Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Vaccines (Basel) ; 12(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39204008

RESUMO

PARVAX is a genetic vaccine platform based on an adeno-associated vector that has demonstrated to elicit potent, durable, and protective immunity in nonhuman primates (NHPs) after a single dose. Here, we assessed vaccine immunogenicity following a PARVAX prime-boost regimen against SARS-CoV-2. In mice, a low-dose prime followed by a higher-dose boost elicited potent neutralizing antibody responses and distinct cross-reactivity profiles, depending on the antigen used in the booster vaccine. However, the potent neutralizing anti-vector antibody responses developed in mice limited the dose that could be administered as a prime. We further explored the re-administration efficacy in NHPs primed with a SARS-CoV-2 Delta vaccine and boosted with an Omicron BA.1 vaccine at week 15, after the primary response peak antibody levels were reached. The boost elicited an increase in antibodies against several Omicron variants, but no increase was detected in the antibody titers for other variants. The anti-vector responses were low and showed some increased subsequent boosts but generally declined over time. The potent prime vaccination limited the detection of the boosting effect, and therefore, the effect of anti-vector immunity was not fully elucidated. These data show that PARVAX can be effectively re-administered and induce a novel antigenic response.

2.
J Mol Biol ; 435(23): 168297, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37797831

RESUMO

The history of DNA vaccine began as early as the 1960s with the discovery that naked DNA can transfect mammalian cells in vivo. In 1992, the evidence that such transfection could lead to the generation of antigen-specific antibody responses was obtained and supported the development of this technology as a novel vaccine platform. The technology then attracted immense interest and high hopes in vaccinology, as evidence of high immunogenicity and protection against virulent challenges accumulated from several animal models for several diseases. In particular, the capacity to induce T-cell responses was unprecedented in non-live vaccines. However, the technology suffered its major knock when the success in animals failed to translate to humans, where DNA vaccine candidates were shown to be safe but remained poorly immunogenic, or not associated with clinical benefit. Thanks to a thorough exploration of the molecular mechanisms of action of these vaccines, an impressive range of approaches have been and are currently being explored to overcome this major challenge. Despite limited success so far in humans as compared with later genetic vaccine technologies such as viral vectors and mRNA, DNA vaccines are not yet optimised for human use and may still realise their potential.


Assuntos
Vacinas de DNA , Animais , Humanos , Vetores Genéticos , Linfócitos T/imunologia , Vacinas de DNA/história , Vacinas de DNA/imunologia
3.
Cells ; 12(17)2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37681891

RESUMO

In recent years, there has been a surge of interest in tumor microenvironment-associated cancer vaccine therapies. These innovative treatments aim to activate and enhance the body's natural immune response against cancer cells by utilizing specific antigens present in the tumor microenvironment. The goal is to achieve a complete clinical response, where all measurable cancer cells are either eliminated or greatly reduced in size. With their potential to revolutionize cancer treatment, these therapies represent a promising avenue for researchers and clinicians alike. Despite over 100 years of research, the success of therapeutic cancer vaccines has been variable, particularly in advanced cancer patients, with various limitations, including the heterogeneity of the tumor microenvironment, the presence of immunosuppressive cells, and the potential for tumor escape mechanisms. Additionally, the effectiveness of these therapies may be limited by the variability of the patient's immune system response and the difficulty in identifying appropriate antigens for each patient. Despite these challenges, tumor microenvironment-targeted vaccine cancer therapies have shown promising results in preclinical and clinical studies and have the potential to become a valuable addition to current cancer treatment and "curative" options. While chemotherapeutic and monoclonal antibody treatments remain popular, ongoing research is needed to optimize the design and delivery of these therapies and to identify biomarkers that can predict response and guide patient selection. This comprehensive review explores the mechanisms of cancer vaccines, various delivery methods, and the role of adjuvants in improving treatment outcomes. It also discusses the historical background of cancer vaccine research and examines the current state of major cancer vaccination immunotherapies. Furthermore, the limitations and effectiveness of each vaccine type are analyzed, providing insights into the future of cancer vaccine development.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Vacinas Anticâncer/uso terapêutico , Imunoterapia , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Anticorpos Monoclonais , Neoplasias/terapia
4.
Mol Biotechnol ; 65(5): 669-698, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36462102

RESUMO

Lipidic carriers are composed of natural, synthetic, or physiological lipid/phospholipid materials. The flexibility of lipid-based delivery systems for transferring a variety of molecules such as immunomodulators, antigens, and drugs play a key role in design of effective vaccination and therapeutic strategies against infectious and non-infectious diseases. Genetic and subunit vaccines are two major groups of promising vaccines that have the potential for improving the protective potency against different diseases. These vaccine strategies rely greatly on delivery systems with various functions, including cargo protection, targeted delivery, high bioavailability, controlled release of antigens, selective induction of antigen-specific humoral or cellular immune responses, and low side effects. Lipidic carriers play a key role in local tissue distribution, retention, trafficking, uptake and processing by antigen-presenting cells. Moreover, lipid nanoparticles have successfully achieved to the clinic for the delivery of mRNA. Their broad potential was shown by the recent approval of COVID-19 mRNA vaccines. However, size, charge, architecture, and composition need to be characterized to develop a standard lipidic carrier. Regarding the major roles of lipid-based delivery systems in increasing the efficiency and safety of vaccine strategies against different diseases, this review concentrates on their recent advancements in preclinical and clinical trials.


Assuntos
COVID-19 , Humanos , Vacinas de Subunidades Antigênicas , Vacinação , Células Apresentadoras de Antígenos , Lipídeos
5.
Heliyon ; 8(10): e10775, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36212004

RESUMO

We used mouse CRC cell line (MC38) to establish a heterotopic mouse model, and applied [89Zr]-labeled PD-L1 antibody KN035 for PET imaging. Attenuated Salmonella typhimurium 3261 was used as an anti-tumor vaccine, and the combined anti-tumor immunotherapy with bivalent genetic vaccine and anti-PD1 antibody Nivolumab was conducted. MicroPET was performed to observe the changes of tumor tissues and expression of PD-L1. We found that the recombinant double-gene plasmids were stably expressed in COS7 cells. Study results showed the combined immunotherapy improved the effectiveness over genetic vaccine alone. This study supports that combination of genetic vaccines and anti-immunocheckpoint immunotherapy can inhibit MC38 tumor growth.

6.
Mol Ther ; 30(9): 2952-2967, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35546782

RESUMO

The COVID-19 pandemic continues to have devastating consequences on health and economy, even after the approval of safe and effective vaccines. Waning immunity, the emergence of variants of concern, breakthrough infections, and lack of global vaccine access and acceptance perpetuate the epidemic. Here, we demonstrate that a single injection of an adenoassociated virus (AAV)-based COVID-19 vaccine elicits at least 17-month-long neutralizing antibody responses in non-human primates at levels that were previously shown to protect from viral challenge. To improve the scalability of this durable vaccine candidate, we further optimized the vector design for greater potency at a reduced dose in mice and non-human primates. Finally, we show that the platform can be rapidly adapted to other variants of concern to robustly maintain immunogenicity and protect from challenge. In summary, we demonstrate this class of AAV can provide durable immunogenicity, provide protection at dose that is low and scalable, and be adapted readily to novel emerging vaccine antigens thus may provide a potent tool in the ongoing fight against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2).


Assuntos
COVID-19 , Vacinas Virais , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Dependovirus/genética , Humanos , Macaca , Camundongos , Pandemias/prevenção & controle , SARS-CoV-2/genética
7.
Viruses ; 14(4)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35458550

RESUMO

The SARS-CoV-2 pandemic has had a disastrous impact on global health. Although some vaccine candidates have been effective in combating SARS-CoV-2, logistical, economical, and sociological aspects still limit vaccine access globally. Recently, we reported on two room-temperature stable AAV-based COVID-19 vaccines that induced potent and protective immunogenicity following a single injection in murine and primate models. Obesity and old age are associated with increased mortality in COVID-19, as well as reduced immunogenicity and efficacy of vaccines. Here, we investigated the effectiveness of the AAVCOVID vaccine candidates in murine models of obesity and aging. Results demonstrate that obesity did not significantly alter the immunogenicity of either vaccine candidate. In aged mice, vaccine immunogenicity was impaired. These results suggest that AAV-based vaccines may have limitations in older populations and may be equally applicable in obese and non-obese populations.


Assuntos
COVID-19 , Vacinas , Idoso , Envelhecimento , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Modelos Animais de Doenças , Humanos , Camundongos , Obesidade , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
8.
Expert Rev Vaccines ; 20(12): 1549-1560, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34582298

RESUMO

Introduction: Coronavirus outbreak 2019 (COVID-19) has affected all the corners of the globe and created chaos to human life. In order to put some control on the pandemic, vaccines are urgently required that are safe, cost effective, easy to produce, and most importantly induce appropriate immune responses and protection against viral infection. DNA vaccines possess all these features and are promising candidates for providing protection against SARS-CoV-2.Area covered: Current understanding and advances in DNA vaccines toward COVID-19, especially those under various stages of clinical trials.Expert opinion: Through DNA vaccines, host cells are momentarily transformed into factories that produce proteins of the SARS-CoV-2. The host immune system detects these proteins to develop antibodies that neutralize and prevent the infection. This vaccine platform has additional benefits compared to traditional vaccination strategies like strong cellular immune response, higher safety margin, a simple production process as per cGMP norms, lack of any infectious agent, and a robust platform for large-scale production.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacinas de DNA , COVID-19/prevenção & controle , Humanos , Vacinação
9.
Semin Immunol ; 50: 101430, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-33262065

RESUMO

Since the discovery in 1796 by Edward Jenner of vaccinia virus as a way to prevent and finally eradicate smallpox, the concept of using a virus to fight another virus has evolved into the current approaches of viral vectored genetic vaccines. In recent years, key improvements to the vaccinia virus leading to a safer version (Modified Vaccinia Ankara, MVA) and the discovery that some viruses can be used as carriers of heterologous genes encoding for pathological antigens of other infectious agents (the concept of 'viral vectors') has spurred a new wave of clinical research potentially providing for a solution for the long sought after vaccines against major diseases such as HIV, TB, RSV and Malaria, or emerging infectious diseases including those caused by filoviruses and coronaviruses. The unique ability of some of these viral vectors to stimulate the cellular arm of the immune response and, most importantly, T lymphocytes with cell killing activity, has also reawakened the interest toward developing therapeutic vaccines against chronic infectious diseases and cancer. To this end, existing vectors such as those based on Adenoviruses have been improved in immunogenicity and efficacy. Along the same line, new vectors that exploit viruses such as Vesicular Stomatitis Virus (VSV), Measles Virus (MV), Lymphocytic choriomeningitis virus (LCMV), cytomegalovirus (CMV), and Herpes Simplex Virus (HSV), have emerged. Furthermore, technological progress toward modifying their genome to render some of these vectors incompetent for replication has increased confidence toward their use in infant and elderly populations. Lastly, their production process being the same for every product has made viral vectored vaccines the technology of choice for rapid development of vaccines against emerging diseases and for 'personalised' cancer vaccines where there is an absolute need to reduce time to the patient from months to weeks or days. Here we review the recent developments in viral vector technologies, focusing on novel vectors based on primate derived Adenoviruses and Poxviruses, Rhabdoviruses, Paramixoviruses, Arenaviruses and Herpesviruses. We describe the rationale for, immunologic mechanisms involved in, and design of viral vectored gene vaccines under development and discuss the potential utility of these novel genetic vaccine approaches in eliciting protection against infectious diseases and cancer.


Assuntos
Vacinas Anticâncer/imunologia , Vetores Genéticos , Neoplasias/imunologia , Vacinas Virais/imunologia , Viroses/imunologia , Vírus/genética , Animais , Humanos , Imunidade , Vacinação
10.
Front Microbiol ; 11: 591019, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33250878

RESUMO

Although replication-defective human adenovirus type 5 (Ad5) vectors that express in situ the capsid-encoding region of foot-and-mouth disease virus (FMDV) have been proven to be effective as vaccines in relevant species for several viral strains, the same result was not consistently achieved for the O1/Campos/Brazil/58 strain. In the present study, an optimization of the Ad5 system was explored and was proven to enhance the expression of FMDV capsid proteins and their association into virus-like particles (VLPs). Particularly, we engineered a novel Ad5 vector (Ad5[PVP2]OP) which harbors the foreign transcription unit in a leftward orientation relative to the Ad5 genome, and drives the expression of the FMDV sequences from an optimized cytomegalovirus (CMV) enhancer-promoter as well. The Ad5[PVP2]OP vaccine candidate also contains the amino acid substitutions S93F/Y98F in the VP2 protein coding sequence, predicted to stabilize FMD virus particles. Cells infected with the optimized vector showed an ∼14-fold increase in protein expression as compared to cells infected with an unmodified Ad5 vector tested in previous works. Furthermore, amino acid substitutions in VP2 protein allowed the assembly of FMDV O1/Campos/Brazil/58 VLPs. Evaluation of several serological parameters in inoculated mice with the optimized Ad5[PVP2]OP candidate revealed an enhanced vaccine performance, characterized by significant higher titers of neutralizing antibodies, as compared to our previous unmodified Ad5 vector. Moreover, 94% of the mice vaccinated with the Ad5[PVP2]OP candidate were protected from homologous challenge. These results indicate that both the optimized protein expression and the stabilization of the in situ generated VLPs improved the performance of Ad5-vectored vaccines against the FMDV O1/Campos/Brazil/58 strain and open optimistic expectations to be tested in target animals.

11.
Methods Mol Biol ; 2060: 111-130, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31617175

RESUMO

HSV-1 amplicon vectors have been used as platforms for the generation of genetic vaccines against both DNA and RNA viruses. Mice vaccinated with such vectors encoding structural proteins from both foot-and-mouth disease virus and rotavirus were partially protected from challenge with wild-type virus (D'Antuono et al., Vaccine 28:7363-7372, 2010; Laimbacher et al., Mol Ther 20:1810-1820, 2012; Meier et al., Int J Mol Sci 18:431, 2017), indicating that HSV-1 amplicon vectors are attractive tools for the development of complex and safe genetic vaccines.This chapter describes the preparation and testing of HSV-1 amplicon vectors that encode individual or multiple viral structural proteins from a polycistronic transgene cassette. We further put particular emphasis on generating virus-like particles (VLPs) in vector-infected cells. Expression of viral genes is confirmed by Western blot and immune fluorescence analysis and generation of VLPs in vector-infected cells is demonstrated by electron microscopy. Furthermore, examples on how to analyze the immune response in a mouse model and possible challenge experiments are described.


Assuntos
Vetores Genéticos , Herpesvirus Humano 1 , Transdução Genética , Vacinas Virais , Animais , Chlorocebus aethiops , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/imunologia , Humanos , Camundongos , Células Vero , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia
12.
J Transl Med ; 16(1): 349, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30537967

RESUMO

BACKGROUND: we have recently shown that Tel-eVax, a genetic vaccine targeting dog telomerase (dTERT) and based on Adenovirus (Ad)/DNA Electro-Gene-Transfer (DNA-EGT) technology can induce strong immune response and increase overall survival (OS) of dogs affected by multicentric Diffuse Large B cell Lymphoma (DLBCL) when combined to COP therapy in a double-arm study. Here, we have utilized a clinically validated device for veterinary electroporation called Vet-ePorator™, based on Cliniporator™ technology currently utilized and approved in Europe for electrochemotherapy applications and adapted to electrogenetransfer (EGT). METHODS: 17 dogs affected by DLBCL were vaccinated using two Ad vector injections (Prime phase) followed by DNA-EGT (Boost phase) by means of a Vet-ePorator™ device and treated in the same time with a 27-week Madison Wisconsin CHOP protocol. The immune response was measured by ELISA assays using pool of peptides. RESULTS: No significant adverse effects were observed. The OS of vaccine/CHOP animals was 64.5 weeks, in line with the previous study. Dogs developed antibodies against the immunizing antigen. CONCLUSIONS: Tel-eVax in combination with CHOP is safe and immunogenic in lymphoma canine patients. These data confirm the therapeutic efficacy of dTERT vaccine and hold promise for the treatment of dogs affected by other cancer types. More importantly, our findings may translate to human clinical trials and represent new strategies for cancer treatment.


Assuntos
Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Linfoma Difuso de Grandes Células B/terapia , Linfoma Difuso de Grandes Células B/veterinária , Telomerase/metabolismo , Animais , Formação de Anticorpos/imunologia , Protocolos de Quimioterapia Combinada Antineoplásica , Ciclofosfamida , Cães , Doxorrubicina , Feminino , Estimativa de Kaplan-Meier , Cinética , Linfoma Difuso de Grandes Células B/imunologia , Masculino , Prednisona , Análise de Sobrevida , Vacinação , Vincristina
13.
Virus Res ; 250: 104-113, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29684409

RESUMO

To study the roles of hypervariable regions (HVRs) in receptor-binding subunit S1 of the spike protein, we manipulated the genome of the IBV Beaudette strain using a reverse genetics system to construct seven recombinant strains by separately or simultaneously replacing the three HVRs of the Beaudette strain with the corresponding fragments from a QX-like nephropathogenic isolate ck/CH/LDL/091022 from China. We characterized the growth properties of these recombinant IBVs in Vero cells and embryonated eggs, and their pathogenicity, tropism, and serotypes in specific pathogen-free (SPF) chickens. All seven recombinant IBVs proliferated in Vero cells, but the heterogenous HVRs could reduce their capacity for adsorption during in vitro infection. The recombinant IBVs did not significantly increase the pathogenicity compared with the Beaudette strain in SPF chickens, and they still shared the same serotype as the Beaudette strain, but the antigenic relatedness values between the recombinant strain and Beaudette strain generally decreased with the increase in the number of the HVRs exchanged. The results of this study demonstrate the functions of HVRs and they may help to develop a vaccine candidate, as well as providing insights into the prevention and control of IBV.


Assuntos
Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Tropismo Viral , Animais , Galinhas/virologia , Chlorocebus aethiops , Genoma Viral , Genótipo , Filogenia , Recombinação Genética , Genética Reversa , Sorogrupo , Células Vero , Virulência , Replicação Viral
14.
Oncotarget ; 9(1): 178-191, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29416605

RESUMO

Dickkopf-1 (DKK1) is an ideal target for the immunotherapy of multiple myeloma. Heat Shock protein70 (HSP70) is a class of important molecular chaperone to promote antigen presentation. Homologous xenogeneic antigens can enhance immunogenicity and induce stronger anti-tumor immune response than that of allogeneic ones. Therefore, we constructed human DKK1 and human HSP70 DNA fusion vaccine (hDKK1-hHSP70), and then determined its anti-tumor immuno- genicity and anti-tumor effects on immunizing BALB/c mice already inoculated with NS-1 murine multiple myeloma cells in prophylactic and therapeutic models using cytotoxic T lymphocytes, enzyme-lined immunosorbent assay, flow cytometry, immunohistochemistry and Hochest staining. The side effects of vaccines were also monitored. We found that hDKK1-hHSP70 fusion vaccine could significantly inhibit tumor growth and prolonged the survival of the mice, whether prophylactic or therapeutic immunotherapy in vivo, by eliciting both humoral and cellular tumor-specific immune responses. A significant decrease of proliferation and increase of apoptosis were also observed in the tumor tissues injected with hDKK1-hHSP70 vaccine. These findings showed the xenogeneic homologous vaccination had stronger immunogenicity and minimal toxicity. Our study may provide an effective and safety immonutheraphy strategy for multiple myeloma.

15.
J Control Release ; 265: 120-131, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-28254630

RESUMO

Microneedle devices have been proposed as a minimally invasive delivery system for the intradermal administration of nucleic acids, both plasmid DNA (pDNA) and siRNA, to treat localised disease or provide vaccination. Different microneedle types and application methods have been investigated in the laboratory, but limited and irreproducible levels of gene expression have proven to be significant challenges to pre-clinical to clinical progression. This study is the first to explore the potential of a hollow microneedle device for the delivery and subsequent expression of pDNA in human skin. The regulatory approved MicronJet600® (MicronJet hereafter) device was used to deliver reporter plasmids (pCMVß and pEGFP-N1) into viable excised human skin. Exogenous gene expression was subsequently detected at multiple locations that were distant from the injection site but within the confines of the bleb created by the intradermal bolus. The observed levels of gene expression in the tissue are at least comparable to that achieved by the most invasive microneedle application methods e.g. lateral application of a microneedle. Gene expression was predominantly located in the epidermis, although also evident in the papillary dermis. Optical coherence tomography permitted real time visualisation of the sub-surface skin architecture and, unlike a conventional intradermal injection, MicronJet administration of a 50µL bolus appears to create multiple superficial microdisruptions in the papillary dermis and epidermis. These were co-localised with expression of the pCMVß reporter plasmid. We have therefore shown, for the first time, that a hollow microneedle device can facilitate efficient and reproducible gene expression of exogenous naked pDNA in human skin using volumes that are considered to be standard for intradermal administration, and postulate a hydrodynamic effect as the mechanism of gene delivery.


Assuntos
Técnicas de Transferência de Genes , Agulhas , Pele/metabolismo , Administração Cutânea , Técnicas de Cultura de Células , Linhagem Celular , Derme/metabolismo , Epiderme/metabolismo , Expressão Gênica , Humanos , Hidrodinâmica , Injeções Intradérmicas , Microinjeções , RNA Interferente Pequeno/metabolismo , Absorção Cutânea , Distribuição Tecidual , Transfecção/métodos
16.
Vaccine ; 34(25): 2821-33, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27109565

RESUMO

Human hepatitis B virus (HBV) core antigen (HBcAg) can act as an adjuvant in hepatitis C virus (HCV)-based DNA vaccines. Since two billion people are, or have been, in contact with HBV, one may question the use of human HBV sequences as adjuvant. We herein evaluated non-human stork hepatitis B virus core gene-sequences from stork as DNA vaccine adjuvants. Full-length and fragmented stork HBcAg gene-sequences were added to an HCV non-structural (NS) 3/4A gene (NS3/4A-stork-HBcAg). This resulted in an enhanced priming of HCV-specific IFN-γ and IL-2 responses in both wild-type (wt)- and NS3/4A-transgenic (Tg) mice, the latter with dysfunctional NS3/4A-specific T cells. The NS3/4A-stork-HBcAg vaccine primed NS3/4A-specific T cells in hepatitis B e antigen (HBeAg)-Tg mice with dysfunctional T cells to HBcAg and HBeAg. Repeated immunizations boosted expansion of IFN-γ and IL-2-producing NS3/4A-specific T cells in wt- and NS3/4A-Tg mice. Importantly, NS3/4A-stork-HBcAg-DNA induced in vivo long-term functional memory T cell responses, whose maintenance required CD4(+) T cells. Thus, avian HBcAg gene-sequences from stork can effectively act as a DNA vaccine adjuvant. This technology can most likely be universally expanded to other genetic vaccine antigens, as this completely avoids the use of sequences from a human virus where a pre-existing immunity may interfere with its adjuvant effect.


Assuntos
Adjuvantes Imunológicos/farmacologia , Hepadnaviridae/imunologia , Antígenos do Núcleo do Vírus da Hepatite B/imunologia , Hepatite C/prevenção & controle , Vacinas de DNA/imunologia , Vacinas contra Hepatite Viral/imunologia , Proteínas não Estruturais Virais/imunologia , Animais , Aves , Feminino , Células Hep G2 , Hepacivirus , Humanos , Imunização Secundária , Interferon gama/imunologia , Interleucina-12/administração & dosagem , Interleucina-2/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Linfócitos T/imunologia
17.
Vaccine ; 31(39): 4247-51, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-23523407

RESUMO

Diseases such as HIV/AIDS, tuberculosis, malaria and cancer are prime targets for prophylactic or therapeutic vaccination, but have proven partially or wholly resistant to traditional approaches to vaccine design. New vaccines based on recombinant viral vectors expressing a foreign antigen are under intense development for these and other indications. One of the most advanced and most promising vectors is the attenuated, non-replicating poxvirus MVA (modified vaccinia virus Ankara), a safer derivative of the uniquely successful smallpox vaccine. Despite the ability of recombinant MVA to induce potent humoral and cellular immune responses against transgenic antigen in humans, especially when used as the latter element of a heterologous prime-boost regimen, doubts are occasionally expressed about the ultimate feasibility of this approach. In this review, five common misconceptions over recombinant MVA are discussed, and evidence is cited to show that recombinant MVA is at least sufficiently genetically stable, manufacturable, safe, and immunogenic (even in the face of prior anti-vector immunity) to warrant reasonable hope over the feasibility of large-scale deployment, should useful levels of protection against target pathogens, or therapeutic benefit for cancer, be demonstrated in efficacy trials.


Assuntos
Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Animais , Vetores Genéticos , Humanos , Neoplasias/terapia , Vacinação , Vacinas Atenuadas , Vacinas de DNA/efeitos adversos , Vacinas de DNA/genética , Vacinas de DNA/uso terapêutico , Vaccinia virus/genética , Vaccinia virus/imunologia , Vacinas Virais/efeitos adversos , Vacinas Virais/genética
18.
Braz. j. med. biol. res ; 40(11): 1495-1504, Nov. 2007. graf
Artigo em Inglês | LILACS | ID: lil-464311

RESUMO

We previously reported that a DNA vaccine constructed with the heat shock protein (HSP65) gene from Mycobacterium leprae (DNA-HSP65) was protective and also therapeutic in experimental tuberculosis. By the intramuscular route, this vaccine elicited a predominant Th1 response that was consistent with its protective efficacy against tuberculosis. It has been suggested that the immune response to Hsp60/65 may be the link between exposure to microorganisms and increased cardiovascular risk. Additionally, the high cholesterol levels found in atherosclerosis could modulate host immunity. In this context, we evaluated if an atherogenic diet could modulate the immune response induced by the DNA-HSP65 vaccine. C57BL/6 mice (4-6 animals per group) were initially submitted to a protocol of atherosclerosis induction and then immunized by the intramuscular or intradermal route with 4 doses of 100 mug DNA-HSP65. On day 150 (15 days after the last immunization), the animals were sacrificed and antibodies and cytokines were determined. Vaccination by the intramuscular route induced high levels of anti-Hsp65 IgG2a antibodies, but not anti-Hsp65 IgG1 antibodies and a significant production of IL-6, IFN-g and IL-10, but not IL-5, indicating a Th1 profile. Immunization by the intradermal route triggered a mixed pattern (Th1/Th2) characterized by synthesis of anti-Hsp65 IgG2a and IgG1 antibodies and production of high levels of IL-5, IL-6, IL-10, and IFN-g. These results indicate that experimentally induced atherosclerosis did not affect the ability of DNA-HSP65 to induce a predominant Th1 response that is potentially protective against tuberculosis.


Assuntos
Animais , Feminino , Camundongos , Aterosclerose/imunologia , Proteínas de Bactérias/imunologia , Chaperoninas/imunologia , Células Th1/imunologia , Vacinas contra a Tuberculose/imunologia , Vacinas de DNA/imunologia , Autoanticorpos/sangue , Autoanticorpos/imunologia , Proteínas de Bactérias/administração & dosagem , Chaperoninas/administração & dosagem , Citocinas/sangue , Citocinas/imunologia , Dieta Aterogênica , Injeções Intradérmicas , Injeções Intramusculares , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Organismos Livres de Patógenos Específicos , Vacinas contra a Tuberculose/administração & dosagem , Tuberculose/imunologia , Tuberculose/prevenção & controle , Vacinas de DNA/administração & dosagem
19.
Artigo em Inglês | LILACS, VETINDEX | ID: lil-453697

RESUMO

The efficacy of BCG vaccine (attenuated Mycobacterium bovis) against pulmonary tuberculosis varies enormously among different populations. The prevailing hypothesis attributes this variation to interactions between the vaccine and mycobacteria common in the environment. Studies have revealed that most protective antigens expressed by the antituberculous vaccine are conserved in M. avium, supporting the hypothesis that exposure to environmental mycobacteria generates a cross-reactive immune response that interferes with BCG efficacy. In this study we investigated the effect of a prior exposure to heat-killed M. avium on the immune response and the protective efficacy induced by a genetic vaccine pVAXhsp65 (hsp65 gene from M. leprae inserted in pVAX vector) against experimental tuberculosis. To evaluate the effect on the immune response, female BALB/c mice were initially injected with distinct doses (0.08x106, 4x106, and 200x106) of heat-killed M. avium by subcutaneous route. Three weeks later, the animals were immunized with 3 doses of DNAhsp65 by intramuscular route (100µg/15 days apart). Control groups received only M. avium, vaccine (pVAXhsp65), vector (pVAX) or saline solution. Cytokine production and antibody levels were determined by ELISA. To evaluate the effect on the protective efficacy, animals were initially sensitized with 200x106 heat-killed CFU of M. avium by subcutaneous route and then immunized with 3 doses of pVAXhsp65 (100µg/15 days apart) by intramuscular route. Control groups were injected with saline, pVAX (4 doses), pVAXhsp65 (4 doses), M. avium or M. avium plus pVAX (3 doses). Fifteen days after last DNA dose, the animals were infected with 1x104 viable CFU of H37Rv M. tuberculosis by intratracheal route. Thirty days after challenge, the animals were sacrificed and the bacterial burden was determined by counting the number of CFU in the lungs. Lung histological sections were also analyzed. Splenic cells from primed animals produced more IL-5 but less IFN-gamma than non-primed ones. Also, prior contact with M. avium determined higher production of IgG1 and IgG2a anti-hsp65 antibodies in comparison to control groups. However, this higher immune response did not decrease the bacterial burden in the lungs. In addition, prior sensitization with M. avium decreased the parenchyma preservation observed in the group immunized only with pVaxhsp65. These results indicate that environmental mycobacteria can interfere with immunity and protective efficacy induced by DNAhsp65.(AU)


Assuntos
Tuberculose , Vacinas de DNA , Mycobacterium avium , Imunidade , Anticorpos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA