Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1445365, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224843

RESUMO

Asteraceae, the largest family of angiosperms, has attracted widespread attention for its exceptional medicinal, horticultural, and ornamental value. However, researches on Asteraceae plants face challenges due to their intricate genetic background. With the continuous advancement of sequencing technology, a vast number of genomes and genetic resources from Asteraceae species have been accumulated. This has spurred a demand for comprehensive genomic analysis within this diverse plant group. To meet this need, we developed the Asteraceae Genomics Database (AGD; http://cbcb.cdutcm.edu.cn/AGD/). The AGD serves as a centralized and systematic resource, empowering researchers in various fields such as gene annotation, gene family analysis, evolutionary biology, and genetic breeding. AGD not only encompasses high-quality genomic sequences, and organelle genome data, but also provides a wide range of analytical tools, including BLAST, JBrowse, SSR Finder, HmmSearch, Heatmap, Primer3, PlantiSMASH, and CRISPRCasFinder. These tools enable users to conveniently query, analyze, and compare genomic information across various Asteraceae species. The establishment of AGD holds great significance in advancing Asteraceae genomics, promoting genetic breeding, and safeguarding biodiversity by providing researchers with a comprehensive and user-friendly genomics resource platform.

2.
J Integr Plant Biol ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109967

RESUMO

Pineapple is the third most crucial tropical fruit worldwide and available in five varieties. Genomes of different pineapple varieties have been released to date; however, none of them are complete, with all exhibiting substantial gaps and representing only two of the five pineapple varieties. This significantly hinders the advancement of pineapple breeding efforts. In this study, we sequenced the genomes of three varieties: a wild pineapple variety, a fiber pineapple variety, and a globally cultivated edible pineapple variety. We constructed the first gap-free reference genome (Ref) for pineapple. By consolidating multiple sources of evidence and manually revising each gene structure annotation, we identified 26,656 protein-coding genes. The BUSCO evaluation indicated a completeness of 99.2%, demonstrating the high quality of the gene structure annotations in this genome. Utilizing these resources, we identified 7,209 structural variations across the three varieties. Approximately 30.8% of pineapple genes were located within ±5 kb of structural variations, including 30 genes associated with anthocyanin synthesis. Further analysis and functional experiments demonstrated that the high expression of AcMYB528 aligns with the accumulation of anthocyanins in the leaves, both of which may be affected by a 1.9-kb insertion fragment. In addition, we developed the Ananas Genome Database, which offers data browsing, retrieval, analysis, and download functions. The construction of this database addresses the lack of pineapple genome resource databases. In summary, we acquired a seamless pineapple reference genome with high-quality gene structure annotations, providing a solid foundation for pineapple genomics and a valuable reference for pineapple breeding.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38733902

RESUMO

Nutritional metabolic diseases in fish frequently arise in the setting of intensive aquaculture. The etiology and pathogenesis of these conditions involve energy metabolic disorders influenced by both internal genetic factors and external environmental conditions. The exploration of genes associated with nutritional and metabolic disorder has sparked considerable interest within both the aquaculture scientific community and the industry. High-throughput sequencing technology offers researchers extensive genetic information. Effectively mining, analyzing, and securely storing this data is crucial, especially for advancing disease prevention and treatment strategies. Presently, the exploration and application of gene databases concerning nutritional and metabolic disorders in fish are at a nascent stag. Therefore, this study focused on the model organism zebrafish and five primary economic fish species as the subjects of investigation. Using information from KEGG, OMIM, and existing literature, a novel gene database associated with nutritional metabolic diseases in fish was meticulously constructed. This database encompassed 4583 genes for Danio rerio, 6287 for Cyprinus carpio, 3289 for Takifugu rubripes, 3548 for Larimichthys crocea, 3816 for Oreochromis niloticus, and 5708 for Oncorhynchus mykiss. Through a comparative systems biology approach, we discerned a relatively high conservation of genes linked to nutritional metabolic diseases across these fish species, with over 54.9 % of genes being conserved throughout all six species. Additionally, the analysis pinpointed the existence of 13 species-specific genes within the genomes of large yellow croaker, tilapia, and rainbow trout. These genes exhibit the potential to serve as novel candidate targets for addressing nutritional metabolic diseases.


Assuntos
Bases de Dados Genéticas , Peixes , Genômica , Doenças Metabólicas , Animais , Doenças Metabólicas/genética , Peixes/genética , Doenças dos Peixes/genética , Peixe-Zebra/genética
4.
Front Plant Sci ; 15: 1310346, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444537

RESUMO

Wolfberry, also known as goji berry or Lycium barbarum, is a highly valued fruit with significant health benefits and nutritional value. For more efficient and comprehensive usage of published L. barbarum genomic data, we established the Wolfberry database. The utility of the Wolfberry Genome Database (WGDB) is highlighted through the Genome browser, which enables the user to explore the L. barbarum genome, browse specific chromosomes, and access gene sequences. Gene annotation features provide comprehensive information about gene functions, locations, expression profiles, pathway involvement, protein domains, and regulatory transcription factors. The transcriptome feature allows the user to explore gene expression patterns using transcripts per kilobase million (TPM) and fragments per kilobase per million mapped reads (FPKM) metrics. The Metabolism pathway page provides insights into metabolic pathways and the involvement of the selected genes. In addition to the database content, we also introduce six analysis tools developed for the WGDB. These tools offer functionalities for gene function prediction, nucleotide and amino acid BLAST analysis, protein domain analysis, GO annotation, and gene expression pattern analysis. The WGDB is freely accessible at https://cosbi7.ee.ncku.edu.tw/Wolfberry/. Overall, WGDB serves as a valuable resource for researchers interested in the genomics and transcriptomics of L. barbarum. Its user-friendly web interface and comprehensive data facilitate the exploration of gene functions, regulatory mechanisms, and metabolic pathways, ultimately contributing to a deeper understanding of wolfberry and its potential applications in agronomy and nutrition.

5.
Animals (Basel) ; 13(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37370449

RESUMO

Cytochrome P450 is an important enzyme that metabolizes a variety of chemicals, including exogenous substances, such as drugs and environmental chemicals, and endogenous substances, such as steroids, fatty acids, and cholesterol. Some CYPs show interspecific differences in terms of genetic variation. As little is known about the mechanisms of elephant metabolism, we carried out a comparative genomic and phylogenetic analysis of CYP in elephants. Our results suggest that elephant CYP genes have undergone independent duplication, particularly in the CYP2A, CYP2C, and CYP3A genes, a unique cluster specific to elephant species. However, while CYP2E and CYP4A were conserved in other Afrotheria taxa, their decay in elephants resulted in genetic dysfunction (pseudogene). These findings outline several remarkable characteristics of elephant CYP1-4 genes and provide new insights into elephant xenobiotic metabolism. Further functional investigations are necessary to characterize elephant CYP, including expression patterns and interactions with drugs and sensitivities to other chemicals.

6.
Genetics ; 224(4)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37119810

RESUMO

Rare diseases individually affect relatively few people, but as a group they impact considerable numbers of people. The Rat Genome Database (https://rgd.mcw.edu) is a knowledgebase that offers resources for rare disease research. This includes disease definitions, genes, quantitative trail loci (QTLs), genetic variants, annotations to published literature, links to external resources, and more. One important resource is identifying relevant cell lines and rat strains that serve as models for disease research. Diseases, genes, and strains have report pages with consolidated data, and links to analysis tools. Utilizing these globally accessible resources for rare disease research, potentiating discovery of mechanisms and new treatments, can point researchers toward solutions to alleviate the suffering of those afflicted with these diseases.


Assuntos
Genoma , Doenças Raras , Ratos , Animais , Genoma/genética , Doenças Raras/genética , Doenças Raras/terapia , Bases de Dados Genéticas
7.
Genetics ; 224(1)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36930729

RESUMO

The Rat Genome Database (RGD, https://rgd.mcw.edu) has evolved from simply a resource for rat genetic markers, maps, and genes, by adding multiple genomic data types and extensive disease and phenotype annotations and developing tools to effectively mine, analyze, and visualize the available data, to empower investigators in their hypothesis-driven research. Leveraging its robust and flexible infrastructure, RGD has added data for human and eight other model organisms (mouse, 13-lined ground squirrel, chinchilla, naked mole-rat, dog, pig, African green monkey/vervet, and bonobo) besides rat to enhance its translational aspect. This article presents an overview of the database with the most recent additions to RGD's genome, variant, and quantitative phenotype data. We also briefly introduce Virtual Comparative Map (VCMap), an updated tool that explores synteny between species as an improvement to RGD's suite of tools, followed by a discussion regarding the refinements to the existing PhenoMiner tool that assists researchers in finding and comparing quantitative data across rat strains. Collectively, RGD focuses on providing a continuously improving, consistent, and high-quality data resource for researchers while advancing data reproducibility and fulfilling Findable, Accessible, Interoperable, and Reusable (FAIR) data principles.


Assuntos
Bases de Dados Genéticas , Genoma , Animais , Camundongos , Humanos , Cães , Suínos , Chlorocebus aethiops , Reprodutibilidade dos Testes , Genômica , Oligopeptídeos
8.
Artigo em Inglês | MEDLINE | ID: mdl-36182081

RESUMO

Wild carnivorans are one of the most important species due to their high positions in the food chain. They are also highly affected by numerous environmental contaminants through bioaccumulation and biomagnification. Xenobiotic metabolism is a significant chemical defense system from xenobiotics because it degrades the activity of a wide range of chemicals, generally into less active forms, resulting in their deactivation. Sulfotransferases (SULTs) are one of the most important xenobiotic metabolic enzymes, which catalyze the sulfonation of a variety of endogenous and exogenous chemicals, such as hormones, neurotransmitters, and a wide range of xenobiotic compounds. Although SULTs are of such high importance, little research has focused on these enzymes in wild carnivorans. In this study, we clarified the genetic properties of SULTs in a wide range of mammals, focusing on carnivorans, using in silico genetic analyses. We found genetic deficiencies of SULT1E1 and SULT1D1 isoforms in all pinnipeds analyzed and nonsense mutations in SULT1Cs in several carnivorans including pinnipeds. We further investigated the enzymatic activity of SULT1E1 in vitro using liver cytosols from pinnipeds. Using a SULT1E1 probe substrate, we found highly limited estradiol sulfonation in pinnipeds, whereas other mammals had relatively high sulfation. These results suggest that pinnipeds have severely or completely absent SULT1E1 activity, which importantly catalyzes the metabolism of estrogens, drugs, and environmental toxins. This further implies a high susceptibility to a wide range of xenobiotics in these carnivorans, which are constantly exposed to environmental chemicals throughout their lifetime.


Assuntos
Caniformia , Xenobióticos , Animais , Xenobióticos/metabolismo , Caniformia/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo , Inativação Metabólica , Variação Genética
9.
Comput Struct Biotechnol J ; 21: 3327-3338, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38213885

RESUMO

Soybean (Glycine max (L.) Merr.) is a globally significant crop, widely cultivated for oilseed production and animal feeds. In recent years, the rapid growth of multi-omics data from thousands of soybean accessions has provided unprecedented opportunities for researchers to explore genomes, genetic variations, and gene functions. To facilitate the utilization of these abundant data for soybean breeding and genetic improvement, the SoybeanGDB database (https://venyao.xyz/SoybeanGDB/) was developed as a comprehensive platform. SoybeanGDB integrates high-quality de novo assemblies of 39 soybean genomes and genomic variations among thousands of soybean accessions. Genomic information and variations in user-specified genomic regions can be searched and downloaded from SoybeanGDB, in a user-friendly manner. To facilitate research on genetic resources and elucidate the biological significance of genes, SoybeanGDB also incorporates a variety of bioinformatics analysis modules with graphical interfaces, such as linkage disequilibrium analysis, nucleotide diversity analysis, allele frequency analysis, gene expression analysis, primer design, gene set enrichment analysis, etc. In summary, SoybeanGDB is an essential and valuable resource that provides an open and free platform to accelerate global soybean research.

10.
BMC Genomics ; 23(1): 855, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575383

RESUMO

BACKGROUND: As the amount of genomic data continues to grow, there is an increasing need for systematic ways to organize, explore, compare, analyze and share this data. Despite this, there is a lack of suitable platforms to meet this need. RESULTS: OpenGenomeBrowser is a self-hostable, open-source platform to manage access to genomic data and drastically simplifying comparative genomics analyses. It enables users to interactively generate phylogenetic trees, compare gene loci, browse biochemical pathways, perform gene trait matching, create dot plots, execute BLAST searches, and access the data. It features a flexible user management system, and its modular folder structure enables the organization of genomic data and metadata, and to automate analyses. We tested OpenGenomeBrowser with bacterial, archaeal and yeast genomes. We provide a docker container to make installation and hosting simple. The source code, documentation, tutorials for OpenGenomeBrowser are available at opengenomebrowser.github.io and a demo server is freely accessible at opengenomebrowser.bioinformatics.unibe.ch . CONCLUSIONS: To our knowledge, OpenGenomeBrowser is the first self-hostable, database-independent comparative genome browser. It drastically simplifies commonly used bioinformatics workflows and enables convenient as well as fast data exploration.


Assuntos
Gerenciamento de Dados , Genômica , Filogenia , Genoma , Biologia Computacional , Software
11.
Life (Basel) ; 12(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36431028

RESUMO

For more than a decade, next-generation sequencing (NGS) has been emerging as the mainstay of agrigenomics research. High-throughput technologies have made it feasible to facilitate research at the scale and cost required for using this data in livestock research. Scale frameworks of sequencing for agricultural and livestock improvement, management, and conservation are partly attributable to innovative informatics methodologies and advancements in sequencing practices. Genome-wide sequence-based investigations are often conducted worldwide, and several databases have been created to discover the connections between worldwide scientific accomplishments. Such studies are beginning to provide revolutionary insights into a new era of genomic prediction and selection capabilities of various domesticated livestock species. In this concise review, we provide selected examples of the current state of sequencing methods, many of which are already being used in animal genomic studies, and summarize the state of the positive attributes of genome-based research for cattle (Bos taurus), sheep (Ovis aries), pigs (Sus scrofa domesticus), horses (Equus caballus), chickens (Gallus gallus domesticus), and ducks (Anas platyrhyncos). This review also emphasizes the advantageous features of sequencing technologies in monitoring and detecting infectious zoonotic diseases. In the coming years, the continued advancement of sequencing technologies in livestock agrigenomics will significantly influence the sustained momentum toward regulatory approaches that encourage innovation to ensure continued access to a safe, abundant, and affordable food supplies for future generations.

12.
Animals (Basel) ; 12(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36359081

RESUMO

UDP-glucuronosyltransferases (UGTs) are one of the most important enzymes for xenobiotic metabolism or detoxification. Through duplication and loss of genes, mammals evolved the species-specific variety of UGT isoforms. Among mammals, Carnivora is one of the orders that includes various carnivorous species, yet there is huge variation of food habitat. Recently, lower activity of UGT1A and 2B were shown in Felidae and pinnipeds, suggesting evolutional loss of these isoforms. However, comprehensive analysis for genetic or evolutional features are still missing. This study was conducted to reveal evolutional history of UGTs in Carnivoran species. We found specific gene expansion of UGT1As in Canidae, brown bear and black bear. We also found similar genetic duplication in UGT2Bs in Canidae, and some Mustelidae and Ursidae. In addition, we discovered contraction or complete loss of UGT1A7-12 in phocids, some otariids, felids, and some Mustelids. These studies indicate that even closely related species have completely different evolution of UGTs and further imply the difficulty of extrapolation of the pharmacokinetics and toxicokinetic result of experimental animals into wildlife carnivorans.

13.
Front Bioinform ; 2: 869150, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304298

RESUMO

The Pathway Tools (PTools) software provides a suite of capabilities for storing and analyzing integrated collections of genomic and metabolic information in the form of organism-specific Pathway/Genome Databases (PGDBs). A microbial community is represented in PTools by generating a PGDB from each metagenome-assembled genome (MAG). PTools computes a metabolic reconstruction for each organism, and predicts its operons. The properties of individual MAGs can be investigated using the many search and visualization operations within PTools. PTools also enables the user to investigate the properties of the microbial community by issuing searches across the full community, and by performing comparative operations across genome and pathway information. The software can generate a metabolic network diagram for the community, and it can overlay community omics datasets on that network diagram. PTools also provides a tool for searching for metabolic transformation routes across an organism community.

14.
Animals (Basel) ; 12(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36290207

RESUMO

Cytochrome P450s are among the most important xenobiotic metabolism enzymes that catalyze the metabolism of a wide range of chemicals. Through duplication and loss events, CYPs have created their original feature of detoxification in each mammal. We performed a comprehensive genomic analysis to reveal the evolutionary features of the main xenobiotic metabolizing family: the CYP1-3 families in Carnivora. We found specific gene expansion of CYP2Cs and CYP3As in omnivorous animals, such as the brown bear, the black bear, the dog, and the badger, revealing their daily phytochemical intake as providing the causes of their evolutionary adaptation. Further phylogenetic analysis of CYP2Cs revealed Carnivora CYP2Cs were divided into CYP2C21, 2C41, and 2C23 orthologs. Additionally, CYP3As phylogeny also revealed the 3As' evolution was completely different to that of the Caniformia and Feliformia taxa. These studies provide us with fundamental genetic and evolutionary information on CYPs in Carnivora, which is essential for the appropriate interpretation and extrapolation of pharmacokinetics or toxicokinetic data from experimental mammals to wild Carnivora.

15.
Biology (Basel) ; 11(10)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36290362

RESUMO

Seaweeds are multicellular marine macroalgae with natural compounds that have potential anticancer activity. To date, the identification of those compounds has relied on purification and assay, yet few have been documented. Additionally, the genomes and associated proteomes of edible seaweeds that have been identified thus far are scattered among different resources and with no systematic summary available, which hinders the development of a large-scale omics analysis. To enable this, we constructed a comprehensive genomics resource for the edible seaweeds. These data could be used for systematic metabolomics and a proteome search for anti-cancer compound and peptides. In brief, we integrated and annotated 12 publicly available edible seaweed genomes (8 species and 268,071 proteins). In addition, we integrate the new seaweed genomic resources with established cancer bioinformatics pipelines to help identify potential seaweed proteins that could help mitigate the development of cancer. We present 7892 protein domains that were predicted to be associated with cancer proteins based on a protein domain-domain interaction. The most enriched protein families were associated with protein phosphorylation and insulin signalling, both of which are recognised to be crucial molecular components for patient survival in various cancers. In addition, we found 6692 seaweed proteins that could interact with over 100 tumour suppressor proteins, of which 147 are predicted to be secreted proteins. In conclusion, our genomics resource not only may be helpful in exploring the genomics features of these edible seaweed but also may provide a new avenue to explore the molecular mechanisms for seaweed-associated inhibition of human cancer development.

16.
Front Plant Sci ; 13: 852291, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092435

RESUMO

Brassica oleracea is an important species due to its high economic and nutritional value. Moreover, it is an ideal model for studies of morphology and genome evolution. In the genomic era, with massive "omics" data being generated, a high-efficiency platform is crucial to deepen our understanding of this important species. In this study, we developed the B. oleracea Genome Database (BoGDB) to consolidate genome, transcriptome, and metabolome data of B. oleracea cultivars, providing the first cross-omics platform for B. oleracea. In order to make full use of the multi-omics data, BoGDB integrates multiple functional modules, including "Gene Search," "Heatmap," "Genome Browser," "Genome," "Tools," "Metabolic," and "Variation," which provides a user-friendly platform for genomic and genetic research and molecular design breeding of B. oleracea crops. In addition, BoGDB will continue to collect new genomic data of B. oleracea and integrate them into BoGDB when higher-quality genomic data are released.

17.
Front Plant Sci ; 13: 916550, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958219

RESUMO

Chinese chestnut (Castanea mollissima Blume) is one of the earliest domesticated plants of high nutritional and ecological value, yet mechanisms of C. mollissima underlying its growth and development are poorly understood. Although individual chestnut species differ greatly, the molecular basis of the formation of their characteristic traits remains unknown. Though the draft genomes of chestnut have been previously released, the pan-genome of different variety needs to be studied. We report the genome sequence of three cultivated varieties of chestnut herein, namely Hei-Shan-Zhai-7 (H7, drought-resistant variety), Yan-Hong (YH, easy-pruning variety), and Yan-Shan-Zao-Sheng (ZS, early-maturing variety), to expedite convenience and efficiency in its genetics-based breeding. We obtained three chromosome-level chestnut genome assemblies through a combination of Oxford Nanopore technology, Illumina HiSeq X, and Hi-C mapping. The final genome assemblies are 671.99 Mb (YH), 790.99 Mb (ZS), and 678.90 Mb (H7), across 12 chromosomes, with scaffold N50 sizes of 50.50 Mb (YH), 65.05 Mb (ZS), and 52.16 Mb (H7). Through the identification of homologous genes and the cluster analysis of gene families, we found that H7, YH and ZS had 159, 131, and 91 unique gene families, respectively, and there were 13,248 single-copy direct homologous genes in the three chestnut varieties. For the convenience of research, the chestnut genome database was constructed. Based on the results of gene family identification, the presence/absence variations (PAVs) information of the three sample genes was calculated, and a total of 2,364, 2,232, and 1,475 unique genes were identified in H7, YH and ZS, respectively. Our results suggest that the GBSS II-b gene family underwent expansion in chestnut (relative to nearest source species). Overall, we developed high-quality and well-annotated genome sequences of three C. mollissima varieties, which will facilitate clarifying the molecular mechanisms underlying important traits, and shortening the breeding process.

18.
Methods Mol Biol ; 2542: 55-69, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36008656

RESUMO

The Candida Genome Database provides access to biological information about genes and proteins of several medically important Candida species. The website is organized into easily navigable pages that enable data retrieval and analysis. This chapter shows how to explore the CGD Home page and Locus Summary pages, which are the main access points to the database. It also provides a description of how to use the GO analysis tools, GO Term Finder, and GO Slim Mapper and how to browse large-scale datasets using the JBrowse genome browser. Finally, it shows how to search and retrieve data for user-defined sets of genes using the Advanced Search and Batch Download tools.


Assuntos
Candida , Bases de Dados Genéticas , Candida/genética , Genoma , Armazenamento e Recuperação da Informação , Software
19.
Patterns (N Y) ; 3(9): 100562, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-35818472

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome data are essential for epidemiology, vaccine development, and tracking emerging variants. Millions of SARS-CoV-2 genomes have been sequenced during the pandemic. However, downloading SARS-CoV-2 genomes from databases is slow and unreliable, largely due to suboptimal choice of compression method. We evaluated the available compressors and found that Nucleotide Archival Format (NAF) would provide a drastic improvement compared with current methods. For Global Initiative on Sharing Avian Flu Data's (GISAID) pre-compressed datasets, NAF would increase efficiency 52.2 times for gzip-compressed data and 3.7 times for xz-compressed data. For DNA DataBank of Japan (DDBJ), NAF would improve throughput 40 times for gzip-compressed data. For GenBank and European Nucleotide Archive (ENA), NAF would accelerate data distribution by a factor of 29.3 times compared with uncompressed FASTA. This article provides a tutorial for installing and using NAF. Offering a NAF download option in sequence databases would provide a significant saving of time, bandwidth, and disk space and accelerate biological and medical research worldwide.

20.
Front Microbiol ; 13: 839524, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401459

RESUMO

Rhizoctonia solani is a collective group of genetically and pathologically diverse basidiomycetous fungi that damage economically important crops. Its isolates are classified into 13 Anastomosis Groups (AGs) and subgroups having distinctive morphology and host ranges. The genetic factors driving the unique features of R. solani pathology are not well characterized due to the limited availability of its annotated genomes. Therefore, we performed genome sequencing, assembly, annotation and functional analysis of 12 R. solani isolates covering 7 AGs and select subgroups (AG1-IA; AG1-IB; AG1-IC; AG2-2IIIB; AG3-PT, isolates Rhs 1AP and the hypovirulent Rhs1A1; AG3-TB; AG4-HG-I, isolates Rs23 and R118-11; AG5; AG6; and AG8), in which six genomes are reported for the first time. Using a pangenome comparative analysis of 12 R. solani isolates and 15 other Basidiomycetes, we defined the unique and shared secretomes, CAZymes, and effectors across the AGs. We have also elucidated the R. solani-derived factors potentially involved in determining AG-specific host preference, and the attributes distinguishing them from other Basidiomycetes. Finally, we present the largest repertoire of R. solani genomes and their annotated components as a comprehensive database, viz. RsolaniDB, with tools for large-scale data mining, functional enrichment and sequence analysis not available with other state-of-the-art platforms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA