Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Biochem Biophys Res Commun ; 738: 150507, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39154550

RESUMO

Wnt signaling plays an essential role in cellular processes like development, maturation, and function maintenance. Xenopus laevis oocytes are a suitable model to study not only the development but also the function of different receptors expressed in their membranes, like those receptors expressed in the central nervous system (CNS) including Frizzled 7. Here, using frog oocytes and recordings of endogenous membrane currents in a two-electrode path configuration along with morphological observations, we evaluated the role of the non-canonical Wnt-5a ligand in oocytes. We found that acute application of Wnt-5a generated changes in endogenous calcium-dependent currents, entry oscillatory current, the membrane's outward current, and induced membrane depolarization. The incubation of oocytes with Wnt-5a caused a reduction of the membrane potential, potassium outward current, and protected the ATP current in the epithelium/theca removed (ETR) model. The oocytes exposed to Wnt-5a showed increased viability and an increase in the percentage of the germinal vesicle breakdown (GVBD), at a higher level than the control with progesterone. Altogether, our results suggest that Wnt-5a modulates different aspects of oocyte structure and generates calcium-dependent endogenous current alteration and GVDB process with a change in membrane potential at different concentrations and times of the exposition. These results help to understand the cellular effect of Wnt-5a and present the use of Xenopus oocytes to explore the mechanism that could impact the activation of Wnt signaling.

2.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674059

RESUMO

The oocyte competence of prepubertal females is lower compared to that of adults, mainly because they originate from small follicles. In adult females, the germinal vesicle (GV) and epidermal growth factor receptor (EGFR) have been associated with oocyte competence. This study aimed to analyze GV chromatin configuration and EGFR expression in prepubertal goat and sheep oocytes obtained from small (<3 mm) and large (≥3 mm) follicles and compare them with those from adults. GV chromatin was classified from diffuse to condensed as GV1, GVn, and GVc for goats and NSN, SN, and SNE for sheep. EGFR was quantified in cumulus cells (CCs) by Western blotting and in oocytes by immunofluorescence. Oocytes from prepubertal large follicles and adults exhibited highly condensed chromatin in goats (71% and 69% in GVc, respectively) and sheep (59% and 75% in SNE, respectively). In both species, EGFR expression in CCs and oocytes was higher in prepubertal large follicles than in small ones. In adult females, EGFR expression in oocytes was higher than in prepubertal large follicles. In conclusion, GV configuration and EGFR expression in CCs and oocytes were higher in the large than small follicles of prepubertal females.


Assuntos
Cromatina , Receptores ErbB , Cabras , Oócitos , Animais , Feminino , Cromatina/metabolismo , Células do Cúmulo/metabolismo , Receptores ErbB/metabolismo , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Ovinos
3.
Zebrafish ; 21(2): 171-176, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621215

RESUMO

The transgenic (TG) zebrafish allows researchers to bio-image specific biological phenomena in cells and tissues in vivo. We established TG lines to monitor changes in the ovaries of live fish. The original TG line with ovarian fluorescence was occasionally established. Although the cDNA integrated into the line was constructed for the expression of enhanced green fluorescent protein (EGFP) driven by the medaka ß-actin promoter, the expression of EGFP is restricted to the oocytes and gills in adult fish. Furthermore, we found that germinal vesicles (GVs) in oocytes of the established line can be observed by relatively strong fluorescence around the GV. In this study, we tried to capture the dynamic processes of germinal vesicle breakdown (GVBD) during meiotic cell division using the GV fluorescent oocytes. As a result, GV migration and GVBD could be monitored in real time. We also succeeded in observing actin filaments involved in the migration of GV to the animal pole. This strain can be used for education in the process of oocyte meiotic cell division.


Assuntos
Ectoderma/embriologia , Estruturas Embrionárias , Ovário , Peixe-Zebra , Feminino , Animais , Oócitos , Animais Geneticamente Modificados , Divisão Celular
4.
Anim Sci J ; 95(1): e13943, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578008

RESUMO

Cryopreservation of oocytes is an important technology for the in vitro gene banking of female germplasm. Although slow freezing is not feasible, porcine oocytes survive vitrification at high rates. Cryopreservation at the germinal vesicle stage appears to be more advantageous than that at the metaphase-II stage. Several factors are considered to affect the success of vitrification and subsequent utilization of immature porcine oocytes such as the device, the protocols for cryoprotectant application, warming, and the post-warming culture. Although live piglets could be obtained from vitrified immature oocytes, their competence to develop to the blastocyst stage is still reduced compared to their non-vitrified counterparts, indicating that there is room for further improvement. Vitrified oocytes suffer various types of damage and alteration which may reduce their developmental ability. Some of these can recover to some extent during subsequent culture, such as the damage of the cytoskeleton and mitochondria. Others such as premature nuclear progression, DNA damage and epigenetic alterations will require further research to be clarified and addressed. To date, the practical application of oocyte vitrification in pigs has been confined to the gene banking of a few native breeds.


Assuntos
Oócitos , Vitrificação , Suínos , Animais , Feminino , Criopreservação/veterinária , Criopreservação/métodos , Núcleo Celular , Crioprotetores/farmacologia
5.
Biol Open ; 13(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37982514

RESUMO

The ultimate aim of nuclear reprogramming is to provide stem cells or differentiated cells from unrelated cell types as a cell source for regenerative medicine. A popular route towards this is transcription factor induction, and an alternative way is an original procedure of transplanting a single somatic cell nucleus to an unfertilized egg. A third route is to transplant hundreds of cell nuclei into the germinal vesicle (GV) of a non-dividing Amphibian meiotic oocyte, which leads to the activation of silent genes in 24 h and robustly induces a totipotency-like state in almost all transplanted cells. We apply this third route for potential therapeutic use and describe a procedure by which the differentiated states of cells can be reversed so that totipotency and pluripotency gene expression are regained. Differentiated cells are exposed to GV extracts and are reprogrammed to form embryoid bodies, which shows the maintenance of stemness and could be induced to follow new directions of differentiation. We conclude that much of the reprogramming effect of eggs is already present in meiotic oocytes and does not require cell division or selection of dividing cells. Reprogrammed cells by oocytes could serve as replacements for defective adult cells in humans.


Assuntos
Oócitos , Transplante de Células-Tronco , Adulto , Animais , Humanos , Núcleo Celular , Anfíbios , Reprogramação Celular , Mamíferos
6.
J Dev Biol ; 11(4)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38132712

RESUMO

The karyosphere (karyosome) is a structure that forms in the oocyte nucleus-germinal vesicle (GV)-at the diplotene stage of meiotic prophase due to the assembly of all chromosomes in a limited portion of the GV. In some organisms, the karyosphere has an extrachromosomal external capsule, the marker protein of which is nuclear F-actin. Despite many years of theories about the formation of the karyosphere capsule (KC) in the GV of the common frog Rana temporaria, we present data that cast doubt on its existence, at least in this species. Specific extrachromosomal strands, which had been considered the main elements of the frog's KC, do not form a continuous layer around the karyosphere and, according to immunogold labeling, do not contain structural proteins, such as actin and lamin B. At the same time, F-actin is indeed noticeably concentrated around the karyosphere, creating the illusion of a capsule at the light microscopy/fluorescence level. The barrier-to-autointegration factor (BAF) and one of its functional partners-LEMD2, an inner nuclear membrane protein-are not localized in the strands, suggesting that the strands are not functional counterparts of the nuclear envelope. The presence of characteristic strands in the GV of R. temporaria late oocytes may reflect an excess of SMC1 involved in the structural maintenance of diplotene oocyte chromosomes at the karyosphere stage, since SMC1 has been shown to be the most abundant protein in the strands. Other characteristic microstructures-the so-called annuli, very similar in ultrastructure to the nuclear pore complexes-do not contain nucleoporins Nup35 and Nup93, and, therefore, they cannot be considered autonomous pore complexes, as previously thought. Taken together, our data indicate that traditional ideas about the existence of the R. temporaria KC as a special structural compartment of the GV are to be revisited.

7.
J Assist Reprod Genet ; 40(11): 2557-2564, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37725177

RESUMO

PURPOSE: This study aims to achieve the methodological improvement of rescue IVM by predicting germinal vesicle breakdown (GVBD) and optimizing the timing of ICSI. METHODS: Time lapse analysis was performed retrospectively to evaluated the relationship between the presence of AC around the nucleoli and GVBD. To find the optimal timing of ICSI, the time from the initiation of the first polar body extrusion to ICSI were measured, and the rates of fertilization at each point were calculated. RESULTS: The GVBD rate of GV stage oocytes with AC around the nucleoli was significantly higher than that of GV stage oocytes without AC. The GV stage oocytes required more time for nuclear maturation after polar body extrusion than MI oocytes, with GV stage oocytes taking 400-600 min from polar body extrusion to the optimal timing of ICSI, while the MI stage oocytes took 200-400 min. The GV stage oocytes resulted in the birth of healthy babies with the appropriate timing of ICSI. CONCLUSION: It was found that GV stage oocytes with AC around nucleoli can initiate GVBD and reach the MII stage with a high rate, and that GV stage oocytes required more time than MI stage oocytes to reach the optimal timing of ICSI. Considering these factors, ART laboratories may employ immature GV stage oocytes in routine ART procedures rather than discarding them.


Assuntos
Cromatina , Injeções de Esperma Intracitoplásmicas , Humanos , Injeções de Esperma Intracitoplásmicas/métodos , Estudos Retrospectivos , Oócitos/metabolismo , Corpos Polares
8.
Cells ; 12(15)2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37566055

RESUMO

The search for simple morphological predictors of oocyte quality is an important task for assisted reproduction technologies (ARTs). One such predictor may be the morphology of the oocyte nucleus, called the germinal vesicle (GV), including the level of chromatin aggregation around the atypical nucleolus (ANu)-a peculiar nuclear organelle, formerly referred to as the nucleolus-like body. A prospective cohort study allowed distinguishing three classes of GV oocytes among 135 oocytes retrieved from 64 patients: with a non-surrounded ANu and rare chromatin blocks in the nucleoplasm (Class A), with a complete peri-ANu heterochromatic rim assembling all chromatin (Class C), and intermediate variants (Class B). Comparison of the chromatin state and the ability of oocytes to complete meiosis allowed us to conclude that Class B and C oocytes are more capable of resuming meiosis in vitro and completing the first meiotic division, while Class A oocytes can resume maturation but often stop their development either at metaphase I (MI arrest) or before the onset of GV breakdown (GVBD arrest). In addition, oocytes with a low chromatin condensation demonstrated a high level of aneuploidy during the resumption of meiosis. Considering that the degree of chromatin condensation/compaction can be determined in vivo under a light microscope, this characteristic of the GV can be considered a promising criterion for selecting the best-quality GV oocytes in IVM rescue programs.


Assuntos
Cromatina , Oócitos , Humanos , Cromatina/metabolismo , Estudos Prospectivos , Oócitos/metabolismo , Núcleo Celular , Técnicas de Maturação in Vitro de Oócitos
9.
Cell J ; 25(7): 455-460, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37543858

RESUMO

OBJECTIVE: Some reports have indicated that conditioned medium from growing mouse embryonic stem cells (ESCs) provides a supportive condition for small follicles growing, oocyte maturation, and following embryo growth. The aim of this study is assessing in vitro maturation (IVM) and consequent in vitro fertilization (IVF) outcome of immature mouse oocytes using human embryonic stem cells conditioned medium (HESCM). MATERIALS AND METHODS: In this experimental study, 240 germinal vesicle (GV) oocytes were took from NMRI female mice, aged 4-6 weeks, 48 hours before injection of 5 IU pregnant mare serum gonadotropin (PMSG). 120 GV oocytes without cumulus cells were cultured in each of the groups. 120 GV were cultured in HESCM as test groups and also 120 GV cultured in human embryonic stem cells medium (HESM) as control groups. After evaluating the metaphase II (MII) oocyte maturation rate at 8, 16 and 24 hours, the MII oocytes subsequently were fertilized in vitro and the two-cell embryo development rate was recorded at days 1, 2, and 3. Statistical analysis was performed by using the generalized estimating equations (GEE) method that calculated their rate ratio. RESULTS: Our data indicated there are significant differences between the maturation rates in HESCM and HESM (P=0.004), also the two-cell embryo development was significant between two culture media (P=0.00). CONCLUSION: Similar to some other studies, the secretome of the HESCM showed a significant impact on the IVM outcomes in mice.

10.
Front Endocrinol (Lausanne) ; 14: 1200051, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455899

RESUMO

Introduction: Acquisition of germinal vesicle (GV) stage oocytes for fertility preservation (FP) offers several benefits over in vivo matured oocyte cryopreservation following ovarian stimulation, particularly for cancer patients necessitating immediate treatment. Two FP approaches for GV oocytes are available: vitrification before in vitro maturation (IVM) at the GV stage (GV-VI) or post-IVM at the metaphase II (MII) stage (MII-VI). The optimal method remains to be determined. Methods: In this study, mouse oocytes were collected without hormonal stimulation and vitrified either at the GV stage or the MII stage following IVM; non-vitrified in vitro matured MII oocytes served as the control (CON). The oocyte quality and developmental competence were assessed to obtain a better method for immediate FP. Results: No significant differences in IVM and survival rates were observed among the three groups. Nevertheless, GV-VI oocytes exhibited inferior quality, including abnormal spindle arrangement, mitochondrial dysfunction, and early apoptosis, compared to MII-VI and CON oocytes. Oocyte vitrification at the GV stage impacted maternal mRNA degradation during IVM. In addition, the GV-VI group demonstrated significantly lower embryonic developmental competence relative to the MII-VI group. RNA sequencing of 2-cell stage embryos revealed abnormal minor zygotic genome activation in the GV-VI group. Conclusion: Vitrification at the GV stage compromised oocyte quality and reduced developmental competence. Consequently, compared to the GV stage, oocyte vitrification at the MII stage after IVM is more suitable for patients who require immediate FP.


Assuntos
Preservação da Fertilidade , Vitrificação , Animais , Camundongos , Oócitos , Criopreservação/métodos , Desenvolvimento Embrionário
11.
Int J Mol Sci ; 24(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37511273

RESUMO

In the oocyte nucleus, called the germinal vesicle (GV) at the prolonged diplotene stage of the meiotic prophase, chromatin undergoes a global rearrangement, which is often accompanied by the cessation of its transcriptional activity. In many mammals, including mice and humans, chromatin condenses around a special nuclear organelle called the atypical nucleolus or formerly nucleolus-like body. Chromatin configuration is an important indicator of the quality of GV oocytes and largely predicts their ability to resume meiosis and successful embryonic development. In mice, GV oocytes are traditionally divided into the NSN (non-surrounded nucleolus) and SN (surrounded nucleolus) based on the specific chromatin configuration. The NSN-SN transition is a key event in mouse oogenesis and the main prerequisite for the normal development of the embryo. As for humans, there is no single nomenclature for the chromatin configuration at the GV stage. This often leads to discrepancies and misunderstandings, the overcoming of which should expand the scope of the application of mouse oocytes as a model for developing new methods for assessing and improving the quality of human oocytes. As a first approximation and with a certain proviso, the mouse NSN/SN classification can be used for the primary characterization of human GV oocytes. The task of this review is to analyze and discuss the existing classifications of chromatin configuration in mouse and human GV oocytes with an emphasis on transcriptional activity extinction at the end of oocyte growth.


Assuntos
Cromatina , Meiose , Humanos , Animais , Camundongos , Cromatina/genética , Prófase Meiótica I , Oócitos , Núcleo Celular , Mamíferos
12.
Genes (Basel) ; 14(6)2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37372413

RESUMO

Despite substantial advancements in the field of cryobiology, oocyte and embryo cryopreservation still compromise developmental competence. Furthermore, dimethyl sulfoxide (DMSO), one of the most commonly used cryoprotectants, has been found to exert potent effects on the epigenetic landscape of cultured human cells, as well as mouse oocytes and embryos. Little is known about its impact on human oocytes. Additionally, few studies investigate the effects of DMSO on transposable elements (TE), the control of which is essential for the maintenance of genomic instability. The objective of this study was to investigate the impact of vitrification with DMSO-containing cryoprotectant on the transcriptome, including on TEs, of human oocytes. Twenty-four oocytes at the GV stage were donated by four healthy women undergoing elective oocyte cryopreservation. Oocytes were paired such that half from each patient were vitrified with DMSO-containing cryoprotectant (Vitrified Cohort), while the other half were snap frozen in phosphate buffer, unexposed to DMSO (Non-Vitrified Cohort). All oocytes underwent RNA sequencing via a method with high fidelity for single cell analysis, and which allows for the analysis of TE expression through Switching Mechanism at the 5'-end of the RNA Transcript sequencing 2 (SMARTseq2), followed by functional enrichment analysis. Of the 27,837 genes identified by SMARTseq2, 7331 (26.3%) were differentially expressed (p < 0.05). There was a significant dysregulation of genes involved in chromatin and histone modification. Mitochondrial function, as well as the Wnt, insulin, mTOR, HIPPO, and MAPK signaling pathways were also altered. The expression of TEs was positively correlated with the expression of PIWIL2, DNMT3A, and DNMT3B, and negatively correlated with age. These findings suggest that the current standard process of oocyte vitrification, involving DMSO-containing cryoprotectant, induces significant transcriptome changes, including those involving TEs.


Assuntos
Dimetil Sulfóxido , Vitrificação , Humanos , Feminino , Animais , Camundongos , Dimetil Sulfóxido/farmacologia , Transcriptoma , Elementos de DNA Transponíveis/genética , Oócitos , Criopreservação/métodos , Crioprotetores/farmacologia , Proteínas Argonautas
13.
Hum Reprod ; 38(8): 1473-1483, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37344149

RESUMO

STUDY QUESTION: Which patients might benefit from insemination of delayed-matured oocytes? SUMMARY ANSWER: Delayed-matured oocytes had a ≥50% contribution to the available cohort of biopsied blastocysts in patients with advanced maternal age, low maturation, and/or low fertilization rates. WHAT IS KNOWN ALREADY: Retrieved immature oocytes that progress to the MII stage in vitro could increase the number of embryos available during ICSI cycles. However, these delayed-matured oocytes are associated with lower fertilization rates and compromised embryo quality. Data on the ploidy of these embryos are controversial, but studies failed to compare euploidy rates of embryos derived from delayed-matured oocytes to patients' own immediate mature sibling oocytes. This strategy efficiently allows to identify the patient population that would benefit from this approach. STUDY DESIGN, SIZE, DURATION: This observational study was performed between January 2019 and June 2021 including a total of 5449 cumulus oocytes complexes from 469 ovarian stimulation cycles, from which 3455 inseminated matured oocytes from ICSI (n = 2911) and IVF (n = 544) were considered as the sibling controls (MII-D0) to the delayed-matured oocytes (MII-D1) (n = 910). Euploidy rates were assessed between delayed-matured (MII-D1) and mature sibling oocytes (MII-D0) in relation to patients' clinical characteristics such as BMI, AMH, age, sperm origin, and the laboratory outcomes, maturation, fertilization, and blastocyst utilization rates. PARTICIPANTS/MATERIALS, SETTING, METHODS: A total of 390 patients undergoing IVF/ICSI, who had at least one metaphase I (MI) or germinal-vesicle (GV) oocyte on the day of oocyte collection (Day 0), which matured in 20-28 h after denudation were included. MI and GV oocytes that matured overnight were inseminated on the following day (Day 1, MII-D1) by ICSI. Only cycles planned for preimplantation genetic testing for aneuploidy using fresh own oocytes were included. MAIN RESULTS AND THE ROLE OF CHANCE: Fertilization (FR) and blastocyst utilization rates were significantly higher for MII-D0 compared to delayed-matured oocytes (MII-D1) (69.5% versus 55.9%, P < 0.001; and 59.5% versus 18.5%, P < 0.001, respectively). However, no significant difference was observed in the rate of euploid embryos between MII-D0 and MII-D1 (46.3% versus 39.0%, P = 0.163). For evaluation of the benefit of inseminating MI/GV oocytes on D1 per cycle in relation to the total number of biopsied embryos, cycles were split into three groups based on the proportion of MII-D1 embryos that were biopsied in that cycle (0%, 1-50%, and ≥50%). The results demonstrate that patients who had ≥50% contribution of delayed-matured oocytes to the available cohort of biopsied embryos were those of advanced maternal age (mean age 37.7 years), <10 oocytes retrieved presenting <34% maturation rate, and <60% fertilization rate. Every MII oocyte injected next day significantly increased the chances of obtaining a euploid embryo [odds ratio (OR) = 1.83, CI: 1.50-2.24, P < 0.001] among MII-D1. The odds of enhanced euploidy were slightly higher among the MII-D1-GV matured group (OR = 1.78, CI: 1.42-2.22, P < 0.001) than the MII-D1-MI matured group (OR = 1.54, CI: 1.25-1.89, P < 0.001). Inseminating at least eight MII-D1 would have >50% probability of getting a euploid embryo among the MII-D1 group. LIMITATIONS, REASONS FOR CAUTION: ICSI of MII-D1 was performed with the fresh or frozen ejaculates or testicular samples from the previous day. The exact timing of polar body extrusion of delayed-matured MI/GV was not identified. Furthermore, the time point of the final oocyte maturation to MII for the immature oocytes and for the oocytes inseminated by IVF could not be identified. WIDER IMPLICATIONS OF THE FINDINGS: The results of this study might provide guidance to the IVF laboratories for targeting the patient's population who would benefit from MII-D1 ICSI without adhering to unnecessary costs and workload. STUDY FUNDING/COMPETING INTEREST(S): No external funding was received for this study. There are no conflicts of interest to be declared for any of the authors. There are no patents, products in development, or marketed products to declare. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Oócitos , Sêmen , Humanos , Masculino , Aneuploidia , Blastocisto , Avaliação de Resultados em Cuidados de Saúde , Estudos Retrospectivos , Fertilização in vitro
14.
Anim Reprod ; 20(2): e20230005, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293251

RESUMO

The knowledge about the effect of salinity on the physiological mechanism of bivalve reproduction is fundamental to improve production strategies in hatcheries. The present work evaluated the influence of different salinity concentrations (15, 20, 25, 30, 35 and 40 g⋅L-1) on pre- and post-fertilization development processes in the clam, Anomalocardia flexuosa, oocytes obtained by stripping. Salinity directly interfered with the germinal vesicle breakdown (GVBD) rate and in the cellular stability of unfertilized oocytes. Salinity concentrations between 30 and 35 g⋅L-1 provided better percentages of stable GVBD within 120 min, and incubation of oocytes in the salinity range of 30-35 g⋅L-1 for a time interval of 80-120 min provided > 80% GVBD. In the post-fertilization analysis, salinity affected the rate of the extrusion of the first and second polar bodies (PB1 and PB2). The release of 50% of the PBs was faster at a salinity of 35 g⋅L-1, with an estimated time of 10 min for PB1 and 30 min for PB2. Thus, chromosome manipulation methodologies aiming triploids should be applied at 35 g⋅L-1 salinity, with application of post-fertilization shock before 10 min for PB1 retention or before 30 min for PB2 retention.

15.
Front Genet ; 14: 1097951, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37255713

RESUMO

Topoisomerase II homologue 2 (PATL2) has been confirmed to be a key gene that contributes to oocyte maturation. However, the allele distribution and carrier frequency of these mutations remain uncharacterized. So a bioinformatics subcategory analysis of PATL2 mutations from outcome data and Single Nucleotide Polymorphism (SNP) databases was conducted. Altogether, the causative PATL2 mutation number detected in patients with oocyte maturation defects in the clinical studies and pathogenic PATL2 mutation sites predicted by software based on the database was approximately 53. The estimated carrier frequency of pathogenic mutation sites was at least 1.14‰ based on the gnomAD and ExAC database, which was approximately 1/877. The highest frequency of mutations detected in the independent patients was c.223-14_223-2del13. The carrier frequency of this mutation in the population was 0.25‰, which may be a potential threat to fertility. Estimated allele and carrier frequency are relatively higher than those predicted previously based on clinical ascertainment. A review of PATL2 mutation lineage identified in 34 patients showed that 53.81%, 9.22% and 14.72% of the oocytes with PATL2 mutations were arrested at the germinal vesicle (GV) stage, metaphase I (MI) stage and first polar body stage, respectively. Oocytes that could develop to the first polar body stage were extremely rare to fertilise, and their ultimate fate was early embryonic arrest. Phenotypic variability is related to the function of the regions and degree of loss of function of PATL2 protein. A 3D protein structure changes predicted by online tools, AlphaFold, showed aberrations at the mutation sites, which may explain partially the function loss. When the mutated and wild-type proteins are not in the same amino acid category, the protein structure will be considerably unstable. The integration of additional mutation sites with phenotypes is helpful in drawing a complete picture of the disease. Bioinformatics analysis of PATL2 mutations will help reveal molecular epidemiological characteristics and provide an important reference for new mutation assessment, genetic counselling and drug research.

16.
Front Genet ; 14: 1125097, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36999055

RESUMO

Gametes are specialized cells that, at fertilization, give rise to a totipotent zygote capable of generating an entire organism. Female and male germ cells undergo meiosis to produce mature gametes; however, sex-specific events of oogenesis and spermatogenesis contribute to specific roles of gametes in reproductive issues. We investigate the differential gene expression (DGE) of meiosis-related genes in human female and male gonads and gametes in normal and pathological conditions. The transcriptome data for the DGE analysis was obtained through the Gene Expression Omnibus repository, comprising human ovary and testicle samples of the prenatal period and adulthood, additionally to male (non-obstructive azoospermia (NOA) and teratozoospermia), and female (polycystic ovary syndrome (PCOS) and advanced maternal age) reproductive conditions. Gene ontology terms related to meiosis were associated with 678 genes, of which 17 genes in common were differentially expressed between the testicle and ovary during the prenatal period and adulthood. Except for SERPINA5 and SOX9, the 17 meiosis-related genes were downregulated in the testicle during the prenatal period and upregulated in adulthood compared to the ovary. No differences were observed in the oocytes of PCOS patients; however, meiosis-related genes were differentially expressed according to the patient's age and maturity of the oocyte. In NOA and teratozoospermia, 145 meiosis-related genes were differentially expressed in comparison to the control, including OOEP; despite no recognized role in male reproduction, OOEP was co-expressed with genes related to male fertility. Taking together, these results shed light on potential genes that might be relevant to comprehend human fertility disorders.

17.
J Reprod Dev ; 69(2): 118-124, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36858514

RESUMO

Maternal RNA and proteins accumulate in mouse oocytes and regulate initial developmental stages. Sperm DNA combines with protamine, which is exchanged after fertilization with maternal histones, including H3.3; however, the effect of H3.3 on development post-fertilization remains unclear. Herein, we established an electroporation method to introduce H3.3 siRNA into germinal vesicle (GV)-stage oocytes without removing cumulus cells. Oocyte-attached cumulus cells need to be removed during the traditional microinjection method; however, we confirmed that artificially removing cumulus cells from oocytes reduced fertilization rates, and oocytes originally free of cumulus cells had reduced developmental competence. On introducing H3.3 siRNA at the GV stage, H3.3 was maintained in the maternal pronucleus and second polar body but not in the paternal pronucleus, resulting in embryonic lethality after fertilization. These findings indicate that H3.3 protein was not incorporated into the paternal pronucleus, as it was repeatedly translated and degraded over a relatively short period. Conversely, H3.3 protein incorporated into the maternal genome in the GV stage escaped degradation and remained in the maternal pronucleus after fertilization. This new method of electroporation into GV-stage oocytes without cumulus cell removal is not skill-intensive and is essential for the accurate analysis of maternal effect genes.


Assuntos
Herança Materna , Sêmen , Masculino , Camundongos , Animais , RNA Interferente Pequeno/metabolismo , Oócitos/metabolismo , Terapia com Eletroporação
18.
Exp Anim ; 72(1): 30-37, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35965079

RESUMO

It is well known that the survivability of gametes of postmortem carcass was decreased as time passes after death. In this study, it was examined whether cytoplasmic replacement rescues the survivability of germinal vesicle stage (GV) oocytes of postmortem carcass in the mouse. Reactive oxygen species (ROS) levels and mitochondria numbers in GV oocytes of the dead mice stored at 4 degrees were significantly impaired after 44 h postmortem compared to the control (0 h). However, when kayoplasts of GV oocytes of postmortem carcass was transferred to recipient ooplasts (GV transfer), proportion of in vitro maturation (IVM), normal spindle morphology, in vitro and in vivo developmental ability after in vitro fertilization (IVF) of reconstituted oocytes was improved. Moreover, secondary follicle oocytes of postmortem carcass were developed, matured and fertilized in vitro and developed to go to term, when GV transfer was conducted at the GV phase. Thus, transfer of GV karyoplast recovered from postmortem carcass, which viability was decreased, into fresh GV recipient ooplasm, rescues survivability of reconstituted oocytes. It suggested the effective use of oocytes of dead animals in the mouse and this achievement must apply to other rare animal species, especially animals under control by human.


Assuntos
Oócitos , Ovário , Feminino , Camundongos , Humanos , Animais , Fertilização , Fertilização in vitro , Mitocôndrias
19.
Zygote ; 31(2): 140-148, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36533678

RESUMO

The low maturation rate of oocytes is an important reason for female infertility and failure of assisted pregnancy. The germinal vesicle breakdown (GVBD) is a landmark event of oocyte maturation. In our previous studies, we found that zona pellucida 3 (ZP3) was strongly concentrated in the nuclear region of germinal vesicle (GV) oocytes and interacted with aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) and lamin A to promote GVBD. In the current study, we found that lamin A is mainly concentrated in the nuclear membrane. When ZP3 is knocked down, lamin A will be partially transferred to the nucleus of oocytes. The prelamin A is increased in both the nuclear membrane and nucleus, while phosphorylated lamin A (p-lamin A) is significantly reduced. AIPL1 was also proved to accumulate in the GV region of oocytes, and ZP3 deletion can significantly inhibit the aggregation of AIPL1 in the nuclear region. Similar to ZP3 knockdown, the absence of AIPL1 resulted in a decrease in the occurrence of GVBD, an increase in the amount of prelamin A, and a significant decrease in p-lamin A in oocytes developed in vitro. Finally, we propose the hypothesis that ZP3 can stabilize farnesylated prelamin A on the nuclear membrane of AIPL1, and promote its further processing into mature lamin A, therefore promoting the occurrence of GVBD. This study may be an important supplement for the mechanism of oocyte meiotic resumption and provide new diagnostic targets and treatment clues for infertility patients with oocyte maturation disorder.


Assuntos
Lamina Tipo A , Zona Pelúcida , Gravidez , Feminino , Camundongos , Animais , Zona Pelúcida/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Membrana Nuclear/metabolismo , Oócitos/metabolismo , Meiose , Proteínas Adaptadoras de Transdução de Sinal , Glicoproteínas da Zona Pelúcida/genética , Glicoproteínas da Zona Pelúcida/metabolismo
20.
Reprod Biol Endocrinol ; 20(1): 173, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539842

RESUMO

BACKGROUND: High-temperature requirement protease A2 (HtrA2/Omi) is a mitochondrial chaperone that is highly conserved from bacteria to humans. It plays an important role in mitochondrial homeostasis and apoptosis. In this study, we investigated the role of HtrA2 in mouse oocyte maturation. METHODS: The role of HtrA2 in mouse oocyte maturation was investigated by employing knockdown (KD) or overexpression (OE) of HtrA2 in young or old germinal vesicle (GV) oocytes. We employed immunoblotting, immunostaining, fluorescent intensity quantification to test the HtrA2 knockdown on the GV oocyte maturation progression, spindle assembly checkpoint, mitochondrial distribution, spindle organization, chromosome alignment, actin polymerization, DNA damage and chromosome numbers and acetylated tubulin levels. RESULTS: We observed a significant reduction in HtrA2 protein levels in aging germinal vesicle (GV) oocytes. Young oocytes with low levels of HtrA2 due to siRNA knockdown were unable to complete meiosis and were partially blocked at metaphase I (MI). They also displayed significantly more BubR1 on kinetochores, indicating that the spindle assembly checkpoint was triggered at MI. Extrusion of the first polar body (Pb1) was significantly less frequent and oocytes with large polar bodies were observed when HtrA2 was depleted. In addition, HtrA2 knockdown induced meiotic spindle/chromosome disorganization, leading to aneuploidy at metaphase II (MII), possibly due to the elevated level of acetylated tubulin. Importantly, overexpression of HtrA2 partially rescued spindle/chromosome disorganization and reduced the rate of aneuploidy in aging GV oocytes. CONCLUSIONS: Collectively, our data suggest that HtrA2 is a key regulator of oocyte maturation, and its deficiency with age appears to contribute to reproduction failure in females.


Assuntos
Oócitos , Tubulina (Proteína) , Feminino , Camundongos , Humanos , Animais , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Oócitos/metabolismo , Meiose/genética , Metáfase , Envelhecimento/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA