis diagnostic indicators, and immune cell infiltration may have a significant impact on the development and occurrence of anti- GABABR encephalitis.


Assuntos
Encefalite , Ácido gama-Aminobutírico , Humanos , Autoanticorpos , Cromatografia Líquida , Proteômica , Receptores de GABA-B , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...