Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(30): 39656-39663, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39031122

RESUMO

The coupling of charge and phonon transport in solids is a long-standing issue for thermoelectric performance enhancement. Herein, two new narrow-gap semiconductors with the same chemical formula of GeSe0.65Te0.35 (GST) are rationally designed and synthesized: one with a layered hexagonal structure (H-GST) and the other with a non-layered rhombohedral structure (R-GST). Thanks to the three-dimensional (3D) network structure, R-GST possesses a significantly larger weighted mobility than H-GST. Surprisingly, 3D-structured R-GST displays an extremely low lattice thermal conductivity of ∼0.5 W m-1 K-1 at 523 K, which is comparable to that of layered H-GST. The two-dimensional (2D)-like phonon transport in R-GST stems from the unique off-centering Ge atoms that induce ferroelectric instability, yielding soft polar phonons, as demonstrated by the Boson peak detected by the low-temperature specific heat and calculated phonon spectra. Furthermore, 1 mol % doping of Sb is utilized to successfully suppress the undesired phase transition of R-GST toward H-GST at elevated temperatures. Consequently, a peak ZT of 1.1 at 623 K is attained in the rhombohedral Ge0.99Sb0.01Se0.65Te0.35 sample, which is 1 order of magnitude larger than that of GeSe. This work demonstrates the feasibility of exploring high-performance thermoelectric materials with decoupled charge and phonon transport in off-centering compounds.

2.
Nano Converg ; 11(1): 29, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009919

RESUMO

γ-GeSe is a newly identified polymorph among group-IV monochalcogenides, characterized by a distinctive interatomic bonding configuration. Despite its promising applications in electrical and thermal domains, the experimental verification of its mechanical and thermal properties remains unreported. Here, we experimentally characterize the in-plane Young's modulus (E) and thermal conductivity ([Formula: see text]) of γ-GeSe. The mechanical vibrational modes of freestanding γ-GeSe flakes are measured using optical interferometry. Nano-indentation via atomic force microscopy is also conducted to induce mechanical deformation and to extract the E. Comparison with finite-element simulations reveals that the E is 97.3[Formula: see text]7.5 GPa as determined by optical interferometry and 109.4[Formula: see text]13.5 GPa as established through the nano-indentation method. Additionally, optothermal Raman spectroscopy reveals that γ-GeSe has a lattice thermal conductivity of 2.3 [Formula: see text] 0.4 Wm-1K-1 and a total thermal conductivity of 7.5 [Formula: see text] 0.4 Wm-1K-1 in the in-plane direction at room temperature. The notably high [Formula: see text] ratio in γ-GeSe, compared to other layered materials, underscores its distinctive structural and dynamic characteristics.

3.
Molecules ; 29(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38930927

RESUMO

Using physical vapor deposition (PVD) technology, GeSe nanowires were successfully fabricated by heating GeSe powder at temperatures of 500 °C, 530 °C, 560 °C, 590 °C, and 620 °C. The microstructure, crystal morphology, and chemical composition of the resulting materials were thoroughly analyzed employing methods like Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), plus Raman Spectroscopy. Through a series of photoelectric performance tests, it was discovered that the GeSe nanowires prepared at 560 °C exhibited superior properties. These nanowires not only possessed high crystalline quality but also featured uniform diameters, demonstrating excellent consistency. Under illumination at 780 nm, the GeSe nanowires prepared at this temperature showed higher dark current, photocurrent, and photoresponsivity compared to samples prepared at other temperatures. These results indicate that GeSe nanomaterials hold substantial potential in the field of photodetection. Particularly in the visible light spectrum, GeSe nanomaterials exhibit outstanding light absorption capabilities and photoresponse.

4.
Sci Rep ; 14(1): 6685, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509187

RESUMO

Three-dimensional phase change memory (3D PCM), possessing fast-speed, high-density and nonvolatility, has been successfully commercialized as storage class memory. A complete PCM device is composed of a memory cell and an associated ovonic threshold switch (OTS) device, which effectively resolves the leakage current issue in the crossbar array. The OTS materials are chalcogenide glasses consisting of chalcogens such as Te, Se and S as central elements, represented by GeTe6, GeSe and GeS. Among them, GeSe-based OTS materials are widely utilized in commercial 3D PCM, their scalability, however, has not been thoroughly investigated. Here, we explore the miniaturization of GeSe OTS selector, including functional layer thickness scalability and device size scalability. The threshold switching voltage of the GeSe OTS device almost lineally decreases with the thinning of the thickness, whereas it hardly changes with the device size. This indicates that the threshold switching behavior is triggered by the electric field, and the threshold switching field of the GeSe OTS selector is approximately 105 V/µm, regardless of the change in film thickness or device size. Systematically analyzing the threshold switching field of Ge-S and Ge-Te OTSs, we find that the threshold switching field of the OTS device is larger than 75 V/µm, significantly higher than PCM devices (8.1-56 V/µm), such as traditional Ge2Sb2Te5, Ag-In-Sb-Te, etc. Moreover, the required electric field is highly correlated with the optical bandgap. Our findings not only serve to optimize GeSe-based OTS device, but also may pave the approach for exploring OTS materials in chalcogenide alloys.

5.
ACS Appl Mater Interfaces ; 15(40): 46861-46871, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37769166

RESUMO

GeSe photovoltaic thin films are very promising for photoelectrochemical (PEC) hydrogen evolution. The GeSe-based PEC water splitting device is a system containing a photoelectrode, electrolyte, and other packages, and the performance of the GeSe photoelectrode inside the system is very sensitive to the PEC system environment, such as the electrolyte temperature, pH, and concentration. Here, we reveal how the electrolyte environment at the electrolyte/photoelectrode interface influences the optoelectronic/PEC properties of GeSe photoelectrodes. It was found that the photocurrent density of the GeSe photoelectrode increased with temperature between 10 and 50 °C but decreased when the temperature was over 50 °C. In addition, the pH values of the electrolyte were inversely proportional to the photocurrent density of the GeSe photoelectrode. Moreover, the PEC performance improved as the sodium ion concentration of the electrolyte increased. The results in this work should provide a new direction for further optimizing the performance of photoelectrodes.

6.
ACS Appl Mater Interfaces ; 15(33): 39732-39739, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37562002

RESUMO

Two-dimensional (2D) GeSe has been proven promising in fast and broadband optoelectronic applications for its complicated band structure, inert surface property, and excellent stability. The major challenge is the deficiency of the effective technique for controllably prepared large-scale few-to-monolayer GeSe films. For this purpose, a layer-by-layer thinning method by thermal sublimation for manufacturing large-scale mixed few-layer GeSe with direct bandgaps is proposed, and an optimized sublimation temperature of 300 °C in vacuum is evaluated by atomic force microscopy. Scanning electron microscopy, transmission electron microscopy, energy-dispersive spectra, and fluorescence mapping measurements are performed on the thinned GeSe layers, and results are well-indexed to the orthorhombic lattice structure with direct bandgaps with an atomic ratio of Ge/Se ≈ 5:4. Raman and fluorescence spectra show an α-type crystalline structure of the thinned GeSe films, indicating the pure physical process of the sublimation thinning. Both the bulk and few-layer GeSe films demonstrate broadband absorption. Conductivity of the few-layer GeSe device indicates the overall crystalline integrity of the film after thermal thinning. Given the convenience and efficiency, we provide an effective approach for fabrication of large-scale 2D materials that are difficult to be prepared by traditional methods.

7.
Heliyon ; 9(8): e18776, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37560633

RESUMO

Recently GeSe has developed as a promising light harvesting material by enjoying to its optical and electrical features as well as earth-abundant and low-toxic constituent elements. Nevertheless, the power conversion efficiency of GeSe-based solar cells yet lags far behind the Shockley-Queisser limit. In this work, we systematically designed, simulated and analyzed the highly efficient GeSe thin-film solar cells by SCAPS-1D. The influence of thickness and defect density of light harvest material, GeSe/CdS interface defect density, electron transport layer (ETL), electrode work function and hole transport layer (HTL) on the device output are carefully analyzed. By optimizing the parameters (thickness, defect, concentration, work function, ETL and HTL), an impressive PCE of 17.98% is delivered along with Jsc of 37.11 mA/cm2, FF of 75.53%, Voc of 0.61 V. This work offers theoretical guidance for the design of highly efficient GeSe thin film solar cells.

8.
Nanomaterials (Basel) ; 13(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37368292

RESUMO

GeSe monolayer (ML) has recently attracted much interest due to its unique structure and excellent physical properties that can be effectively tuned through single doping of various elements. However, the co-doping effects on GeSe ML are rarely studied. In this study, the structures and physical properties of Mn-X (X = F, Cl, Br, I) co-doped GeSe MLs are investigated by using first-principle calculations. The formation energy and phonon disspersion analyses reveal the stability of Mn-Cl and Mn-Br co-doped GeSe MLs and instability of Mn-F and Mn-I co-doped GeSe MLs. The stable Mn-X (X = Cl, Br) co-doped GeSe MLs exhibit complex bonding structures with respect to Mn-doped GeSe ML. More importantly, Mn-Cl and Mn-Br co-doping can not only tune magnetic properties, but also change the electronic properties of GeSe MLs, which makes Mn-X co-doped GeSe MLs indirect band semiconductors with anisotropic large carrier mobility and asymmetric spin-dependent band structures. Furthermore, Mn-X (X = Cl, Br) co-doped GeSe MLs show weakened in-plane optical absorption and reflection in the visible band. Our results may be useful for electronic, spintronic and optical applications based on Mn-X co-doped GeSe MLs.

9.
J Phys Condens Matter ; 35(38)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37295439

RESUMO

γ-GeSe is a new type of layered bulk material that was recently successfully synthesized. By means of density functional theory first-principles calculations, we systematically studied the physical properties of two-dimensional (2D) few-layerγ-GeSe. It is found that few-layerγ-GeSe are semiconductors with band gaps decreasing with increasing layer number; and 2Dγ-GeSe with layer numbern⩾ 2 are ferroelectric with rather low transition barriers, consistent with the sliding ferroelectric mechanism. Particularly, spin-orbit coupling induced spin splitting is observed at the top of valence band, which can be switched by the ferroelectric reversal; furthermore, their negative piezoelectricity also enables the regulation of spin splitting by strain. Finally, excellent optical absorption was also revealed. These intriguing properties make 2D few-layerγ-GeSe promising in spintronic and optoelectric applications.

10.
ACS Appl Mater Interfaces ; 15(22): 27285-27298, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37216628

RESUMO

Here, we report on the comprehensive growth, characterization, and optoelectronic application of large-area, two-dimensional germanium selenide (GeSe) layers prepared using the pulsed laser deposition (PLD) technique. Back-gated phototransistors based on few-layered 2D GeSe have been fabricated on a SiO2/Si substrate for ultrafast, low noise, and broadband light detection, showing spectral functionalities over a broad wavelength range of 0.4-1.5 µm. The broadband detection capabilities of the device have been attributed to the self-assembled GeOx/GeSe heterostructure and sub-bandgap absorption in GeSe. Besides a high photoresponsivity of 25 AW-1, the GeSe phototransistor displayed a high external quantum efficiency of the order of 6.14 × 103%, a maximum specific detectivity of 4.16 × 1010 Jones, and an ultralow noise equivalent power of 0.09 pW/Hz1/2. The detector has an ultrafast response/recovery time of 3.2/14.9 µs and can show photoresponse up to a high cut-off frequency of 150 kHz. These promising device parameters exhibited by PLD-grown GeSe layers-based detectors make it a favorable choice against present-day mainstream van der Waals semiconductors with limited scalability and optoelectronic compatibility in the visible-to-infrared spectral range.

11.
Nano Lett ; 23(8): 3144-3151, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37026614

RESUMO

Group IV monochalcogenides have recently shown great potential for their thermoelectric, ferroelectric, and other intriguing properties. The electrical properties of group IV monochalcogenides exhibit a strong dependence on the chalcogen type. For example, GeTe exhibits high doping concentration, whereas S/Se-based chalcogenides are semiconductors with sizable bandgaps. Here, we investigate the electrical and thermoelectric properties of γ-GeSe, a recently identified polymorph of GeSe. γ-GeSe exhibits high electrical conductivity (∼106 S/m) and a relatively low Seebeck coefficient (9.4 µV/K at room temperature) owing to its high p-doping level (5 × 1021 cm-3), which is in stark contrast to other known GeSe polymorphs. Elemental analysis and first-principles calculations confirm that the abundant formation of Ge vacancies leads to the high p-doping concentration. The magnetoresistance measurements also reveal weak antilocalization because of spin-orbit coupling in the crystal. Our results demonstrate that γ-GeSe is a unique polymorph in which the modified local bonding configuration leads to substantially different physical properties.

12.
Adv Mater ; 35(19): e2300893, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36920476

RESUMO

Doping is usually the first step to tailor thermoelectrics. It enables precise control of the charge-carrier concentration and concomitant transport properties. Doping should also turn GeSe, which features an intrinsically a low carrier concentration, into a competitive thermoelectric. Yet, elemental doping fails to improve the carrier concentration. In contrast, alloying with Ag-V-VI2 compounds causes a remarkable enhancement of thermoelectric performance. This advance is closely related to a transition in the bonding mechanism, as evidenced by sudden changes in the optical dielectric constant ε∞ , the Born effective charge, the maximum of the optical absorption ε2 (ω), and the bond-breaking behavior. These property changes are indicative of the formation of metavalent bonding (MVB), leading to an octahedral-like atomic arrangement. MVB is accompanied by a thermoelectric-favorable band structure featuring anisotropic bands with small effective masses and a large degeneracy. A quantum-mechanical map, which distinguishes different types of chemical bonding, reveals that orthorhombic GeSe employs covalent bonding, while rhombohedral and cubic GeSe utilize MVB. The transition from covalent to MVB goes along with a pronounced improvement in thermoelectric performance. The failure or success of different dopants can be explained by this concept, which redefines doping rules and provides a "treasure map" to tailor p-bonded chalcogenides.

13.
Sci Bull (Beijing) ; 68(2): 173-179, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36653218

RESUMO

Polarization-sensitive photodetectors, with the ability of identifying the texture-, stress-, and roughness-induced light polarization state variation, displace unique advantages in the fields of national security, medical diagnosis, and aerospace. The utilization of in-plane anisotropic two-dimensional (2D) materials has led the polarization photodetector into a polarizer-free regime, and facilitated the miniaturization of optoelectronic device integration. However, the insufficient polarization ratio (usually less than 10) restricts the detection resolution of polarized signals. Here, we designed a sub-wavelength array (SWA) structure of 2D germanium selenium (GeSe) to further improve its anisotropic sensitivity, which boosts the polarized photocurrent ratio from 1.6 to 18. This enhancement comes from the combination of nano-scale arrays with atomic-scale lattice arrangement at the low-symmetric direction, while the polarization-sensitive photoresponse along the high-symmetric direction is strongly suppressed due to the SWA-caused depolarization effect. Our mechanism study revealed that the SWA can improve the asymmetry of charge distribution, attenuate the matrix element in zigzag direction, and the localized surface plasma, which elevates the photo absorption and photoelectric transition probability along the armchair direction, therefore accounts for the enhanced polarization sensitivity. In addition, the photodetector based on GeSe SWA exhibited a broad power range of 40 dB at a near-infrared wavelength of 808 nm and the ability of weak-light detection under 0.1 LUX of white light (two orders of magnitude smaller than pristine 2D GeSe). This work provides a feasible guideline to improve the polarization sensitivity of 2D materials, and will greatly benefit the development of polarized imaging sensors.

14.
ACS Appl Mater Interfaces ; 14(50): 55780-55786, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36475592

RESUMO

Bismuth-telluride-based thermoelectric materials have been applied in active room-temperature cooling, but the mediocre ZT value of ∼1.0 limits the thermoelectric (TE) device's conversion efficiency and determines its application. In this work, we show the obviously improved thermoelectric properties of p-type Bi0.5Sb1.5Te3 by the Cu8GeSe6 composite. The addition of Cu8GeSe6 effectively boosts the carrier concentration and thus limits the bipolar thermal conductivity as the temperature is elevated. With the Cu8GeSe6 content of 0.08 wt %, the hole concentration reaches 5.0 × 1019 cm-3 and the corresponding carrier mobility is over 160 cm2 V-1 s-1, resulting in an optimized power factor of over 42 µW cm-1 K-2 at 300 K. Moreover, the Cu8GeSe6 composite introduces multiple phonon-scattering centers by increasing dislocations and element and strain field inhomogeneities, which reduce the thermal conductivity consisting of a lattice contribution and a bipolar contribution to 0.51 W m-1 K-1 at 350 K. As a consequence, the peak ZT of the Bi0.5Sb1.5Te3-0.08 wt % Cu8GeSe6 composite reaches 1.30 at 375 K and the average ZT between 300 and 500 K is improved to 1.13. A thermoelectric module comprised of this composite and commercial Bi2Te2.5Se0.5 exhibits a conversion efficiency of 5.3% with a temperature difference of 250 K, demonstrating the promising applications in low-grade energy recovery.

15.
Nanomaterials (Basel) ; 12(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36500826

RESUMO

The adsorption mechanism of CO and CH4 on GeSe, modified with the most stable 1-4 Ag-atom clusters, is studied with the help of density functional theory. Adsorption distance, adsorption energy, total density of states (TDOS), projected density of states (PDOS), and molecular orbital theory were all used to analyze the results. CO was found to chemisorb exothermically on GeSe, independent of Ag cluster size, with Ag4-GeSe representing the optimum choice for CO gas sensors. CH4, in contrast, was found to chemisorb on Ag-GeSe and Ag2-GeSe and to physisorb on Ag3-GeSe and Ag4-GeSe. Here, Ag GeSe was found to be the optimum choice for CH4 gas sensors. Overall, our calculations suggest that GeSe modified by Ag clusters of different sizes could be used to advantage to detect CO and CH4 gas in ambient air.

16.
Nanotechnology ; 33(42)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35817004

RESUMO

Two-dimensional layered semiconducting material germanium selenide (GeSe) has attracted significant attention due to its environmental friendship, anisotropic electronic structures, and strong air-stability. To evaluate the candidacy of monolayer GeSe as a potential gas sensing material, the adsorption characteristics of various small gas molecules on monolayer GeSe are comprehensively studied combining density functional theory calculations and non-equilibrium Green's function formalism. The charge transfer reaction between gas molecules and monolayer GeSe leads to the marked change of the carrier density, which further affects the anisotropic transport characteristics of monolayer GeSe. The calculated band structures andI-Vcurves reveal distinctive responses of monolayer GeSe to the different gas molecules, and higher sensitivity of the monolayer GeSe in presence of SO2, NH3, NO2gas molecules along the zigzag direction is obtained. These results suggest that monolayer GeSe along the zigzag direction has promising application in gas detector.

17.
Nanomaterials (Basel) ; 12(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35745342

RESUMO

Germanium selenide (GeSe) thin films were fabricated by employing femtosecond pulsed-laser deposition (fs-PLD) on silicon (100) substrates at various substrate temperatures, ranging from 25 °C to 600 °C. The thin films' surface morphology qualities and optical properties were studied by utilising transmission electron microscopy (TEM) and X-ray diffraction (XRD). The X-ray diffraction result signifies that the thin films deposited on the silicon at a substrate temperature below 400 °C were amorphous Ge-Se. In contrast, those grown at 400 °C and above exhibited crystallised peaks of Ge-Se orthorhombic and tetragonal structures. The deposition growth rate of the thin films was also found to decrease substantially with increasing substrate temperature. These results show that the fs-PLD process has great potential for fabricating good quality Ge-Se thin film. This technique could enable the manufacture of modern optoelectronic devices for applications in optical communication, sensing, and ovonic threshold switching for the high-density crossbar memory array.

18.
Nano Lett ; 22(13): 5086-5093, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35613359

RESUMO

Emerging twistronics based on van der Waals (vdWs) materials has attracted great interest in condensed matter physics. Recently, more neoteric three-dimensional (3D) architectures with interlayer twist are realized in germanium sulfide (GeS) crystals. Here, we further demonstrate a convenient way for tailoring the twist rate of helical GeS crystals via tuning of the growth temperature. Under higher growth temperatures, the twist angles between successive nanoplates of the GeS mesowires (MWs) are statistically smaller, which can be understood by the dynamics of the catalyst during the growth. Moreover, we fabricate self-assembled helical heterostructures by introducing germanium selenide (GeSe) onto helical GeS crystals via edge epitaxy. Besides the helical architecture, the moiré superlattices at the twisted interfaces are also inherited. Compared with GeS MWs, helical GeSe/GeS heterostructures exhibit improved electrical conductivity and photoresponse. These results manifest new opportunities in future electronics and optoelectronics by harnessing 3D twistronics based on vdWs materials.


Assuntos
Germânio , Eletrônica , Sulfetos
19.
ACS Appl Mater Interfaces ; 14(18): 20972-20980, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35485843

RESUMO

Recently, ternary Cu-based Cu-IV-Se (IV = Sb, Ge, and Sn) compounds have received extensive attention in the thermoelectric field. Compared with Cu-Sb-Se and Cu-Sn-Se, Cu-Ge-Se compounds have been less studied due to its poor Seebeck coefficient and high thermal conductivity. Here, the Cu2GeSe3 material with high electrical conductivity was first prepared, and then, its effective mass was increased by doping with S, which led to the Seebeck coefficient of the doped sample being 1.93 times higher than that of pristine Cu2GeSe3 at room temperature. Moreover, alloying Ag at the Cu site in the Cu2GeSe2.96S0.04 sample could further cause a 5.16 times increase in the Seebeck coefficient at room temperature, and the lattice thermal conductivity was remarkably decreased because of the introduction of the dislocations in the Cu2GeSe3 sample. Finally, benefitted from the high Seebeck coefficient and low thermal conductivity, a record high ZT = 0.9 at 723 K was obtained for the Cu1.85Ag0.15GeSe2.96S0.04 sample, which increased 345% in comparison with the pristine Cu2GeSe3, and it is among the highest reported values for Cu2GeSe3-based thermoelectric.

20.
Chemistry ; 28(36): e202200711, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35393695

RESUMO

A composite of two-dimensional (2D) GeSe2 nanosheets dispersed on N-doped reduced graphene oxide (GeSe2 /N-rGO) is fabricated via a simple hydrothermal method combined with post-selenization process. The high electronic conductivity and the substantial void spaces of the wrinkled N-rGO can improve the electrical conductivity of the active material and accommodate the volume evolution of GeSe2 nanosheets during the (de)lithiation processes, while GeSe2 nanosheets can reduce ion diffusion length effectively. Meanwhile, the unique layered structure is beneficial to the contact of the active material and electrolyte, and the reversibility of conversion reaction has also been improved. Furthermore, kinetics analysis reveals a pseudocapacitance-dominated Li+ -storage mechanism at high rates. In-situ X-ray diffraction analysis discloses that the conversion reaction has played a certain part in Li+ -storage. Thus, the GeSe2 /N-rGO composite delivers excellent rate capability and good long-term stability with a high reversible capacity of 711.0 mA h g-1 after 2000 cycles at 1 A g-1 .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA