Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73.072
Filtrar
1.
Rev. neurol. (Ed. impr.) ; 78(7): 179-183, Ene-Jun, 2024. mapas, tab
Artigo em Espanhol | IBECS | ID: ibc-232185

RESUMO

Introducción: Las miopatías relacionadas con el receptor de rianodina de tipo 1 (RYR1-RM) constituyen la categoría más frecuente de miopatías congénitas. La introducción de técnicas genéticas ha cambiado el paradigma diagnóstico y sugiere la prioridad de estudios moleculares sobre biopsias. Este estudio busca explorar las características clinicoepidemiológicas de pacientes con variantes del gen RYR1 en un hospital pediátrico de tercer nivel con el objetivo de ampliar la comprensión de la correlación genotipo-fenotipo en las RYR1-RM. Pacientes y métodos: Estudio observacional, descriptivo y transversal, de pacientes menores de 14 años con síntomas miopáticos y variantes potencialmente patógenas del gen RYR1 entre enero de 2013 y diciembre de 2023, considerando variables como sexo, edad, desarrollo motor, variantes genéticas, patrón de herencia y otras manifestaciones. Todas las variables fueron tabuladas frente a la variante genética. Resultados: De los nueve pacientes incluidos, la incidencia estimada fue de aproximadamente 1/10.000 nacidos vivos. La mediana en el momento del diagnóstico fue de 6 años, con una variabilidad fenotípica significativa. Se observaron síntomas comunes, como debilidad y retraso del desarrollo motor. Las variantes genéticas afectaron al gen RYR1 de manera diversa, y hubo cinco variantes previamente no descritas. La biopsia muscular se realizó en cinco pacientes, en dos de ellos de tipo miopatía central core; en uno, multiminicore; en uno, desproporción congénita de fibras; y en otro, de patrón inespecífico. Conclusiones: Las RYR1-MR de nuestra serie ofrecieron variabilidad fenotípica y de afectación, con una incidencia en nuestra área de en torno a 1/10.000 recién nacidos. La mayoría de los casos fueron varones, de variantes missense dominantes. Aportamos cinco variantes genéticas no descritas con anterioridad.(AU)


Introduction: Ryanodine receptor type 1-related myopathies (RYR1-RM) represent the most prevalent category of congenital myopathies. The introduction of genetic techniques has shifted the diagnostic paradigm, suggesting the prioritization of molecular studies over biopsies. This study aims to explore the clinical and epidemiological characteristics of patients with RYR1 gene variants in a tertiary pediatric hospital, intending to enhance the understanding of the genotype-phenotype correlation in RYR1-RM. Patients and methods: An observational, descriptive, and cross-sectional study was conducted on patients under 14 years old with myopathic symptoms and potentially pathogenic RYR1 gene variants from January 2013 to December 2023. Variables such as gender, age, motor development, genetic variants, inheritance pattern, and other manifestations were considered. All variables were tabulated against the genetic variant. Results: Of the nine included patients, the estimated incidence was approximately 1 in 10,000 live births. The median age at diagnosis was six years, with significant phenotypic variability. Common symptoms such as weakness and delayed motor development were observed. Genetic variants affected the RYR1 gene diversely, including five previously undescribed variants. Muscle biopsy was performed in five patients, revealing central core myopathy in two, multiminicore in one, congenital fiber-type disproportion in one, and a nonspecific pattern in another.(AU)


Assuntos
Humanos , Masculino , Feminino , Criança , Doenças Musculares/classificação , Canal de Liberação de Cálcio do Receptor de Rianodina , Incidência , Padrões de Herança , Epidemiologia Descritiva , Estudos Transversais , Estudos de Associação Genética
2.
Lipids Health Dis ; 23(1): 136, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715054

RESUMO

BACKGROUND: Familial hypercholesterolemia (FH) is one of the most common autosomal dominant diseases. FH causes a lifelong increase in low-density lipoprotein cholesterol (LDL-C) levels, which in turn leads to atherosclerotic cardiovascular disease. The incidence of FH is widely underestimated and undertreated, despite the availability and effectiveness of lipid-lowering therapy. Patients with FH have an increased cardiovascular risk; therefore, early diagnosis and treatment are vital. To address the burden of FH, several countries have implemented national FH screening programmes. The currently used method for FH detection in Lithuania is mainly based on opportunistic testing with subsequent cascade screening of index cases' first-degree relatives. METHODS: A total of 428 patients were included in this study. Patients with suspected FH are referred to a lipidology center for thorough evaluation. Patients who met the criteria for probable or definite FH according to the Dutch Lipid Clinic Network (DLCN) scoring system and/or had LDL-C > = 6.5 mmol/l were subjected to genetic testing. Laboratory and instrumental tests, vascular marker data of early atherosclerosis, and consultations by other specialists, such as radiologists and ophthalmologists, were also recorded. RESULTS: A total of 127/428 (30%) patients were genetically tested. FH-related mutations were found in 38.6% (n = 49/127) of the patients. Coronary artery disease (CAD) was diagnosed in 13% (n = 57/428) of the included patients, whereas premature CAD was found in 47/428 (11%) patients. CAD was diagnosed in 19% (n = 9/49) of patients with FH-related mutations, and this diagnosis was premature for all of them. CONCLUSIONS: Most patients in this study were classified as probable or possible FH without difference of age and sex. The median age of FH diagnosis was 47 years with significantly older females than males, which refers to the strong interface of this study with the LitHir programme. CAD and premature CAD were more common among patients with probable and definite FH, as well as those with an FH-causing mutation. The algorithm described in this study is the first attempt in Lithuania to implement a specific tool which allows to maximise FH detection rates, establish an accurate diagnosis of FH, excluding secondary causes of dyslipidaemia, and to select patients for cascade screening initiation more precisely.


Assuntos
Algoritmos , LDL-Colesterol , Hiperlipoproteinemia Tipo II , Receptores de LDL , Humanos , Hiperlipoproteinemia Tipo II/epidemiologia , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/sangue , Lituânia/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Receptores de LDL/genética , LDL-Colesterol/sangue , Testes Genéticos/métodos , Programas de Rastreamento/métodos , Idoso , Mutação , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/sangue
3.
Elife ; 132024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716806

RESUMO

Studies of the starlet sea anemone provide important insights into the early evolution of the circadian clock in animals.


Assuntos
Relógios Circadianos , Anêmonas-do-Mar , Animais , Evolução Biológica , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Cnidários/fisiologia , Anêmonas-do-Mar/fisiologia
4.
Heliyon ; 10(9): e29867, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38720733

RESUMO

Genetic and environmental factors play crucial roles in the development of esophageal cancer (EC) and contribute uniquely or cooperatively to human cancer susceptibility. Sichuan is located in the interior of southwestern China, and the northern part of Sichuan is one of the regions with a high occurrence of EC. However, the factors influencing the high incidence rate of EC in the Sichuan Han Chinese population and its corresponding genetic background and origins are still poorly understood. Here, we utilized genome-wide single nucleotide polymorphisms (SNPs) and Y-chromosome short tandem repeats (Y-STRs) to characterize the genetic structure, connection, and origin of cancer groups and general populations. We generated Y-STR-based haplotype data from 214 Sichuan individuals, including the Han Chinese EC population and a control group of Han Chinese individuals. Our results, obtained from Y-STR-based population statistical methods (analysis of molecular variance (AMOVA), principal component analysis (PCA), and phylogenetic analysis), demonstrated that there was a genetic substructure difference between the EC population in the high-incidence area of northern Sichuan Province and the control population. Additionally, there was a strong genetic relationship between the EC population in the northern Sichuan high-incidence area and those at high risk in both the Fujian and Chaoshan areas. In addition, we obtained high-density SNP data from saliva samples of 60 healthy Han Chinese individuals from three high-prevalence areas of EC in China: Sichuan Nanchong, Fujian Quanzhou, and Henan Xinxiang. As inferred from the allele frequency of SNPs and sharing patterns of haplotype segments, the evolutionary history and admixture events suggested that the Han population from Nanchong in northern Sichuan Province shared a close genetic relationship with the Han populations from Xinxiang in Henan Province and Quanzhou in Fujian Province, both of which are regions with a high prevalence of EC. Our study illuminated the genetic profile and connection of the Northern Sichuan Han population and enriched the genomic resources and features of the Han Chinese populations in China, especially for the Y-STR genetic data of the Han Chinese EC population. Populations living in different regions with high incidences of EC may share similar genetic backgrounds, which offers new insights for further exploring the genetic mechanisms underlying EC.

5.
Heliyon ; 10(9): e30074, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38720757

RESUMO

Forensic DNA kinship investigation involves analyzing genetic relationships between individuals to offer new leads for solving (cold) cases. Familial DNA matching has become a valuable asset in criminal case investigations, especially when traditional DNA methods hit dead ends. However, concerns surrounding ethical and privacy implications raised questions about its implementation and acceptance among the general public. The present study investigated the public perspectives regarding forensic DNA kinship investigations among 1710 Dutch-speaking Belgians using an online cross-sectional survey. The questionnaire consisted of three categories, including personal information, DNA knowledge, and their opinion on several familial DNA searching and investigative genetic genealogy related questions. The participants' average DNA knowledge score was 71 %, indicating a relatively high level of understanding of DNA-related concepts. Remarkably, the study revealed that 92 % of the participants expressed willingness to cooperate as a volunteer in a forensic DNA kinship investigation, irrespective of their scientific background or educational level. Key factors influencing participation included assurance of painless sampling and robust privacy safeguards. Participants lacking familiarity with DNA hesitated more towards participating in forensic DNA analysis, referring to "the fear of the unknown". Despite ethical and privacy concerns, the highly positive attitude towards forensic DNA analysis reflects a level of empathy and willingness to contribute to the pursuit of justice. Nearly all participants (95 %) agreed to use online DNA databases for resolving violent crimes with forensic genetic genealogy, but half emphasized the need for prior informed consent, referring to the current "opt-in" system. The results underscore the need for stringent regulations and ethical oversight to ensure the responsible use of genetic data while striking a balance between public safety and the protection of individuals' privacy rights. These findings add to the growing body of evidence regarding the potential benefits of forensic DNA kinship matching as a tool in criminal investigations, suggesting its potential future utilization and legalization.

6.
Oman Med J ; 39(1): e591, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38721008

RESUMO

Objectives: The association between vitamin D receptor (VDR) polymorphisms and metabolic syndrome (MS) remains debatable. The current study aimed to determine the correlation of VDR gene polymorphisms with MS among Jordanian women. Methods: This case-control study enrolled 100 women with MS and 100 age-matched women as control at Al-Hikma Modern Hospital in Jordan between January 2019 and January 2020. The levels of glycated hemoglobin, fasting glucose, triglyceride, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and 25-hydroxy vitamin D (25(OH)D) were determined from serum samples of all participants. DNA was extracted from whole blood samples, and VDR gene polymorphisms Apa1, Taq1, Bsm1, and Fok1 were analyzed by polymerase chain reaction and restriction fragment length polymorphism. Results: There was a significant difference between MS patients and control in terms of body mass index (34.3±3.1 vs. 28.1±2.5), glycated hemoglobin (5.9±1.1 vs. 4.6±1.2), fasting blood glucose (6.4±1.6 vs. 5.2±1.4), and total cholesterol (6.5±1.2 vs. 5.3±1.8). The results also demonstrated a statistical difference in the number of MS patients and control with 25(OH)D deficiency (69.0 vs. 33.0), 25(OH)D insufficiency (25.0 vs. 42.0), and 25(OH)D sufficiency (6.0 vs. 25.0) (p < 0.001). MS was significantly associated with VDR polymorphisms among Apa1 and Fok1 genes. The genotype distribution for CC (47.0% vs. 53.0%; p = 0.002) and CA (37.0% vs. 45.0%; p = 0.001) genotypes among Apa1 VDR polymorphism, as well as among TT genotype (38.0% vs. 20.0%; p = 0.025) among Fok1 VDR gene polymorphism significantly differed between MS patients and healthy individuals. However, no associations were detected among Taq1 and Bsm1 VDR genotypes. Conclusions: VDR gene polymorphism of Apa1 and Fok1 variants may increase the risk of metabolic syndrome among Jordanian women.

7.
Front Plant Sci ; 15: 1369409, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721339

RESUMO

Background: This study aimed at exploring unique population genetic characteristics of Albizia odoratissima (Linn. f) Benth on Hainan Island to provide a scientific basis for its rational utilization and protection. Methods: It analyzed the genetic diversity and structure of 280 individuals from 10 subpopulations of A. odoratissima from Hainan Island and Baise City using 16 expression sequence markers - simple sequence repeat markers. Results: The genetic diversity of Hainan population (I = 0.7290, He = 0.4483) was lower than that of the Baise population (I = 0.8722, He = 0.5121). Compared with the Baise population (Nm = 2.0709, FST = 0.1077), the Hainan Island population (Nm = 1.7519, FST = 0.1249) exhibited lower gene flow and higher degree of genetic differentiation. Molecular variance and genetic differentiation analyses showed that the main variation originated from individuals within the subpopulation. There were significant differences in the genetic structure between Hainan and Baise populations. It grouped according to geographical distance, consistent with the Mantel test results (R2 = 0.77, p = 0.001). In conclusion, the genetic diversity of the island A. odoratissima population was lower than that distributed on land, the two populations exhibited obvious genetic structure differences. Both the degrees of inbreeding and genetic differentiation were higher in the island population than in the land population.

8.
JHEP Rep ; 6(6): 101037, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38721342

RESUMO

Background & Aims: Inflammatory bowel disease (IBD) is commonly associated with extraintestinal complications, including autoimmune liver disease. The co-occurrence of IBD and primary biliary cholangitis (PBC) has been increasingly observed, but the underlying relationship between these conditions remains unclear. Methods: Using summary statistics from genome-wide association studies (GWAS), we investigated the causal effects between PBC and IBD, including Crohn's disease (CD) and ulcerative colitis (UC). We also analyzed the shared genetic architecture between IBD and PBC using data from GWAS, bulk-tissue RNA sequencing, and single cell RNA sequencing, and explored potential functional genes. Result: There was a strong positive genetic correlation between PBC and IBD (linkage disequilibrium score regression: rg = 0.2249, p = 3.38 × 10-5). Cross-trait analysis yielded 10 shared-risk single nucleotide polymorphisms (SNPs), as well as nine novel SNPs, which were associated with both traits. Using Mendelian randomization, a stable causal effect was established of PBC on IBD. Genetically predicted PBC was found to have a risk effect on IBD (1.105; 95% CI: 1.058-1.15; p = 1.16 × 10-10), but not vice versa. Shared tissue-specific heritability enrichment was identified for PBC and IBD (including CD and UC) in lung, spleen, and whole-blood samples. Furthermore, shared enrichment was observed of specific cell types (T cells, B cells, and natural killer cells) and their subtypes. Nine functional genes were identified based on summary statistics-based Mendelian randomization. Conclusions: This study detected shared genetic architecture between IBD and PBC and demonstrated a stable causal relationship of genetically predicted PBC on the risk of IBD. These findings shed light on the biological basis of comorbidity between IBD and PBC, and have important implications for intervention and treatment targets of these two diseases simultaneously. Impact and Implications: The discovery of novel shared single nucleotide polymorphisms (SNPs) and functional genes provides insights into the common targets between inflammatory bowel disease (IBD) and primary biliary cholangitis (PBC), serving as a basis for new drug development and contributing to the study of disease pathogenesis. Additionally, the established significant causality and genetic correlation underscore the importance of clinical intervention in preventing the comorbidity of IBD and PBC. The enrichment of SNP heritability in specific tissues and cell types reveals the role of immune factors in the potential disease mechanisms shared between IBD and PBC. This stimulates further research on potential interventions and could lead to the development of new targets for immune-based therapies.

9.
J Pediatr Genet ; 13(2): 99-105, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38721584

RESUMO

Global developmental delay (GDD)/intellectual disability (ID) is common in children and its etiology is unknown in many cases. Chromosomal abnormalities are predominant genetic causes of GDD/ID. The aim of this study is to determine the genetic risk factors that may be involved in the etiology of GDD/ID. In this study, 810 children with moderate to severe, clinically unexplained GDD/ID for whom cytogenetic analysis were performed were retrospectively rescreened. The results showed that GDD/ID affected more females than males (2 girls:1 boy). A total of 54 children (6.7%) with GDD showed chromosomal aberrations (CAs): 59.3% of these CAs were structural aberrations, and the rest were numerical aberrations (40.7%). Specifically, inversions, deletions, and reciprocal and robertsonian translocations, which were detected in 1, 0.7, 0.8, and 0.4% of the children, respectively, constituted important categories of structural CAs. Among numerical CAs, classic Turner and mosaics were detected in 1.2% of all children. Trisomy 21 and mosaic trisomy 21 were detected in 1% of the children. Marker chromosomes and 47,XXY karyotypes were found in two children each. Our results suggest that female sex is more affected by CAs among GDD/ID cases, and cytogenetic analysis is useful in the etiological diagnosis of GDD/ID.

10.
Evol Appl ; 17(5): e13677, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38721591

RESUMO

Conservation is prioritized based on accepted taxa. As a consequence, a conservation incentive exists to emphasize inter-population differences to define taxa, potentially leading to taxonomic inflation. But stressing the uniqueness of threatened populations has the side effect of hindering conservation actions that promote inter-population gene flow, such as genetic rescue. These actions may be of critical importance for severely inbred populations involved in extinction vortices, for which an inflated taxonomy can become a conservation trap. Here, we exemplify this scenario with the western capercaillie (Tetrao urogallus, Phasianidae) population in the Cantabrian Mountains, described and legally listed as a subspecies not supported by recent molecular data. The Cantabrian capercaillie population is Critically Endangered after a long-lasting decline and a recent demographic collapse. It shows clear signs of inbreeding depression, including striking clutch size decreases as well as reduced hatchability and chick survival. This critical situation could be alleviated through a genetic rescue, but this possibility is hindered by inertias rooted in the putative uniqueness of the Cantabrian capercaillie. It had been previously argued that poor taxonomy could hamper conservation, through the oblivion of populations deserving, but not having, a taxonomic status. We show that taxonomic inflation can also become an obstacle for effective conservation.

11.
Evol Appl ; 17(5): e13639, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38721592

RESUMO

Genetic assessment of species that have experienced dramatic population declines provides critical information that is instrumental for the design of conservation recovery programs. Here, we use different sources of molecular data (mtDNA and ddRAD-seq) to evaluate the genetic status of wild and captive populations of marbled teal (Marmaronetta angustirostris), a duck species classified as critically endangered in Spain and near threatened at a global scale. First, we determined the evolutionary and demographic trajectories of the wild population from Spain and the currently much larger population from Iraq, which is also the documented source of European zoo stocks. Second, we evaluated the suitability of the different captive populations for ongoing restocking programs in Spain and assessed their potential impact on the genetic composition of wild populations. Populations from Spain and Iraq were assigned to distinct genetic clusters, albeit with an overall low level of genetic differentiation, in line with their recent divergence (<8000 years ago) and lack of phylogeographic structure in the species. Demogenomic inferences revealed that the two populations have experienced parallel demographic trajectories, with a marked bottleneck during the last glacial period followed by a sudden demographic expansion and stability since the onset of the Holocene. The wild population from Spain presented high levels of inbreeding, but we found no evidence of recent genetic bottlenecks compatible with the human-driven decline of the species during the past century. The captive populations from the two Spanish centers involved in restocking programs showed genetic introgression from European zoos; however, we found limited evidence of introgression from the zoo genetic stock into the wild population from Spain, suggesting captive-bred birds have limited breeding success in the wild. Our study illustrates how ex situ conservation programs should consider the genetic distinctiveness of populations when establishing breeding stocks and highlights the importance of genetically assessing captive populations prior to reinforcement actions.

12.
Front Microbiol ; 15: 1389859, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721599

RESUMO

Some Brucella spp. are important pathogens. According to the latest prokaryotic taxonomy, the Brucella genus consists of facultative intracellular parasitic Brucella species and extracellular opportunistic or environmental Brucella species. Intracellular Brucella species include classical and nonclassical types, with different species generally exhibiting host preferences. Some classical intracellular Brucella species can cause zoonotic brucellosis, including B. melitensis, B. abortus, B. suis, and B. canis. Extracellular Brucella species comprise opportunistic or environmental species which belonged formerly to the genus Ochrobactrum and thus nowadays renamed as for example Brucella intermedia or Brucella anthropi, which are the most frequent opportunistic human pathogens within the recently expanded genus Brucella. The cause of the diverse phenotypic characteristics of different Brucella species is still unclear. To further investigate the genetic evolutionary characteristics of the Brucella genus and elucidate the relationship between its genomic composition and prediction of phenotypic traits, we collected the genomic data of Brucella from the NCBI Genome database and conducted a comparative genomics study. We found that classical and nonclassical intracellular Brucella species and extracellular Brucella species exhibited differences in phylogenetic relationships, horizontal gene transfer and distribution patterns of mobile genetic elements, virulence factor genes, and antibiotic resistance genes, showing the close relationship between the genetic variations and prediction of phenotypic traits of different Brucella species. Furthermore, we found significant differences in horizontal gene transfer and the distribution patterns of mobile genetic elements, virulence factor genes, and antibiotic resistance genes between the two chromosomes of Brucella, indicating that the two chromosomes had distinct dynamics and plasticity and played different roles in the survival and evolution of Brucella. These findings provide new directions for exploring the genetic evolutionary characteristics of the Brucella genus and could offer new clues to elucidate the factors influencing the phenotypic diversity of the Brucella genus.

13.
Evol Appl ; 17(5): e13695, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38721593

RESUMO

Recent developments within the IUCN and the Convention on Biological Diversity have affirmed the increasingly key role that effective population size (N e) and the effective size: census size ratio (N e/N) play in applied conservation and management of global biodiversity. This paper reviews and synthesizes information regarding the definition of N e and demographic and genetic methods for estimating effective size, census size, and their ratio. Emphasis is on single-generation estimates of contemporary N e/N, which are the most informative for practical applications. It is crucial to clearly define which individuals are included in the census size (N). Defining N as the number of adults alive at a given time facilitates comparisons across species. For a wide range of applications and experimental designs, inbreeding N e is simpler to calculate and interpret than variance N e. Effects of skewed sex ratio are generally modest, so most reductions to N e/N arise from overdispersed (greater-than-Poisson) variance in offspring number (σk2). Even when fecundity changes with age, overdispersed within-age variance generally contributes most to overall σk2, and both random and deterministic (mediated by selection) factors can be important. Most species are age-structured, so it is important to distinguish between effective size per generation (N e) and the effective number of breeders in one season or year (N b). Both N e and N b are important for applied conservation and management. For iteroparous species, a key metric is variance in lifetime reproductive success (σk•2), which can be affected by a variety of additional factors, including variation in longevity, skip or intermittent breeding, and persistent individual differences in reproductive success. Additional factors that can be important for some species are also discussed, including mating systems, population structure, sex reversal, reproductive compensation, captive propagation, and delayed maturity.

14.
J Neurochem ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722169

RESUMO

This preface introduces the Journal of Neurochemistry Special Issue on Advances in Epilepsy Research. Epilepsy is a devastating disease characterized by recurrent seizures. Despite the addition of numerous therapeutics over the last few decades epilepsy patients resistant to standard of care treatments remains stubbornly high. This highlights a clear unmet clinical need and the importance of new research into this disease. One major advance over the last two decades has been the recognition that genetic factors play a significant role in the underlying pathogenesis of epilepsy. Much of our insights into the pathogenic mechanisms underlying genetic epilepsy has come from research into genes that encode ion channels. In this issue, there are up-to-date reviews discussing epilepsy caused by variation in HCN channels, voltage-dependent sodium channels, voltage-dependent calcium channels, and GABAA receptors. The reviews highlight our understanding of the genotype-phenotype relationships and the identification of precision medicine approaches. Complimenting this is a review on metabolic aspects modulating ion channels in genetic disease. This issue also has fundamental research manuscripts investigating how currently approved drugs may rescue NMDA receptor dysfunction and how in vitro neuron cultures can be used to probe network scale deficits and drug impacts in SCN2A disease. Other primary data manuscripts include those focusing on metabolic therapies, gut microbiota, and new in vivo screening tools for identifying novel anti-seizure drugs. Collectively, manuscripts published as part of this edition highlight recent research gains, especially in our understanding of genetic causes of epilepsy involving ion channels.

15.
Fam Cancer ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722431

RESUMO

Some patients with metastatic prostate cancer carry a pathogenic germline variant (PV) in a gene, that is mainly associated with an increased risk of breast cancer in women. If they test positive for such a PV, prostate cancer patients are encouraged to disclose the genetic test result to relatives who are at risk in case the carrier status changes the relatives' medical care. Our study aimed to investigate how men who learned they carry a PV in BRCA1, BRCA2, PALB2, CHEK2 or ATM disclosed their carrier status to at-risk relatives and to assess the possible psychological burden for the carrier and their perception of the burden for relatives. In total, 23 men with metastatic prostate cancer carrying a PV completed the IRI questionnaire about family communication; 14 also participated in a semi-structured interview. Patients felt highly confident in discussing the genetic test result with relatives. The diagnosis of prostate cancer was experienced as a burden, whereas being informed about genetic testing results did in most cases not add to this burden. Two patients encountered negative experiences with family communication, as they considered the genetic test result to be more urgent than their relatives. This mixed-methods study shows that metastatic prostate cancer patients with a PV in genes mainly associated with increased risk of breast cancer feel well-equipped to communicate about this predisposition in their families. Carriers felt motivated to disclose their genetic test result to relatives. Most of them indicated that the disclosure was not experienced as a psychological burden.

16.
Plant J ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722594

RESUMO

Brassica carinata (BBCC) commonly referred to as Ethiopian mustard is a natural allotetraploid containing the genomes of Brassica nigra (BB) and Brassica oleracea (CC). It is an oilseed crop endemic to the northeastern regions of Africa. Although it is under limited cultivation, B. carinata is valuable as it is resistant/highly tolerant to most of the pathogens affecting widely cultivated Brassica species of the U's triangle. We report a chromosome-scale genome assembly of B. carinata accession HC20 using long-read Oxford Nanopore sequencing and Bionano optical maps. The assembly has a scaffold N50 of ~39.8 Mb and covers ~1.11 Gb of the genome. We compared the long-read genome assemblies of the U's triangle species and found extensive gene collinearity between the diploids and allopolyploids with no evidence of major gene losses. Therefore, B. juncea (AABB), B. napus (AACC), and B. carinata can be regarded as strict allopolyploids. We cataloged the nucleotide-binding and leucine-rich repeat immune receptor (NLR) repertoire of B. carinata and, identified 465 NLRs, and compared these with the NLRs in the other Brassica species. We investigated the extent and nature of early-generation genomic interactions between the constituent genomes of B. carinata and B. juncea in interspecific crosses between the two species. Besides the expected recombination between the constituent B genomes, extensive homoeologous exchanges were observed between the A and C genomes. Interspecific crosses, therefore, can be used for transferring disease resistance from B. carinata to B. juncea and broadening the genetic base of the two allotetraploid species.

17.
J Genet Genomics ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723744

RESUMO

Drought is a natural disaster that has a profound impact on global agricultural production, significantly reduces crop yields and thereby poses a severe threat to worldwide food security. Addressing the challenge of effectively improving crop drought resistance (DR) to mitigate yield loss under drought conditions is a global issue. An optimal root system architecture (RSA) plays a pivotal role in enhancing crops' capacity to efficiently uptake water and nutrients, which consequently strengthens their resilience against environmental stresses. In this review, we discuss the compositions and roles of crop RSA and summarize the most recent developments in augmenting drought tolerance in crops by manipulating RSA-related genes. Based on current research, we propose the potential optimal RSA configuration that could be helpful in enhancing crop DR. Lastly, we discussed the existing challenges and future directions for breeding crops with enhanced DR capabilities through genetic improvements targeting RSA.

18.
Chest ; 165(5): e133-e136, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38724151

RESUMO

We describe the case of a young 33-year-old woman that was referred to our clinic for evidence of migrant cavitary nodules at CT scan, dyspnea, and blood sputum. Her physical examination showed translucent and thin skin, evident venous vascular pattern, vermilion of the lip thin, micrognathia, thin nose, and occasional Raynaud phenomenon. We prescribed another CT scan that showed multiple pulmonary nodules in both lungs, some of which had evidence of cavitation. Because bronchoscopy was not diagnostic, we decided to perform surgical lung biopsy. At histologic examination, we found the presence of irregularly shaped, but mainly not dendritic, foci of ossification that often contained bone marrow and were embedded or surrounded by tendinous-like fibrous tissue. After incorporating data from the histologic examination, we decided to perform genetic counseling and genetic testing with the use of whole-exome sequencing. The genetic test revealed a heterozygous de novo missense mutation of COL3A1 gene, which encodes for type III collagen synthesis, and could cause vascular Ehlers-Danlos syndrome.


Assuntos
Colágeno Tipo III , Hemoptise , Tomografia Computadorizada por Raios X , Humanos , Feminino , Adulto , Hemoptise/etiologia , Hemoptise/diagnóstico , Colágeno Tipo III/genética , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/complicações , Síndrome de Ehlers-Danlos/genética , Diagnóstico Diferencial , Mutação de Sentido Incorreto , Nódulos Pulmonares Múltiplos/diagnóstico , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Pulmão/patologia
19.
J Med Genet ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38724174

RESUMO

POT1 is the second most frequently reported gene (after CDKN2A) in familial melanoma. Pathogenic variants are associated with earlier onset and/or multiple primary melanomas (MPMs). To date, POT1 phenotypical reports have been largely restricted to associated malignancies, and description of the dermatological landscape has been limited. We identified 10 variants in n=18 of 384 (4.7%) unrelated individuals (n=13 MPMs; n=5 single primary melanomas) of European ancestry. Five variants were rare (minor allele frequency <0.001) or novel (two loss-of-function (LOF), one splice acceptor and two missense) and were predicted to be functionally significant, in five unrelated probands with MPMs (≥3 melanomas). We performed three-dimensional total body photography on both individuals with confirmed pathogenic LOF variants to characterise the dermatological phenotype. Total body naevus counts (≥2 mm diameter) were significantly higher (p=7.72×10-12) in carriers compared with a control population. Majority of naevi were on the probands' back and lower limb regions, where only mild to moderate ultraviolet (UV) damage was observed. Conversely, the head/neck region, where both probands exhibited severe UV damage, had comparably fewer naevi. We hypothesise that carriage of functionally significant POT1 variants is associated with increased naevus counts generally, and naevi >5 mm in diameter specifically and the location of these are independent of UV damage.

20.
J Med Genet ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38724173

RESUMO

BACKGROUND: Adolescent idiopathic scoliosis (AIS), the predominant genetic-influenced scoliosis, results in spinal deformities without vertebral malformations. However, the molecular aetiology of AIS remains unclear. METHODS: Using genome/exome sequencing, we studied 368 patients with severe AIS (Cobb angle >40°) and 3794 controls from a Han Chinese cohort. We performed gene-based and pathway-based weighted rare variant association tests to assess the mutational burden of genes and established biological pathways. Differential expression analysis of muscle tissues from 14 patients with AIS and 15 controls was served for validation. RESULTS: SLC16A8, a lactate transporter linked to retinal glucose metabolism, was identified as a novel severe AIS-associated gene (p=3.08E-06, false discovery rate=0.009). Most AIS cases with deleterious SLC16A8 variants demonstrated early onset high myopia preceding scoliosis. Pathway-based burden test also revealed a significant enrichment in multiple carbohydrate metabolism pathways, especially galactose metabolism. Patients with deleterious variants in these genes demonstrated a significantly larger spinal curve. Genes related to catabolic processes and nutrient response showed divergent expression between AIS cases and controls, reinforcing our genomic findings. CONCLUSION: This study uncovers the pivotal role of genetic variants in carbohydrate metabolism in the development of AIS, unveiling new insights into its aetiology and potential treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...